# RTB

Annual Report 2017 Phase II - Year 1

ULY 2018







**RTB Annual Report 2017** 

#### Published by the CGIAR Research Program on Roots, Tubers and Bananas

The CGIAR Research Program on Roots, Tubers and Bananas (RTB) is a partnership collaboration led by the International Potato Center implemented jointly with Bioversity International, the International Center for Tropical Agriculture (CIAT), the International Institute of Tropical Agriculture (IITA), and the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), that includes a growing number of research and development partners. RTB brings together research on its mandate crops: bananas and plantains, cassava, potato, sweetpotato, yams, and minor roots and tubers, to improve nutrition and food security and foster greater gender equity especially among some of the world's poorest and most vulnerable populations.

RTB would like to thank all CGIAR Trust Fund contributors who supported this research.

**Contact:** RTB Program Management Unit International Potato Center (CIP) Apartado 1558, Lima 12, Peru rtb@cgiar.org • <u>www.rtb.cgiar.org</u>

ISSN 2309-6586 DOI+ISBN

© International Potato Center on behalf of RTB

**Creative Commons License** 



This working paper is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-sa/4.0/</u>.

#### **TABLE OF CONTENTS**

| ACRONYMS                                                                                                   | 4  |
|------------------------------------------------------------------------------------------------------------|----|
| 1. Key Results                                                                                             | 8  |
| 1.1 CRP Progress Towards Intermediate Outcomes and SLOs                                                    | 8  |
| 1.2 Progress by CRP Flagships                                                                              | 9  |
| 1.3 Cross Cutting Dimensions (at CRP level)                                                                | 15 |
| 2. CRP Effectiveness and Efficiency                                                                        | 19 |
| 2.1 Variance from Planned Program                                                                          | 19 |
| 2.2 Use of W1-2 Funding                                                                                    | 20 |
| 2.3 Key External Partnerships                                                                              | 20 |
| 2.4 Cross-CGIAR Partnerships (other CRPs and Platforms)                                                    | 20 |
| 2.5 Monitoring, Evaluation, Impact Assessment and Learning (MELIA)                                         | 21 |
| 2.6 Improving Efficiency                                                                                   | 22 |
| 3. CRP Management                                                                                          | 22 |
| 3.1 CRP Management and Governance                                                                          | 22 |
| 3.2 Management of Risks to Your CRP                                                                        | 22 |
| 3.3 Financial Summary                                                                                      | 23 |
| TABLES                                                                                                     | 24 |
| Table A: Evidence on Progress towards SLOs                                                                 | 24 |
| Table B: Status of Planned Milestones                                                                      | 35 |
| Table C: Cross-cutting Aspect of Outputs                                                                   | 54 |
| Table D: Common Results Reporting Indicators                                                               | 56 |
| Table E: Intellectual Assets                                                                               | 62 |
| Table F: Main Areas of W1/2 Expenditure in 2017                                                            | 63 |
| Table G: List of Key External Partnerships                                                                 | 64 |
| Table H: Status of Internal (CGIAR) Collaborations among Programs and between the<br>Program and Platforms | 68 |
| Table I: Monitoring, Evaluation, Impact Assessment and Learning                                            | 70 |
| Table J: CRP Financial Report                                                                              | 87 |
|                                                                                                            |    |

#### ACRONYMS

| A4NH       | CGIAR Research Program on Agriculture for Nutrition and Health                                                                                                |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACAI       | African Cassava Agronomy Initiative                                                                                                                           |
| ACB-Net    | Asian Cassava Breeders Network                                                                                                                                |
| AFS        | Agri-Food System                                                                                                                                              |
| ARI        | Advanced research institute                                                                                                                                   |
| BASICS     | Building an Economically Sustainable, Integrated Seed System for Cassava in Nigeria                                                                           |
| BBTD/V     | Banana bunchy top disease/virus                                                                                                                               |
| BCoP       | Breeding Community of Practice                                                                                                                                |
| Bioversity | Bioversity International                                                                                                                                      |
| BMGF       | Bill and Melinda Gates Foundation                                                                                                                             |
| BMZ        | Federal Ministry of Economic Cooperation and Development                                                                                                      |
| BXW        | Banana Xanthomonas wilt                                                                                                                                       |
| СВВ        | Cassava Bacterial Blight                                                                                                                                      |
| CBSD       | Cassava brown streak disease                                                                                                                                  |
| СС         | Cross-cutting                                                                                                                                                 |
| CCAFS      | CGIAR Research Program on Climate Change, Agriculture and Food Security                                                                                       |
| CGIAR      | Global research partnership for a food secure future dedicated to reducing poverty,<br>enhancing food and nutrition security, and improving natural resources |
| CGM        | Cassava green mite                                                                                                                                            |
| CIAT       | International Center for Tropical Agriculture                                                                                                                 |
| CIP        | International Potato Center                                                                                                                                   |
| CIRAD      | Centre de Coopération Internationale en Recherche Agronomique pour le Développement                                                                           |
| Cluster    | Cluster of Activities                                                                                                                                         |
| CMD        | Cassava mosaic disease                                                                                                                                        |
| CRP        | CGIAR Research Program                                                                                                                                        |
| DArTseq    | Diversity Arrays Technology sequencing                                                                                                                        |
| DDPSC      | Donald Danforth Plant Science Center                                                                                                                          |
| DFID       | Department for International Development                                                                                                                      |
| DNA        | Deoxyribonucleic acid                                                                                                                                         |
| DRC        | Democratic Republic of the Congo                                                                                                                              |
| DSM        | Decentralized Seed Multiplier                                                                                                                                 |
| DST        | Decision Support Tool                                                                                                                                         |
| DVM        | Decentralized Vine Multiplier                                                                                                                                 |
| EGS        | Early Generation Seeds                                                                                                                                        |
| EIAR       | Ethiopian Institute of Agricultural Research                                                                                                                  |
| EiB        | CGIAR Excellence in Breeding Platform                                                                                                                         |
| ELISA      | Enzyme-linked immunosorbent assay                                                                                                                             |
| ENDURE     | Expanding utilization of roots, tubers and bananas and reducing their post-harvest losses                                                                     |
| FANEL      | Food and Nutrition Evaluation Lab                                                                                                                             |
| FARA       | Forum for Agricultural research in Africa                                                                                                                     |
| FAO        | Food and Agriculture Organization of the United Nations                                                                                                       |
| Fe         | Iron                                                                                                                                                          |
| FIPS       | Farm Input Promotions Africa Ltd.                                                                                                                             |
| FMARD      | Federal Ministry of Agriculture and Rural Development of Nigeria                                                                                              |
| Foc TR4    | Fusarium oxysporum f. sp. Cubense Tropical race 4                                                                                                             |
|            |                                                                                                                                                               |

| FTA          | CGIAR Research Program on Forest, Trees and Agroforestry               |
|--------------|------------------------------------------------------------------------|
| GBI          | Gender and Breeding Initiative                                         |
| GBS          | Genotyping-by-sequencing                                               |
| GDAAS        | Guangzhou Agricultural Academy of Sciences                             |
| GIS          | Geographic Information System                                          |
| GLDC         | CGIAR Research Program on Grain Legumes and Dryland Cereals            |
| GM           | Genetically modified                                                   |
| GREAT        | Gender-responsive researchers equipped for agricultural transformation |
| GWAS         | Genome Wide Association Studies                                        |
| HIDAP        | Highly Interactive Data Analysis Platform                              |
| HQCF         | High quality cassava flour                                             |
| HQCP         | High quality cassava peel                                              |
| Humidtropics | CGIAR Research Program on Integrated Systems for the Humid Tropics     |
| ICT          | Information and Communications Technology                              |
| IDO          | Intermediate Development Outcome                                       |
| IEA          | Independent Evaluation Arrangement                                     |
| IFAD         | International Fund for Agricultural Development                        |
| IITA         | International Institute of Tropical Agriculture                        |
| ILCYM        | Insect Life Cycle Modeling                                             |
| INIA         | Instituto Nacional de Innovación Agraria                               |
| INRA         | French National Institute for Agricultural Research                    |
| IPM          | Integrated Pest Management                                             |
| ISC          | Independent Steering Committee                                         |
| ISPC         | Independent Science and Partnership Council                            |
| KALRO        | Kenya Agriculture and Livestock Research Organization                  |
| KASP markers | Kompetitive Allele Specific PCR markers                                |
| KEPHIS       | Kenya Plant Health Inspectorate Service                                |
| LAMP         | Loop mediated isothermal amplification                                 |
| LB           | Late blight                                                            |
| Livestock    | CGIAR Research Program on Livestock                                    |
| MAS          | Marker-assisted selection                                              |
| M&E          | Monitoring and evaluation                                              |
| MEL          | Monitoring Evaluation and Learning Platform                            |
| MEL CoP      | Monitoring Evaluation and Learning Community of Practice               |
| MELIA        | Monitoring, Evaluation, Learning and Impact Assessment                 |
| MSP          | Multi-stakeholder platform                                             |
| NaCRRI       | National Crops Resources Research Institute, Uganda                    |
| NARI         | National agricultural research institution                             |
| NARO         | National Agricultural Research Organization, Uganda                    |
| NARS         | National agricultural research system                                  |
| NEPAD        | New Partnership for Africa's Development                               |
| NGO          | Nongovernmental organization                                           |
| NIRS         | Near-infrared spectroscopy                                             |
| NPPO         | National Plant Protection Organization                                 |
| NRCRI        | National Root Crops Research Institute - Nigeria                       |
| NRI          | Natural Resource Institute, UK                                         |
| NWO          | Netherlands Organisation for Scientific Research                       |

| OFSP        | Orange-fleshed sweetpotato                                                |
|-------------|---------------------------------------------------------------------------|
| P&D         | Pests and Diseases                                                        |
| PCR         | Polymerase Chain Reaction                                                 |
| PIM         | -                                                                         |
|             | CGIAR Research Program on Policy, Institutions and Markets                |
| PMCA        | Participatory Market Chain Approach                                       |
| PMU         | Program Management Unit                                                   |
| POWB        | Plan of Work and Budget                                                   |
| PPD         | Post-harvest physiological deterioration                                  |
| ppm         | Parts per million                                                         |
| pVACs       | Provitamin A carotenoids                                                  |
| PVP         | Plant Variety Protection                                                  |
| PVS         | Participatory varietal selection                                          |
| PVY         | Potato Virus Y                                                            |
| QTL         | Quantitative trait loci                                                   |
| R4D         | Research for Development                                                  |
| RAD         | Restriction-site Associated DNA marker                                    |
| RBM         | Results-Based Management                                                  |
| RHUL        | Royal Holloway University of London                                       |
| RICE        | CGIAR Research Program on Rice                                            |
| RPA         | Recombinase Polymerase Amplification                                      |
| RTB         | CGIAR Research Program on Roots, Tubers and Bananas                       |
| SAH         | Semi-Autotrophic Hydroponic                                               |
| SASHA       | Sweetpotato Action for Security and Health in Africa                      |
| SDG         | Sustainable Development Goals                                             |
| SDSR        | Single-Diseased Stem Removal                                              |
| SLO         | System Level Outcome                                                      |
| SMART       | Specific, Measurable, Attainable, Relevant and Time bound                 |
| SMEs        | Small and Medium Enterprises                                              |
| SMO         | CGIAR System Management Office                                            |
| SNP         | Single nucleotide polymorphism                                            |
| SPHI        | Sweetpotato for Profit and Health Initiative                              |
| SPIA        | Standing Panel on Impact Assessment                                       |
| SPVD        | Sweetpotato virus disease                                                 |
| SRF         | CGIAR Strategy and Results Framework                                      |
| SSA         | Sub-Saharan Africa                                                        |
| Sub-IDO     | Sub-Intermediate Development Outcome                                      |
| ТоС         | Theory of Change                                                          |
| UDP         | Uridine diphosphate glucose                                               |
| UoW-M       | University of Wisconsin – Madison                                         |
| UQ          | University of Queensland                                                  |
| USAID       | United States Agency for International Development                        |
| VAD         | Vitamin A deficiency                                                      |
| VIRCA       | Virus resistant cassava for Africa project                                |
| W1/2/3      | Window $1/2/3 - CGIAR$ Funding system                                     |
| WUR         | Window 1/2/3 – Color Funding System<br>Wageningen University and Research |
| YIIFSWA     | Yam improvement for Income and Food Security in West Africa               |
| Zn          | Zinc                                                                      |
| <b>Z</b> 11 | 2110                                                                      |

## 1. Key Results

#### **1.1 CRP PROGRESS TOWARDS INTERMEDIATE OUTCOMES AND SLOS**

Evaluative and impact assessment studies document how the results obtained by RTB, its implementing centers and partners, contribute to the achievement of the SRF targets. The Independent Evaluation Arrangement (IEA) collated existing reports against the CGIAR results framework (IDO level). Based on this, RTB identified 20 studies completed in the last six years that provide evidence on the contribution to the targets linked with SLO 1 and SLO 2. Research areas covered are: 1) enhancement and conservation of genetic material, including the development of improved and biofortified varieties and the conservation of local biodiversity; 2) production and processing technologies; 3) management of pests and diseases; 4) promotion of inclusive value chains. Summaries are available in Table A-1.

Case studies documented in 2017 and their linkages with the SRF framework are listed in Table A-2. They include:

Adoption of improved cassava varieties in Nigeria gives 64% productivity gain. DNA-fingerprinted adoption data revealed that about 66% of cassava growers adopted improved cassava varieties. Adoption of improved varieties is associated with an 82% increase in yield (<u>http://hdl.handle.net/10568/80706</u>). Based on FAOSTAT 2014 (the year of the study), this corresponds to 3.1 million households that adopted improved cassava varieties. Using a poverty line of USD 1.9 per person per day at purchasing power parity, adoption has led to a 4.6% poverty reduction implying that 7.5% of the rural poor cassava producers escaped poverty due to adoption of improved varieties, representing about 2 million individuals (RTB report under publication).

**28% of potato households in Peru adopt CIP related potato varieties.** For more than 40 years CIP worked with the potato breeding program of the National Institute of Agriculture Innovation of Peru (INIA) to develop new genetic material. Through this collaboration, 34 improved potato varieties have been released. A nationally representative household survey was conducted of 86% of the total potato area in Peru. The survey results showed that overall 62% of the potato cropped area is under improved varieties. 202,676 households benefitted from planting varieties related to CIP-related material (28% of total number of potato growers), from a total of 403,590 households that plants improved varieties (the universe of potato producer farmers is 711,313 households in Peru according to 2012 census). The area cultivated with CIP-related material is 91,300 ha, from a total of 275,000 ha in the selected Departments of Peru (<u>http://hdl.handle.net/10568/83497</u>). Farmers growing improved varieties have benefited from higher yield and marketed a larger share of their output, earning higher incomes than comparable neighbors.

**270 economically viable decentralized seed multipliers in Kenya, Ethiopia and Malawi improved farmer access to quality seed potato.** Rapid seed multiplication technologies were adapted and used by national agricultural research institutes and private enterprises to produce early generation seed (EGS) of robust, user-preferred varieties. Increased availability of EGS allowed for the development of commercial decentralized seed multipliers (DSM) located near to production areas. In 2017, 29 seed producer cooperatives in Ethiopia, 204 DSM in Kenya and 38 DSM in Malawi actively engaged in potato seed markets and, in all countries, obtained average gross margins above 1,000 USD/ha with variations depending on cropping season and country. In the three countries, more than 15,000 farmer households directly purchased or accessed quality seeds. Overall, 4,700 individuals in Ethiopia, 7,300 in Kenya, and 4,100 in Malawi had access to technical assistance and training on use of quality seed and agricultural practices (project reports).

**Over 1,100 registered vine multipliers in 14 countries in SSA reach more than 0.5 million households with improved sweetpotato varieties for nutrition enhancement.** During the past decade, many new OFSP and non-OFSP varieties were released. To enable planting material (vines) to reach the wider population, decentralized sweetpotato vine multipliers (DVMs) were established in the farming communities close to the targeted households. As of 2017, a total of 1,118 DVMs have been registered, contributing to increased access to improved planting materials by vulnerable targeted households in 14 countries in Sub-Saharan Africa (SSA). This has resulted in over 500,000 direct and 800,000 indirect beneficiaries (approximately 1.34 million households) with access to improved sweetpotato varieties. Since the launch of the SPHI platform (in 2009), over 4.3 million households have been reached through this model (http://www.sweetpotatoknowledge.org/sphi-dashboard/).

Advocacy for biofortification strategies in Nigeria, Tanzania and regionally. The Building Nutritious Food Basket Project (<u>https://cipotato.org/bnfb/</u>) focuses on scaling orange-fleshed sweetpotato (OFSP); vitamin A (yellow) cassava, vitamin A (orange) maize and high iron/zinc beans. A network of champions and advocates belonging to a wide range of organizations (e.g. civil society organizations, FARA, FAO, NEPAD, parliamentary groups, universities) has been created and supports policy dialogue and mobilization for new investments. The project contributed to (1) a national advocacy brief prepared by the Federal Ministry of Budgets and Planning in Nigeria, (2) the food security and nutrition strategy (2016–2025) of the Federal Ministry of Agriculture and Rural Development of Nigeria (FMARD) and (3) the Ministry of Agriculture, Livestock and Fisheries' Food Security plan and the Food and Nutrition Centre (TFNC) 5-year strategic plan in Tanzania.

#### **1.2 PROGRESS BY CRP FLAGSHIPS**

#### **1.2.1 FLAGSHIP PROJECT 1: DISCOVERY RESEARCH FOR ENHANCED UTILIZATION OF RTB GENETIC RESOURCES**

The RTB breeding community of practice (BCoP), is aiming to resolve the major challenges to RTB breeding research and breeding program management. In 2017 it enhanced communication among breeders of different RTB crops, and became the point of contact for the RTB program to interact with the CGIAR Excellence in Breeding Platform (EiB). During the year, there were significant advances in the use of genomic approaches and tools in breeding populations across the RTB crops for identifying putative molecular markers associated with important traits to enhance and accelerate breeding programs.

Gearing up for stewardship and regulatory approval of late-blight multi-genic resistant potato and BXW resistant banana in East Africa. A cross-crop RTB initiative to address stewardship and regulation of genetically modified (GM) crops started in 2017. CIP and IITA have developed respectively GM late blight resistant potato, and a BXW resistant cooking banana for East Africa. These have been shown to be effective in confined field trials in Uganda. Before they can enter a regulatory phase, prior to their deployment to small-holder farmers, a stewardship strategy (for the responsible management of a product from its inception through its ultimate use; http://www.excellencethroughstewardship.org) and a strategy for risk assessments need to be in place. A workshop was convened by CIP and IITA in Nairobi, bringing together RTB scientists and Ugandan and Kenyan national partners with regulatory and stewardship experts to provide training in preparing these products for their countries' regulatory environment. Participants were introduced to the data and methodology used to conduct risk assessments for food and feed safety and environmental safety. The workshop contributed to a new stewardship plan for the two GM products. In addition, a plan for both GM products has been laid out identifying the gaps in information needed for a regulatory dossier, and field trials planned accordingly. Likewise, the plan identified those topics that do not need further clarification and can be incorporated into the regulatory dossier.

**Molecular markers for development of biofortified cassava varieties**. Dry matter content and provitamin A carotenoids appear to be negatively correlated in the African cassava germplasm. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed (<u>http://dx.doi.org/10.3835/plantgenome2016.09.0094</u>). Two major loci for root yellowness were identified on chromosome 1. A single locus for dry matter content that co-located with one of the loci for carotenoids was identified. Further analysis suggested that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid (phytoene synthase) and starch biosynthesis (UDP-glucose pyrophosphorylase and sucrose synthase) occurred in the vicinity of the identified locus. Therefore, it should be possible to breed high β-carotene varieties with good dry matter content using African germplasm. In a related study, gene-based markers linked to pro-vitamin A content variation were developed, to be used as molecular markers to increase the rate of genetic gain for this critical trait (<u>http://dx.doi.org/10.1007/s11032-017-0718-5</u>). Total carotenoid content, total β-carotene, and color parameters were significantly associated with markers in the phytoene synthase (PSY2) gene, which plays an important role at the start of the carotene synthesis pathway. To facilitate marker-assisted selection (MAS) for

 $\beta$ -carotene in cassava, these were converted to KASP markers. These validated and breeder-friendly markers have potential to enhance the efficiency of selection for high  $\beta$ -carotene cassava, thus accelerating genetic gain.

Sequencing of white guinea yam leads to the mapping of a sex-determination locus which can improve efficiency of yam breeding programs. IITA led the sequencing of the white Guinea yam (*Dioscorea rotundata* Poir.), the most popular yam species in West and Central Africa (<u>https://doi.org/10.1186/s12915-017-0419-x</u>). A diploid genotype, TDr96\_F1, was selected for sequencing and this resulted in an assembled genome of 594Mb, 76.4% of which was distributed among 21 linkage groups. Sequence analysis predicted 26,198 genes in the genome. Using the genome sequence the authors mapped a sex-determination locus on linkage group 11, linked to female flowering in a female heterogametic flowering system (ZZ=male; ZW=female). This has been converted into a molecular marker to determine the sex flowering habit of parental lines. The marker was tested on 54 lines that showed association with the flower sex phenotype with 93% accuracy. It is being tested further on several more lines to better ascertain its accuracy. Having a molecular marker to select male and female parents before planting, will strongly enhance the efficacy of planning of crossing blocks in yam breeding.

Elucidation of the banana genome rearrangements shed light on its evolution and emergence of triploid cultivars. Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between *Musa acuminata* subspecies and sometimes *M. balbisiana*. Research by CIRAD and Bioversity suggests that *M. acuminata* subspecies differ by a few large chromosomal rearrangements based on chromosome pairing configurations in inter-subspecies hybrids. Large chromosome structural variations generally cause chromosomal segregation distortions which reduce fertility and gene flow. *M. acuminata* is divided into six to nine subspecies which diverged following geographical isolation in distinct Southeast Asian continental regions and islands. The currently accepted domestication scenario suggests that human migrations led to contacts between these subspecies through the transport of plant material, resulting in the emergence of intersubspecific hybrids with reduced fertility. Early farmers would then have selected parthenocarpic diploid and triploid hybrids producing fruit with high flesh and low seed content. Using next-generation sequencing approaches, large chromosomal rearrangements in a seedy *M. acuminata* ssp. *malaccensis* banana accession were identified (http://dx.doi.org/10.1093/molbev/msx164). A heterozygous reciprocal translocation involving two segments from chromosomes 01 and 04 was identified, which could have played a role in the emergence of the sterile and seedless triploid cultivars.

# **1.2.2 FLAGSHIP PROJECT 2: ADAPTED PRODUCTIVE VARIETIES AND QUALITY SEED OF RTB CROPS**

In 2017, crosscutting work on seed systems resulted in the publication of a toolbox that addresses different critical bottlenecks and guides seed system interventions. Efforts in FP2 were also directed at testing and/or releasing varieties that address important constraints common to RTB crops that go beyond yield increase, such as enhanced nutritional content, or resilience to climate change (abiotic stresses).

Toolbox for RTB Seed Systems available for designing, implementing and evaluating seed system interventions. A first version of the toolbox was published (https://sites.google.com/view/clustercc21/otoolbox). The set of tools are being validated in over 10 projects in Asia, Africa, and South America across five major RTB crops. Tools cover both socio-economic and biophysical dimensions and include the "multistakeholder framework for intervening in RTB seed systems" which provided an overview of the major stakeholders, their roles, and critical bottlenecks in Nigeria for cassava, India for potato, Ethiopia for sweetpotato, and Uganda for banana; "impact network analysis" which is now being applied in four PhD theses (potato in Ecuador and Kenya, sweetpotato in Tanzania, and cassava in Vietnam) to understand how seed network dynamics influence the spread of new technologies, new pathogens, or new information; the "gender constraints analysis tool" which was used to understand the sweetpotato seed value chain in Ethiopia; and the "seed tracker" which has been piloted in cassava seed systems in Nigeria (http://seedtracker.org/). In addition, in order to identify lessons and gaps for mainstreaming gender into the toolbox, a literature review of the gender dimension of seed system publications (produced by RTB between 2013 and 2016) was carried out. Evidence from the literature review showed that seed systems are socially embedded and, therefore, to develop equitable seed systems, researchers and practitioners need to understand the social contexts in which they aim to intervene. For example, improved understanding of the division of labor in seed production and management with sex disaggregated socioeconomic data could help shape the nature of interventions by assisting managers to identify the methods, measures and strategies to ensure that men and women are able to benefit equally.

Provitamin A rich banana cultivars show good overall acceptability in Burundi and eastern DRC, showing potential for adoption. Vitamin A deficiency (VAD) is a widespread health problem in Eastern Africa where banana is a staple food crop. Certain banana cultivars grown outside Eastern Africa are rich in provitamin A carotenoids (pVACs) and could thus be utilized in addressing VAD in the region. Therefore, consumer preferences in Burundi and eastern DRC were studied, comparing pVAC-rich banana cultivars with local cultivars of the same genome and following similar postharvest handling treatments (https://doi.org/10.17660/th2017/72.5.1). During sensory evaluations 450 panelists (50% male and 50% female) tested the products and rated them on a 5-point hedonic scale. Dessert types were served raw; cooking types were boiled, roasted and pan-fried. Overall acceptability median scores in Burundi were good (4), in North Kivu, DRC, fair to very good (3-5) and in South Kivu, DRC, good (4) for most cultivars. In all three sites taste and texture in mouth were the major consumption attributes that determine acceptability of a banana cultivar. Moreover, a number of the pVAC-rich cultivars showed good potential for adoption within existing farming systems and diets in these regions. In addition, a systematic screening of 64 plantain varieties for total carotenoids was carried out and 5 varieties with higher provitamin A content than the pVAC-rich variety Apantu were identified. These 5 plantain varieties have a total carotenoid content between 13.9% and 7.2% higher than Apantu and higher yields (t/ha) than Apantu - one (Obino L'Ewai) is currently being used for plantain breeding.

**Climate resilient, virus resistant potato clones selected in India for arid and semi-arid regions.** The CIP potato clone *397065.28* was evaluated in on-farm trials and was proposed for variety release in arid and semi-arid regions for early planting, at higher temperatures. The clone is resistant to the major viruses PVX and PVY and has moderate resistance to late blight (LB). It is a suitable alternative to the popular heat tolerant variety, Kufri Surya in early plantings in the Indo-Gangetic plains of India. It yielded 26% higher total tuber yield and 30% marketable size tuber yield than Kufri Surya. It has good storability, is mealy in texture and has excellent taste and appearance. In addition, another drought-tolerant clone, CIP *397006.18* was selected and introduced in All India Coordinated Research Project (AICRP) for multilocation testing in different agro-ecologies. The drought tolerant CIP clone produced higher yields than Kufri Bahar and Kufri Surya and Kufri Pukhraj varieties when evaluated at different arid regions. It has a higher drought tolerance index under mild water deficit than the local controls, moderate late blight resistance, long tuber dormancy, good flavor and good keeping quality under ambient temperature.

**Net tunnels and negative selection compared as sources of clean planting material for sweetpotato in Ghana.** Commercialization of sweetpotato vines is sustainable if multipliers show evidence of vine superiority, especially being free of viruses and pests such as weevils. To keep the vines clean and healthy, net tunnels and/or negative selection can be used. The effects of net tunnel source and of pathogen-tested planting material compared to "apparently" healthy vines (after strong negative selection against vines showing virus symptoms) on yield and health status at three defined environments in Northern Ghana during the rainy season of 2015 were determined for four varieties (https://doi.org/10.1515/opag-2017-0026). Highly significant statistical differences were found among varieties and trial sites for plant establishment, foliage yield, root yield, weevil, and sweetpotato virus disease (SPVD). However, the two sources of planting material were not significantly different for yield, showing negative selection to be as effective as the net tunnels. Nevertheless, the net tunnel derived material had significantly lower SPVD symptoms, and in some localities, less weevil infestation. Therefore, net tunnels may have a distinct advantage for multiplication and maintenance of vine planting material.

#### **1.2.3 FLAGSHIP PROJECT 3: RESILIENT RTB CROPS**

Access and capacity of FP3 to utilize big data related to pests and diseases distribution and incidence as well as climate data is increasing rapidly. ICT tools that help to translate the results of complex analysis into evidence that can be used in decision making process are becoming affordable for different stakeholders (i.e. plant protection organizations, farmers). These tools are helping design new diagnostic, surveillance and management strategies of critical pests and diseases of RTB crops.

ICT tools and artificial intelligence help accurate diagnosis and monitoring of major cassava diseases in Africa and can be used for other RTB crops. Two major biological threats to cassava in Africa are cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), transmitted by the whitefly (*Bemisia tabaci*) and also spread through the movement of infected planting material (<u>https://doi.org/10.1111/jph.12609</u>). Significant achievements have been made in the development of tools and an enabling environment for more effective

11

virus surveillance. Using artificial intelligence and mobile devices to develop image-based cassava disease detection tools has shown to be effective for CMD, CBSD and other important diseases (<u>https://doi.org/10.3389/fpls.2017.01852</u>). In 2017, this progress convinced the Big Data Platform, through the <u>INSPIRE grant</u>, to support efforts to expand the work to diseases of other RTB crops. Building networks for rapid preliminary diagnosis of cassava diseases and monitoring of the spread of viruses is also part of the proposed strategy to minimize the impact of cassava diseases in Nigeria, DRC and Tanzania. The Cassava Disease Surveillance (<u>CDS</u>) is a virtual network that allows different stakeholders to submit data on visual inspection of symptomatic plants as 'digital images' by an internet enabled device such as smartphone, touch-pad, computer and other. With a team of national and international experts, the aim of CDS is to support, also through follow-up inspections and laboratory testing of suspect samples, accurate diagnosis and to offer solutions for prevention and management.

CGIAR and national partners strengthened their capacities to perform pest risk assessments in the face of climate change and global movement of pests. The Insect Life Cycle Modeling software (ILCYM) facilitates the development of pest insect phenology models and provides analytical tools for studying pest population ecology. It was successfully used to perform pest risk assessment at the regional and country level (see <u>Pest Distribution</u> and <u>Risk Atlas for Africa</u>). In 2017 ILCYM was further enhanced with modules that enable prediction of risk of insect-transmitted viruses and generation of georeferenced risk maps. Maps allow easy location of the estimated risk index values in georeferenced points and are linked with climatic data. A practical training course on ILCYM was organized in Benin in 2017 in collaboration with the newly established Biorisk Management Facility (BIMAF). Twenty-three participants from seven countries across sub-Saharan Africa including Benin, Cameroon, Kenya, Nigeria, South Africa, Sudan, and Togo attended the course. The uptake of this software will facilitate the development of pest insect phenology models and will provide analytical tools for studying pest population ecology and risk assessment in GIS environment.

In Nigeria and Tanzania scientists and extension agents developed demand-driven support tools for cassava agronomy. To contribute in reducing cassava yield gap and increase crop production and quality, the African Cassava Agronomy Initiative (ACAI) project adopted a demand-oriented approach. For six use cases, specific sets of information needed for improving cassava agronomic practices, were identified and R4D activities are being developed that will be translated in decision support tools accessible to NARS agronomists, extension agents, farmers and other beneficiaries. A geospatial cassava agronomy information base has been developed. It serves as basis for the modeling and data analysis that allows the provision of site-specific recommendations. In 2017, working prototypes in various formats (smartphone apps, software or paper-based tools) have been released on 1) best planting practices (link to presentation); 2) best intercropping practices (link to presentation); 3) site-specific fertilizer recommendations (link to presentation); 4) scheduled planting and high starch content (link to presentation). Data generation and development of these tools is a joint effort with national organizations and advanced research institutions. More than 200 extension agents have been trained and involved in trials, validations and baseline surveys.

Removal of single diseased banana stems proved its effectiveness in restoring productivity of Xanthomonas wilt infected bananas fields. *Xanthomonas campestris* pv. *musacearum*, the causal agent of Xanthomonas wilt of banana (XW), does not infect or cause symptom development in all physically attached shoots in an infected mat. The single diseased stem removal (SDSR, the removal of only symptomatic plants) technique has been evaluated in eastern Democratic Republic of Congo as a novel XW control option. Compared with complete mat uprooting, SDSR is low-cost, simple and easily applicable. By applying SDSR in the experimental fields, XW plant incidence was reduced to less than 1% after 10 months and restoration of banana plots was observed even in plots that initially had over 80% plant disease incidence. SDSR appears as an adequate option in subsistence-oriented towards XW management/control more than complete eradication and can be suggested where access to clean planting material is difficult (<u>https://doi.org/10.1007/s10658-017-1189-6</u>).

# **1.2.4 FLAGSHIP PROJECT 4: NUTRITIOUS RTB FOOD AND ADDED VALUE THROUGH POSTHARVEST INTERVENTION**

The bulkiness and high perishability of RTB crops, poor postharvest handling, lack of processing and storage facilities result in short marketing channels, high postharvest losses and limited value addition, all areas where progress was made in 2017. In addition, basic and applied research was conducted on improving nutrition.

**Multi-crop postharvest innovation**. The RTB-ENDURE project adapted the Participatory Market Chain Approach (<u>PMCA</u>) to stimulate post-harvest innovation with existing and emerging private sector players including i) a sequence of competitive and collaborative phases to identify and develop the core innovations and ii) monitoring of partnership health. Resources were specifically allocated for gender integration and multi-stakeholder platforms. The project stimulated marketing, technological and institutional innovations including: charcoal storage cooler and marketing of peeled cooking bananas; silage business centers for pig feed; ambient store technology for extending marketing period of potatoes; and waxing technology and agronomic practices for extending shelf life of cassava. Achievements were reviewed and follow up actions for scaling and learning from the application of PMCA were agreed in a workshop of the cross cutting cluster for FP4 (http://hdl.handle.net/10568/92554).

**Improved energy performance of small-scale dryers used for processing cassava**. Experiments were conducted at two cassava processing centers, in Tanzania and Nigeria. Sensors were installed on the dryers, product samples were collected and the mass and energy balance of the equipment analyzed, allowing the dryers' minimum air mass flow rates to be calculated. The air mass flow rates of both dryers were then reduced to the minimum: in Tanzania, by 24%, and Nigeria by 14%. In both locations, the modifications decreased the dryers' heat input without jeopardizing evaporation rates, and so not affecting the final moisture content of the dry products. Air temperatures at the dryer outlets decreased and relative humidity increased, while enthalpy remained unchanged. The modification improved energy efficiency by 25% in Tanzania and 14% in Nigeria (http://dx.doi.org/10.1016/j.biosystemseng.2016.10.001).

Evaluation of proximate composition and pasting properties of high quality cassava flour (HQCF) from  $\beta$ carotene-enriched roots. Forty-five cassava genotypes in two sets were processed into HQCF, comprising 40 clones of  $\beta$ -carotene enriched roots and 5 check clones of white roots. The effects of variety on the proximate composition and pasting profile of the flour was investigated. The starch content ranged between 67.1 g/100 g (for 01/1663) o 77.8 g/100 g (for 297/0474). Peak viscosity values ranged between 271.9 RVU (rapid viscosity value - for 01/1404) to 471.3 RVU (for 01/1417). Significant differences (P < 0.05) existed in the proximate composition and pasting properties of the flour from different cassava genotypes. The high peak viscosity exhibited by most  $\beta$ -carotene genotypes is indicative that the flour may be suitable for products requiring high gel strength and elasticity. The proximate composition compares competitively with values obtainable from clones of white roots (<u>http://hdl.handle.net/10568/83228</u>).

Effects of Simulated Human Gastrointestinal Digestion of Purple-Fleshed Potato Cultivars on Anthocyanin Composition and Cytotoxicity in Colonic Cancer. A dynamic human gastrointestinal model was used to digest cooked tubers from purple-fleshed Amachi and Leona potato cultivars to study anthocyanin biotransformation in the stomach, small intestine and colonic vessels. Colonic Caco-2 cancer cells and non-tumorigenic colonic CCD-112CoN cells were tested for cytotoxicity and cell viability after 24 h exposure to colonic fecal water (FW). The total anthocyanin concentration was over thirty-fold higher in Amachi compared to Leona digests but seven-fold higher anthocyanin concentrations were noted for Leona versus Amachi in descending colon digests. Leona FW showed greater potency to induce cytotoxicity and decrease viability of Caco-2 cells than observed with FW from Amachi. The present findings indicate major variations in the pattern of anthocyanin breakdown and release during digestion of purple-fleshed cultivars. The differing microbial anthocyanin metabolite profiles in colonic vessels between cultivars could play a significant role in the impact of FW toxicity on tumor and non-tumorigenic cells (https://doi.org/10.3390/nu9090953).

Making storable orange-fleshed sweetpotato purée a commercial reality. Research in Rwanda demonstrated that orange-fleshed sweetpotato (OFSP) purée (steamed, mashed roots) was an economically viable, vitamin A enhancing ingredient in baked products when the purée was produced and used in the same bakery. Having a storable, packaged OFSP purée produced by a firm to supply bakers is an alternative model. Vacuum-packed OFSP purée with preservatives with a four-month shelf-life at 23°C was developed by CIP under laboratory conditions in 2015. Turning it into a commercial reality required a public-private partnership to establish an OFSP purée-bread value chain. The first OFSP bread began to be marketed in six Tuskys' stores in June 2015 at a premium price (5 Ksh above its regular bread), reaching 20 stores by August 2016. OFSP bread was well-received by consumers. Purée production became profitable (18% profit margin) when unpeeled roots were used, the new product being a "high fiber" purée. Commercial OFSP purée production has been improved and is poised for profitable, larger-scale output (http://hdl.handle.net/10568/91985).

13

#### **1.2.5 FLAGSHIP PROJECT 5: IMPROVED LIVELIHOODS AT SCALE**

Scaling. FP5, in close collaboration with PMU, developed and pilot-tested two innovations: the "Scaling Readiness Approach", and the "RTB Scaling Fund". The scaling readiness approach scans the different innovation components to find the most limiting ones and then seeks to substitute or find a way around them. Validation of the scaling readiness approach began with innovations around community phytosanitation for combating cassava brown streak disease (CCP4CBSD), farmer decision support tools for potato late blight management (PLBM), single diseased stem removal for managing banana xanthomonas wilt (SDSR), decision support tools for cassava agronomy (ACAI-DST), integrated systems for cassava agronomy at scale (ACAI-CAS), and cassava national policy framework (CNP) (http://hdl.handle.net/10568/90666). A set of RTB innovations was stress tested for readiness through peer review in an interactive poster based session (http://www.rtb.cgiar.org/scaling-rtb-technologies-world-cafe/). Teams with eligible innovations applied to the RTB Scaling Fund. This is an internal competitive mechanism that uses independent reviewers for the assessment of the submitted proposals. In 2017, twelve concept notes were submitted from which three projects were selected (blog). These and the other cases are being used to rigorously assess the scaling readiness framework. Within the framework of the Third International Conference on Global Food Security organized by Elsevier (December 2, 2017, Cape Town, South Africa), RTB convened a symposium entitled "Science of scaling: connecting the pathways of agricultural research and development to improve rural livelihoods" that is leading to a special edition on scaling by the Agricultural Systems journal. Representatives from the research, development and business sectors participated in the symposium and shared their insights on enabling and hindering factors that agricultural innovations may encounter in their pathways to scale.

Soil organic carbon (SOC) stocks and fractionation under different land uses in the Peruvian high-Andes. Research assessed the impact of changes in land use, such as cultivation of the Andean root maca (*Lepidium meyenii Walpers*), on C sequestration, fractionation and  $\delta$ 13C natural abundance. In the first study SOC stocks were greater than average temperate grassland soils (between 123 ± 4 and 136 ± 4 Mg C ha<sup>-1</sup> in the 0–30 cm soil profile); however, they did not differ between land uses. SOC loss was found in long fallow plots, correlated to steep and low plant cover plots; evidencing that soil degradation is due to land abandonment. In a second study, a long-established perennial ryegrass (*Lolium perenne L.*) - white clover (*Trifolium repens L.*) association (> 40 years) was studied. No increase in SOC stock under the cultivated pasture was found. However, there was a better soil aggregation and an increase of 17.3 and 12.2 g C kg<sup>-1</sup><sub>WSA</sub> in particulate organic C, and SOC within small macroaggregates in cultivated pasture soils. Soil  $\delta$ 13C natural abundance was about 1‰ depleted in all measured C fractions of cultivated pastures when compared to native grasslands, suggesting that pasture-fixed C forms labile and recalcitrant SOC fractions (<u>https://cgspace.cgiar.org/handle/10568/90584</u>). Better understanding the dynamics of SOC under different land uses is a key aspect to design new strategies for sustainable soil management in high Andean regions that are center of origin of native root and tuber crops.

**Gender in agricultural change: towards more inclusive innovation in farming communities**. The GENNOVATE global research collaboration used a comparative qualitative methodology based on single sex and age differentiated focus group discussions and semi structured individual interviews with men and women representing diverse trajectories of wellbeing. The sub-set of 24 case studies undertaken by RTB and Humidtropics between 2014 and 2016 as part of <u>GENNOVATE</u> were carried out in Bangladesh, Burundi, Colombia, DRC, Kenya, Malawi, Nigeria, Rwanda, Uganda and Vietnam. These sought to detect commonalities and differences regarding the way gender norms and agency affect and are affected by agricultural innovation (<u>http://hdl.handle.net/10568/83498</u>). The study offers key insights on: a) what unleashes agricultural innovation among women and men; b) how persistent and changing norms interact with and condition innovation choices; and c) what and how social conditions enable women, men and communities to leverage opportunities for innovation. Study findings challenge stereotypes that depict women's innovation preferences as driven only by concerns for food and nutrition security, highlighting the importance of income generation and autonomous decision making as contributing drivers for innovation. Study results provide useful information to design research strategies and interventions for more gender equitable technology adoption and adaptation.

**Social network analysis of multi-stakeholder platforms (MSPs) in agricultural research for development.** By increasing collaboration, exchange of knowledge and influence mediation among farmers, researchers and other stakeholders, MSPs supposedly enhance their 'capacity to innovate' and contribute to the 'scaling of innovations'. Research examined the capacity to innovate and scaling potential of MSPs in Burundi, Rwanda and the Democratic Republic of Congo (DRC). Results demonstrate mismatches between collaboration, knowledge exchange and influence networks for effective innovation and scaling processes: NGOs and private sector are respectively over-

and under-represented in the MSP networks. Linkages between local and higher levels are weak, and influential organizations (e.g., high-level government actors) are often not part of the MSP or are not actively linked to by other organizations. Organizations with a central position in the knowledge network are more sought out for collaboration. The scaling of innovations is primarily between the same type of organizations across different administrative levels, but not between different types of organizations. The results illustrate the potential of social network analysis to diagnose and improve **MSPs** for development impacts (https://doi.org/10.1371/journal.pone.0169634).

**Guidelines for innovation platforms in agricultural research for development**. The guidelines build on an analysis of the optimal compositional dynamics of multilevel innovation platforms (<u>http://hdl.handle.net/10568/80715</u>). They were developed through a learning collaboration among CGIAR research centers and other academic and more applied research centers. Eleven CGIAR centers participated and contributed expertise and experiences across multiple agricultural systems, geographies, and types of complex constraint. The guidelines provide information grounded in a wide practical experience of key design and implementation principles, and the financial and human resources needed, with suggestions for more effective monitoring, evaluation, and learning. They list reference materials, answer frequently asked questions, and provide a decision support tool for research, development, and funding agencies (<u>http://hdl.handle.net/10568/82550</u>). The guidelines will be an important reference tool for the establishment and consolidation of innovation platforms that support agricultural research on RTB crops in different regions and contexts.

#### **1.3 CROSS CUTTING DIMENSIONS (AT CRP LEVEL)**

#### **1.3.1 GENDER**

Established as a collective space for collaboration and shared learning among breeders and social scientists, the <u>Gender and Breeding Initiative (GBI)</u> has been coordinated by RTB. A workshop held in Nairobi allowed experts from across CGIAR Research Centers and Research Programs to develop a strategy for gender-responsive breeding (<u>http://hdl.handle.net/10568/89834</u>). A series of working papers and briefs were made available to provide researchers with supporting methods, tools and practices for gender responsive breeding (<u>http://www.rtb.cgiar.org/gender-breeding-initiative/resources/</u>).

GBI methods and tools require the establishment of common crop ontologies for gender related traits and the compilation of information related to trait preferences from gendered target groups. In FP1, protocol and trait dictionary of quality and chemical evaluation for RTB crops is being documented and incorporated in the Crop-Ontology Platform, considering gendered trait preferences. Also, several breeding programs working with participatory varietal selection and varietal preferences are developing gender-sensitive tools (<u>https://research.cip.cgiar.org/potatoknowledge/pvs.php</u>; <u>https://cgspace.cgiar.org/handle/10568/89296</u>) and capacity development materials (<u>GBI webinar</u>).

The RTB gender team worked closely with the seed system scientists in FP2. As result, tools from the seed systems toolbox were given a gender lens and piloted in the Ugandan banana seed system and will continue to be piloted elsewhere. In the area of end-user preferences, the knowledge base of seed system dynamics was expanded through the inclusion of gender differentiated end-user needs and preferences for the high yielding, disease resistant EAHB hybrids (NARITAs) and for cassava varieties in Nigeria. Review of research work published between 2013 and 2016 was the basis to draw lessons learnt and identify gaps in mainstreaming gender in RTB crop and seed system interventions (http://hdl.handle.net/10568/89806).

In FP3, gender responsive research protocols and guidelines to strengthen IPM research and dissemination strategies, with specific emphasis on BXW and BBTD have been developed. Gender norms and roles in disease management were analyzed to understand disease spread considering gender differences in use of different practices and technologies. In banana production systems, due to the predominance of men's access to land rights, most decisions about crop management, sales and income control are in the hands of men; and women are not financially compensated for their labor on banana fields. Women engaged in banana production have limited access to knowledge and fewer incentives to engage in banana pest and disease management practices particularly if they are labor intensive. However, while men's control over banana sales and revenues is generally accepted by women and men alike, women challenge this norm and find ways to subvert men's authority particularly when it comes to production of cooking bananas. Thus, supporting collective action and intra-group

exchange of information about IPM practices can have gender transformative effects while contributing to the sustainable management of banana production systems.

Gender influence on participation in cassava value chains (https://doi.org/10.1017/S0014479717000552) and empowerment traditional food value chains women's in were studied in Tanzania (https://doi.org/10.1080/21683565.2017.1325433). Results indicated that gender was significantly related to socio-economic characteristics. About 34% of the women participating in the cassava value chain were young, some below 17 years of age. There were significant relationships between gender and access to resources (land, extension services and markets), control over resources (land, house and household assets) and benefits (revenue) generated from cassava value chains. Overall, there was gender disparity in participation along the cassava value chain. These results suggest that any intervention in the cassava value chain should consider gender relations to benefit men and women and alleviate household poverty. In parallel, limited participation in productive decisions, very restricted access to credit and associated decision-making power, limited autonomy in production, and a heavy workload were identified as main areas of disempowerment for women.

In FP4, a large part of the work conducted on gender is related to nutritional strategies to promote the consumption of orange fleshed sweetpotato by children and women in reproductive age. Gender sensitive protocols for farmers' participatory evaluations were developed to measure end user and consumer preferences of biofortified cassava and gendered preferences of varieties for yam processing. Preference ratings for genotype desirability were ranked for each location and disaggregated by gender to indicate similarities and differences in gender preferences

Gender strategic research is embedded in FP5. This includes the development of analytical approaches and tools for gender-responsive innovation, and gender analysis in the context of specific innovations. Some of the tools and studies conducted in 2017 include: best practice guidelines for integrating gender into seed systems (https://cgspace.cgiar.org/handle/10568/81051), an analysis of the role of gender norms in access to agricultural training in Chikwawa an Phalombe, Malawi (https://cgspace.cgiar.org/handle/10568/89051), and the report on gender transformative agricultural innovations (https://cgspace.cgiar.org/handle/10568/83498). The data shows that the perception of men as household heads and women as care givers or helpers who are also illiterate and ignorant often has implications on women's ability to access training and information. Negative stereotypical perceptions about women by their husbands and extension workers militate against women's access to training and information. Institutional biases within extension systems reproduce gender inequality by reinforcing stereotypical gender norms. In this context, to address the scaling of innovations, extension officers should be targeted with training on gender responsive adult learning methodologies and gender awareness to help them be more inclusive and sensitive to women's needs.

#### 1.3.2 YOUTH

Towards inclusive scaling strategies in agriculture: Understanding youth issues and opportunities. New agricultural technologies and innovations are leading to changes in smallholder farming system. The role of agricultural innovations and understanding how they may address youth employment in the agricultural sector is a research priority in the CGIAR and specifically on the RTB agenda. It is therefore essential to better understand youth specific constraints and opportunities in order to maximize agricultural interventions and to improve sector performance. To address this concern a review of current literature was conducted to identify commonalities and gaps in the understanding of youth issues. The paper elaborates on the different forms of engagement of young people in agriculture, the factors that explain their transition into and out of the agricultural sector, and research approaches to foster the understanding of youth dynamics in agriculture.

Young women and men led local development in 10 DRC communities. IITA-Kalambo Youth Agripreneurs (IKYA) is a cooperative of young women and men in Bukavu, DR Congo, who have improved on-farm production and processing of cassava. IKYA works with rural Community Cassava Processing Centers (CCPCs) to source their raw cassava roots, which they then process to produce high quality cassava flour (HCQF) that is sold in supermarkets and in retail shops in Bukavu. This value-added activity is a way to diversify the cooperative's sources of income and to increase the revenue of rural CCPC's as a regular and reliable buyer. In total, the CCPCs have a total of 234 individuals, 89 young men and 145 young women. Each CCPC has 3-4 paid salary members. In 2017, each CCPC, on average, produced 1 tonne of flour monthly. A total of 200 CCPC members have received technical trainings on processing and preparing cassava flour products for sale and home consumption. Young people from the IKYA program are engaged in activities that increase income and reduce poverty in rural households,

providing technical training on Integrated Soil Fertility Management to stakeholders who include NGOs and youth groups that are embarking on developing their own agribusinesses.

#### **1.3.3 OTHER ASPECTS OF EQUITY / "LEAVING NO-ONE BEHIND"**

**Integrated agriculture for nutrition approaches in the Andes.** In high Andean indigenous communities of Bolivia and Peru, ancient knowledge on native potato varieties from both the Aymara and Quechua cultures was documented, and local varieties with high levels of Iron and Zinc were identified in previous years. Native landraces and new varieties with higher content of Fe and Zn may also benefit from agronomic practices aimed at enhancing the concentration of nutrients in edible parts of crops (e.g. with fertilizers containing specific micronutrients) (https://doi.org/10.1007/s11104-016-3065-0). This information was used to implement capacity building programs with indigenous communities through the International Fund for Agricultural Development (IFAD) Andes Program. Men, women and children were targeted to enhance dietary diversity and increase the consumption of biofortified potatoes to combat anemia amongst vulnerable groups. In Peru, the IFAD Andes program is also deriving support from the national strategy to eliminate chronic malnutrition. Agreements were signed with the Ministry of Development and Social Inclusion and a workshop was conducted to design a pilot intervention in the district of Curgos (one of the regions with the highest poverty indices in Peru). The pilot intervention will include biofortified potatoes in capacity building programs to enhance agricultural production and nutrition for women of childbearing age and children under 5 years old.

**Indigenous knowledge systems and climate change management in Africa.** Climate change challenges food security and sustainable development in Africa. In recent years, the knowledge of local and indigenous people, often referred to as indigenous knowledge has been increasingly recognized as an important source of climate knowledge and adaptation strategies. In order to document and share proven practices, tools or policies that promote resilience and help farmers to address the challenges posed by climate change, a book on indigenous knowledge systems and climate change management for different regions of Africa was produced (https://publications.cta.int/media/publications/downloads/2009 PDF.pdf). The document provides insights into specific climate solutions that work for smallholder farmers and others that could have potential to scale.

#### **1.3.4 CAPACITY DEVELOPMENT**

In 2017, a total of 261 students and young researchers have been associated with RTB research programs for long term training. 94 of them were PhD and 95 MSc students, see figure below left. The number of participants in one-off short-term training was 53,500, with 12,826 in knowledge exchange activities and 52,977 in scaling activities, see figure below right. The distribution by flagship projects shows that most scaling activities have been mapped in RTB delivery flagships (FP2, FP3, FP4) even when FP5 supported the definition of the scaling strategies.



Here we present the approach taken in one of the clusters to enhance the effectiveness of long-term training.

**Building research capacities on RTB seed systems.** Cluster 2.1 is implementing a coordinated effort to strengthen the capacities of a group of 11 talented young scientists. RTB scientists involved in this cluster are actively mentoring four PhD students from Wageningen University and Research (WUR), three students from University of Florida (UFL), one student from Makerere University (MU), two young scientists associated with WUR and one post-doc associated with UFL. This group is receiving training in several ways: formal training at WUR, UFL and MU; hands-on training with CGIAR host institutions on the projects in which they are doing their field work; participation in cluster meetings, in which they interact actively with senior scientists, and by attending dedicated training events (2 events organized by WUR in 2017). These young scientists contribute in developing, testing and refining the Toolbox for RTB Seed Systems described above (See Section 1.2.2). It is expected that they will become the next generation of scientists that will help practitioners to better design, implement and evaluate projects in seed systems. At a conservative rate of two research papers per scientist, it is estimated that this group (with support of others) will deliver over 20 high-quality research papers by the end of RTB's Phase II.

A rigorous approach to document the results obtained through training is shown in the following example.

**Improving Food Safety Practices of OFSP Puree Handlers in Kenya.** OFSP puree is a nutritious food ingredient for promoting Vitamin A intake in processed food products in Sub-Saharan Africa (SSA). OFSP puree handlers play an important role in ensuring production of consistently safe and quality OFSP puree and related processed products. Insufficient knowledge on food safety and poor practices by food handlers are major causes of foodborne illnesses and deterioration in food quality along the food chain. A study of 35 handlers showed a low level of knowledge on personal hygiene, food contamination, foodborne illnesses, cleaning and sanitation with mean scores of 80, 64, 76 and 63%, respectively. Training had a significant impact on knowledge (p=0.020), attitude (p=0.050), practices (p=0.006) and overall KAP (p=0.001). A significant moderate positive correlation existed between knowledge and practices (r=0.358, p=0.035) and attitude and practices (r=0.42, p=0.013). As per adjusted linear regression analysis, food safety practices significantly (p=0.045) increased by 0.32% with one percent increase in knowledge and by 0.38% (p=0.018) with one percent increase in attitude. Frequent food safety training is needed to improve hygienic practices of handlers (http://hdl.handle.net/10568/91984).

#### **1.3.5 OPEN DATA**

**Open Access and ISI Journals and RTB Collection in CGSpace.** All centers aim to increase the number of publications in Open Access and ISI Journals to achieve the CGIAR targets. The cost of making publications open access has been assumed in compliance with the institutional guidelines of each center. To foster global accessibility and impact of knowledge products developed under RTB, a specific collection has been created in CGSpace for RTB (click here). This facilitates the identification and findability of, and access to, publications. CGSpace also publications to be easily monitored in terms of mentions, downloads, views, etc., and it facilitates the tracking of the usage of these materials. Other relevant crop-specific websites that facilitate access to knowledge products are: Banana bibliographic database (www.musalit.org); Banana image bank (www.musarama.org); Sweetpotato Knowledge Portal (http://www.sweetpotatoknowledge.org/).

**RTB databases.** The program contributes to the systematic and long-term effort for making available genomic and phenotypic data as well as data from experimental trials related with all the RTB crops. The table below lists some of the databases maintained and/or contributed by RTB and its centers.

| RTB databases                                                                                            |
|----------------------------------------------------------------------------------------------------------|
| BioMart (http://germplasmdb.cip.cgiar.org/)                                                              |
| Cassava genome hub ( <u>http://www.cassavagenome.org/</u> )                                              |
| CASSAVABASE ( <u>https://www.cassavabase.org/</u> )                                                      |
| MGIS ( <u>http://www.crop-diversity.org/mgis</u> )                                                       |
| MUSABASE ( <u>https://musabase.org/</u> )                                                                |
| ProMusa knowledge base ( <u>www.promusa.org</u> )                                                        |
| Southgreen (http://www.southgreen.fr/content/rtb-multi-genomes-hub)                                      |
| Potato Gene Identity Kit ( <u>https://research.cip.cgiar.org/confluence/display/IPD/SSR+Marker</u> )     |
| PotatoGENE (https://research.cip.cgiar.org/confluence/display/potatogene/Home)                           |
| The Catalogue of CIP Potato Varieties ( <u>https://research.cip.cgiar.org/red_varie/pages/home.php</u> ) |

| RTB databases                                           |
|---------------------------------------------------------|
| SWEETPOTATOBASE ( <u>https://sweetpotatobase.org/</u> ) |
| YAMBASE ( <u>http://www.yambase.org/</u> )              |

**CIP Open Access Data Sprint.** For the first time, CIP launched a <u>Data Sprint competition</u>. Important datasets were uploaded and shared in the Dataverse repository, this competition was considered a good practice among the CG Open Access and Data Management groups, as a way of promoting Open Access policies and implementing knowledge sharing strategies to increase visibility and access to data.

**Interoperability.** To seek interoperability between frequently used platform and repositories, RTB has worked with MEL Platform to match and exchange data and metadata with CGSpace and CIP-Dataverse.

#### **1.3.6 INTELLECTUAL ASSETS**

**Intellectual assets management.** CGIAR centers in RTB are responsible for strategically managing their intellectual assets. Most of the centers have recently approved or reviewed their internal related policies and aligned them with the CGIAR Open Access and Data Management Policy and the CGIAR Principles on the Management of Intellectual Assets. They report every year to the System organization the main progress and any challenge they faced. Most of the intellectual assets are maintained in the form of scientific publications (which are inclusive of journal articles, books, conference presentations, reports) and varieties released through the national agriculture research systems in the partner countries. Project development and/or Legal units are in place in each center. They support managers in the establishment of management of IA and maintain IP registers.

**Patents and/or plant variety right applications**. CGIAR centers in RTB did not apply for PVP or Patents during 2017, and therefore, nothing has been tracked or strategically managed in terms of intellectual property rights as specified in table E.

**Critical issues and challenges in the management of intellectual assets in the context of the CRP**. Centers reported that there were no critical challenges encountered in 2017 with regards to management of intellectual assets in the context of RTB.

## 2. CRP Effectiveness and Efficiency

#### 2.1 VARIANCE FROM PLANNED PROGRAM

A major achievement which built on earlier RTB supported workshop on breeding for quality traits with strong cross center collaboration from the postharvest team was to contribute to the design and start-up of the BMGF funded project - **Breeding RTB products for end user preferences (RTBFoods)** - led by CIRAD. The proposed investment will expand the program capacities in this research area and will improve knowledge of the essential quality traits for successful RTB variety adoption all along the value chain. Multidisciplinary teams bringing together specialists of social sciences and food technologies will capture these essential quality traits through surveys conducted with users of RTB crops, i.e. processors and consumers, as well as farmers and traders or middlemen (https://www.cirad.fr/en/news/all-news-items/press-releases/2018/rtbfoods).

In the last quarter of the year, potato and sweetpotato breeding (CIP), cassava breeding (IITA and CIAT) and plantain breeding (IITA) programs were facing a challenging situation due to the curtailment of a significant portion of Window 3 funds. Breeding is a core element of an Agri-Food System CRP and as the Excellence in Breeding Platform (EiB) gets underway, the Independent Steering Committee considered it vital that centers have strong breeding programs to engage. So, concerned by this loss of W3 funding, after appropriate consultation, RTB took measures that will protect areas of the breeding programs that are at risk in 2018 due to W3 cut.

19

#### 2.2 USE OF W1-2 FUNDING

W2 funds allocated by DFID to RTB were allocated following the distribution by flagship indicated by the funder. RTB assigned W1&2 through two main mechanisms:

- 1. Earmarked Funding: Semi-competitive funds annually allocated to clusters for synergistic research which creates added value for RTB as a program. This includes: discovery and cross-cutting clusters where cross-crop and cross-center collaboration are fostered, for example the RTB Breeding Community of Practice and interventions linked to the cross-cutting areas of gender and youth, and capacity development.
- 2. Non-Earmarked Funding: Funds annually allocated to Program Participants for the implementation of cluster specific R4D agenda as defined in the full proposal.

Earmarked and Non-Earmarked funds represent respectively 35% and 65% of total W1&2 allocation to program participants. During 2017 RTB established the Scaling fund to foster the scaling of the most promising RTB innovations, generate an evidence base around the scalability of these innovations and improve scaling strategies, approaches and tools. The first call was launched the 15th of August 2017 and the assessment of the full proposal was published the 15th of November. Three projects were selected and implementation started at the end of 2017.

#### **2.3 KEY EXTERNAL PARTNERSHIPS**

**FP1-FP5**. Strategic use of W1-2 includes support to partnerships with **French institutions** (CIRAD and IRD), which whilst fully part of RTB are external to CGIAR. Since phase I, they have been significantly contributing in key areas in all the flagships.

**FP1**. Collaboration with **RHUL** improved program capacities to perform molecular and biochemical characterization of important traits in several RTB populations and cultivated varieties.

**FP2 & FP5**. In the second phase, collaboration with **WUR** was initiated for the science of scaling and significantly enhanced in the domains of seed systems, where a collaboration with the **University of Florida** is also highly productive.

**FP4**. Joint work with **NRI** allowed the assessment of the energy efficiency of a small-scale cassava flash dryer and the analysis of the correlations between physicochemical and textural characteristics, sensory attributes and consumption patterns of traditional cassava products in Tanzania.

**FP1 & FP5**. Partnerships with **Cornell University** were strengthened and diversified. Flagship 1 team collaborated closely with the Genomic Open-source Breeding Informatics Initiative (GOBII) to ensure that the 'omics' tools developed will be widely available for use in breeding programs. The collaboration 2016/2017 with Gender-Responsive Researchers Equipped for Agricultural Transformation (GREAT) project helped in building capacity of researchers within RTB to integrate gender into research and analysis. Additionally, the RTB gender team contributed in the development of gender-sensitive training modules widely applicable for researchers and students.

#### **2.4 CROSS-CGIAR PARTNERSHIPS (OTHER CRPS AND PLATFORMS)**

**CRP on Policies, Institutions and Markets:** joint work on the analysis of seed systems and markets for vegetatively propagated crops in Kenya (potato), Nigeria (cassava) and Vietnam (potato and cassava) is helping in better understanding and in creating an evidence base on options for public policies, regulations or regulatory reforms that can foster access, availability, and quality of RTB planting material.

Joint work on foresight, policy and institutional analysis, focused on modeling approaches for assessing priorities in international agricultural research. New funds were leveraged for 2018 through the proposal "Changing world, changing climate: Meeting complex demands with nutritious roots, tubers and bananas value chains" that will be jointly funded by RTB and PIM.

**Big Data Platform:** Enhancement of data management and analytics tools using roots, tubers and bananas databases, which hold genomic and phenotypic information for next generation breeding applications (<u>RTBbase</u>) and development of complementary tools such as the Highly Interactive Data Analysis Platform (<u>HIDAP</u>) and the Breeding API (<u>BrAPI</u>) are at the center of the collaboration. The smartphone image-based application for cassava disease and pest damage identification under developed in collaboration with Penn State University, received a

grant from the INSPIRE initiative of the Big Data Platform to be piloted and expanded into diseases of other RTB crops (<u>RTB blog</u>).

**Excellence in Breeding Platform**: Strong links between RTB and the EiB were established in 2017, with the BCoP cluster leader forming part of the Expert Advisory Group (EAG) of the Platform, as well as a number of other RTB scientists, who participated in an EAG startup planning meeting. In addition, the RTB Science Officer, was selected to form part of the EiB steering committee, and participated in the first virtual meeting. Discussions are underway on applying EiB initiatives for breeding program management, such as applying Stagegate decision tools, and defining product profiles for each breeding program. Moreover, through the EiB, the IITA yam, cassava, banana and plantain breeding programs underwent a Breeding Program Assessment by a group of experts from industry and public-sector breeding programs.

**Maize and Wheat**: The scaling readiness approach developed by FP5 has been adopted by the CIMMYT maize and wheat programs and used to apply for the Netherlands Organisation for Scientific Research (NOW) funding for "Understanding and improving scaling readiness of climate smart, nutrient management decision support tools (DST) in different institutional environments: Ethiopia & Tanzania" (efficiency benefits).

**CCAFS:** RTB participated in the scientific conference and writeshop held in Galway, Ireland (<u>https://www.qatano.org/home</u>). A joint paper that explores options for climate smart breeding is under discussion. RTB scientists participated in the 4th Global Science Conference on Climate Smart Agriculture and following interactions among CRPs and centers.

**Gender platform:** Two projects awarded in 2017 for assessing Gender Dynamics in Seed Systems are the result of the collaboration with RTB and its implementing centers (http://gender.cgiar.org/gender-dynamics-seed-systems/seed-systems-proposals/). The seed system team in cluster 2.1 used RTB multi-stakeholder seed system framework (<u>http://hdl.handle.net/10568/72975; http://hdl.handle.net/10568/81049</u>) to guide the entire set of seed system projects.

# 2.5 MONITORING, EVALUATION, IMPACT ASSESSMENT AND LEARNING (MELIA)

The "scaling readiness approach" (http://hdl.handle.net/10568/90665; see also section 1.2.5) is being tested as tool for assessing and monitoring the innovations included in the RTB portfolio. The approach has strong complementarity with the common indicator **#C1 Innovations**. RTB promoted the use of the approach by integrating a lighter version of one of the scaling readiness assessment tools as part of the evaluation process of the 12 concept notes submitted to the first call for proposals of the RTB Scaling Fund.

RTB scientists and managers were trained on new functions of the **MEL platform** for planning, monitoring and reporting. Interoperability with CIP-Dataverse was completed and metadata retrieving from CGSpace is now possible and will limit reporting burden for scientists. IITA adopted MEL as center solution and is gradually setting up and adapting the platform to its requirements. Interoperability with MARLO and System Level Dashboard is under study to allow relevant data to flow from a platform to another.

The **IEA evaluation of RTB (2015)** noted significant progress in establishing governance and management structures and processes that promote the inter-dependence of the members of the RTB partnership collaboration. However, it observed the lack of an overarching business framework that can help guide these relationships beyond common goals and mutual trust. Hence Recommendation 16 proposed an "alliance compact that would bring clarity and greater understanding to critical partnership questions". In response a joint statement was signed by the DGs of the centers in 2017 to specify, with respect to the RTB Program, the terms of a partnership collaboration concerning certain general organizational and collaborative efforts among the parties. This covered:

- 1. RTB Partnership Collaboration
- 2. Inclusive Partnership
- 3. Strengthening Business Partnerships for RTB
- 4. Stewardship of donors especially window 2
- 5. Linking center talent management to positions such as flagship project and cluster leaders

6. Shared communications

Progress in these different areas by centers will be reviewed by the ISC.

<u>Table I-2</u> provides an update on the implementation of the action plan defined as part of the management response to the IEA evaluation or RTB (2015).

#### **2.6 IMPROVING EFFICIENCY**

The online platform, MEL, is a management information system (MIS) used as CRP (RTB, GLDC) and Center solution (CIP, ICARDA, IITA) for planning, monitoring and reporting. Sharing the efforts among CRPs and Centers for the development and maintenance of the platform as well as for the training and support provided to the users has allowed to save costs and improve the product.

Careful coordination of meetings and use of joint events as opportunities for face-to-face coordination among flagship and cluster members has contributed to an efficient use of the staff time / travel days.

## 3. CRP Management

#### **3.1 CRP MANAGEMENT AND GOVERNANCE**

A joint statement on Partner collaboration was signed (see 2.5). The ISC self-evaluation of performance was complemented by including feedback from members of the PMU.

The new flagship and cluster arrangement of RTB became fully operational. Eleven of the cross cutting clusters (FP1: DI1.1: Breeding Community of Practice, DI1.2: Next Generation Breeding, DI1.3: Game-changing traits, DI1.4: Genetic diversity; FP2: CC2.1: Quality seeds & access to improved varieties; FP3: CC3.2: Crop Production Systems; FP4: CC4.1: Post-harvest innovation and FP5: CC5.1: Foresight and impact assessment, CC5.2: Sustainable intensification / diversification, CC5.3: Gender and youth, CC5.4: Scaling RTB agri-food system innovations) held workshops in 2017 to review progress, build functional teams, develop specific roles and responsibilities for product and output leaders and develop detailed workplans and deliverables. The process of review of FP leader performance with feedback to their centers was extended to cluster leaders (in line with the joint statement).

#### **3.2 MANAGEMENT OF RISKS TO YOUR CRP**

**Management.** As a result of center staff departure or reassignment, key CRP management positions (i.e. flagship and cluster leader) may be subject to changes in the course of the agreed three-year term. If not well managed, changes in leadership may create discontinuity in flagship and cluster guidance and coordination. In 2017, RTB successfully managed the transition of five cluster leaderships. Cross-center consultations were used to ensure best candidate selection and bilateral work with centers hosting the leaders ensured the definition and implementation of transition plans. Based on this experience, replacement procedures are being reviewed and formalized by the Management Committee.

**Institutional.** USAID originally sought to support breeding programs of RTB crops with W2 funds. In 2015, they shifted funding to W3 for potato and sweetpotato breeding (CIP), cassava breeding (IITA and CIAT) and plantain breeding (IITA). In 2017, USAID curtailed most of these funds. RTB created a fund to support breeding programs directly impacted by the reduction of USAID W3 funding in 2018.

**Financial**. Uncertainty over the final amounts of W1&2 funding persisted until November. A prudential scenario of USD 18.7m was used to guide center spending. The most damaging aspects of the uncertainty were a) some level of reputational damage amongst our partners and b) it inhibited better and broader engagement of non-CGIAR partners or with other CRPs where it would be harder to offset the risk if the expected budget did not

materialize. Finally, the budget came in somewhat above the prudential scenario with concomitant carry-over in some programmatic areas.

**Programmatic**. In 2017, a portion of W2 was earmarked by donors for allocation in specific flagships. Earmarking was in line with overall budget allocation and did not result in deficit or surplus for any of the flagships. Nevertheless, if the portion of earmarked W2 were to increase without consultations between donors and CRP management, there is a significant risk of jeopardizing the strategic allocation of funds agreed in the proposal for Phase 2.

#### **3.3 FINANCIAL SUMMARY**

The total 2017 budget for RTB was USD 107.4M, USD 20.6M (19%) from W1&2, and USD 86.8M (81%) from W3, bilateral and RTB participant centers' own funds. The final 2017 allocation of W1&2 to RTB was USD 20.6M (including carry-over of USD 0.1M).

RTB total expenditure for the period was USD 93.5M, or 87% of the budget, of which USD 18.3M (20%) was from W1&2, and USD 75.2M (80%) from W3, bilateral and centers' own funds. W1&2 expenses reached 89% execution of the final budget and W3, bilateral and centers' other own expenditure, reached 87% execution. Most flagships underspent with an average execution of 86% of flagship budget. The exception was FP1 where an overspending of 6% was recorded in relation with the execution of W3 / bilateral projects.

A total amount of USD 2.3M for W1&2 was carried forward to 2018. This corresponds to 1) funds allocated through an internal competitive mechanism in 2017 but for which implementation started in December 2017 (USD 0.9M); 2) the rest reflects prudency of RTB participant centers that only received confirmation of the remaining 30% of the planned budget in December.

Expenditure for gender research was USD 10.4M, representing 11% of RTB total expenditure in 2017.

### TABLES

#### **TABLE A: EVIDENCE ON PROGRESS TOWARDS SLOS**

#### TABLE A-1: EVIDENCE ON PROGRESS TOWARDS THE SLOS (SPHERE OF INTEREST)

| SLO Target (2022)                                                                                                            | Brief summary of new evidence of CGIAR contribution to relevant targets for this CRP (with citation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Year of<br>publication | Expected<br>additional<br>contribution<br>before end of<br>2022 (if not<br>already fully<br>covered). |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------|
| 1.1. 100 million<br>more farm<br>households have<br>adopted<br>improved<br>varieties, breeds,<br>trees, and/or<br>management | Floro IV, Victorino O.; Labarta, Ricardo A.; Becerra López-Lavalle, Luis Augusto; Martinez, Jose M.; Ovalle,<br>Tatiana. 2017. Household Determinants of the Adoption of Improved Cassava Varieties using DNA<br>Fingerprinting to Identify Varieties in Farmer Fields: A Case Study in Colombia. Journal of Agricultural<br>Economics 1-19 p. <u>http://hdl.handle.net/10568/89044</u><br><i>In 2015, 30,000 ha were used for cassava in the Cauca Department in southwest Colombia. This represented</i><br><i>6.8% of total of cassava acreage in the country. The study found that 13% of the total area was cultivated with</i><br><i>improved varieties.</i> | 2017                   |                                                                                                       |
| practices                                                                                                                    | Wossen, T., Abdoulaye, T. Alene, A., Haile, MG, Feleke, S. Olanrewaju, A. & Manyong, V. (2017). Impacts of extension access and cooperative membership on technology adoption and household welfare. Journal of Rural Studies 54 (August 2017): 223-233. <u>https://doi.org/10.1016/j.jrurstud.2017.06.022</u><br>Analyzing household-level data from rural Nigeria through different matching techniques and endogenous switching regression approach, this study shows the positive impacts of access to extension services and cooperative membership on technology adoption, asset ownership and poverty.                                                      | 2017                   |                                                                                                       |

| Oparinde, A., Abdoulaye, T., Mignouna, D. B. & Bamire, A. S. (2017). Will farmers intend to cultivate Provitamin<br>A genetically modified (GM) cassava in Nigeria? Evidence from a k-means segmentation analysis of beliefs and<br>attitudes. PloS one, 12(7), 1- 22. <u>http://hdl.handle.net/10568/83063</u><br><i>Analysis of market segments within a population remains critical to agricultural systems and policy processes</i><br><i>for targeting new innovations. Patterns in attitudes and intentions toward cultivating Provitamin A genetically</i><br><i>modified (GM) cassava were examined using a state-level sample of smallholder cassava farmers in Nigeria.</i><br><i>Three distinct classes of attitude and intention denoted as low opposition, medium opposition and high</i><br><i>opposition farmers. It was estimated that only 25% of the surveyed population of farmers was highly opposed</i><br><i>to cultivating Provitamin A GM cassava.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2017 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| Oparinde, A., Abdoulaye, T., Manyong, V., Birol, E., Asare-Marfo, D., Kulakow, P. & Ilona, P. (2016). A technical<br>review of modern cassava technology adoption in Nigeria (1985-2013): Trends, challenges, and opportunities<br>(HarvestPlus working paper No. 23). Washington, D.C.: International Food Policy Research Institute.<br><u>http://hdl.handle.net/10568/76990</u><br>Using an extensive review of cassava-adoption literature focused on Nigeria, this paper discusses the uptake of<br>improved cassava varieties and it shows the challenges in comparing the results of collected studies due to<br>differences in sampling approaches and coverage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2016 |  |
| <ul> <li>Crop improvement, adoption and impact of improved varieties in food crops in Sub-Saharan Africa. Edited by Thomas S. Walker, Jeffrey Alwang. Published by CGIAR Consortium of International Agricultural Research Centers and CABInternational, 2015 https://ispc.cgiar.org/workstreams/impact-assessment/projects/diffusion-and-impacts-improved-varieties-africa-diiva-2010</li> <li>Adoption of improved varieties of cassava in sub-Saharan Africa, 2009. Improved varieties 36% of the total area 30% of which planted with materials containing IITA germplasm or directly related to IITA activities.</li> <li>Adoption of improved varieties in sub-Saharan Africa, 2009. Improved varieties 26% of the total area 13% of which planted with materials containing IITA germplasm or directly related to CG Center activities.</li> <li>Adoption of improved varieties of potato in Ethiopia, Rwanda, Kenya, Uganda and Malawi, 2010. Weighted average adoption across the five countries is about 35%. CIP-related clones figure prominently in the list of adopted improved varieties. Victoria is the leading variety in Uganda with more than 50% of potato-growing area and the second most popular improved clone in Kenya.</li> <li>Adoption of improved varieties of sweetpotato in Burundi, Mozambique, Rwanda, Tanzania and Uganda, 2010. The weighted average for aggregate adoption of modern varieties across the five countries is 7%. This estimate does not include landraces that were officially released. Inclusion of those materials gives a</li> </ul> | 2015 |  |

| weighted average estimate in the range of 35–40% in most countries. Varieties coming from CIP crosses<br>are in the very early stages of their diffusion process and have only reached 1% of the total area under<br>sweetpotato.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| Bellon, M.R.; Gotor, E.; Caracciolo, F. (2015) Assessing the effectiveness of projects supporting on-farm conservation of native crops: evidence from the high Andes of South America. World Development 70 p. 162-170 ISSN: 0305-750X <u>http://hdl.handle.net/10568/68400</u>                                                                                                                                                                                                                                                                                                                                                                                                              | 2015 |  |
| This paper presents an approach for assessing the effectiveness of projects aimed at creating incentives for smallholder farmers to continue maintaining crop diversity under evolution on their farms in relevant centers of genetic diversity—a process known as on-farm conservation. It is applied to five projects involving native crops in the High Andes of South America. Results show evidence that projects have been effective at supporting farmers to maintain crop diversity on-farm while generating positive livelihood outcomes. Implications and challenges of both the approach and the results for sustainable use and conservation of crop biodiversity are discussed. |      |  |
| Awotide, B., Abdoulaye, T., Alene, A. & Manyong, V. (2014). Assessing the extent and determinants of adoption of improved cassava varieties in south-western Nigeria. Journal of Development and Agricultural Economics, 6(9), 376-385. <u>http://hdl.handle.net/10568/76040</u>                                                                                                                                                                                                                                                                                                                                                                                                             | 2014 |  |
| Based on farm household survey of 841 households in south- western Nigeria, this study provided empirical<br>information on the positive effect of access to hired labor, access to credit and access to information on the<br>level of adoption of improved varieties. Also, it showed that farmers that own their farmland are more likely to<br>adopt than those that practice farming on rented farmland; that female-headed households and younger<br>farmers are more likely to adopt improved varieties.                                                                                                                                                                              |      |  |
| Tarawali, G., Abdoulaye, T., Ellis-Jones, J., Asumugha, G., Dixon, A., Okechukwu, R., & Ekpere, J. (2013). An impact assessment of the cassava enterprise development project (p. 62). Ibadan: IITA <a href="http://hdl.handle.net/10568/87898">http://hdl.handle.net/10568/87898</a>                                                                                                                                                                                                                                                                                                                                                                                                        | 2013 |  |
| The Cassava Enterprise Development Project promoted the dissemination of new CMD resistant varieties that were planted on 19,185 ha by the end of the project (2010). Based on individual survey of 680 farmers (51% male and 49% female) in 11 Nigerian states, this study showed that the yield obtained with new varieties was more than double than the one of local varieties. This trend was observed both through farmer recall and by measuring yields from sample plots.                                                                                                                                                                                                            |      |  |

| Kaguongo, W.; Ortmann, G.; Wale, E.; Darroch, M.; Low, J. 2012. Factors influencing adoption and intensity of adoption of orange flesh sweet potato varieties: Evidence from an extension intervention in Nyanza and Western provinces, Kenya. African Journal of Agricultural Research. ISSN 1991-637X. 7(3):493-503.<br>http://hdl.handle.net/10568/66522                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2012 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| This study applied logit and transformed logit regression to examine factors affecting the adoption of orange<br>flesh sweetpotatoes, and intensity of such adoption, by a representative sample of 340 farmers in the Busia and<br>Rachuonyo<br>(OFSP) districts of Kenya in 2009. The results suggest that the district where the farmer comes from, knowledge<br>e on value addition and nutritional benefits, and availability of vines were the key factors for adoption. The<br>results also suggest that participation in a value chain extension programme enhanced the probability of<br>adoption. Factors affecting intensity of adoption were site, value addition, vines availability, level of<br>commercialization and having a child of up to five years.                                            |      |  |
| Developing capacity for agricultural market chain innovation: Experience with the 'PMCA' in Uganda. Journal of<br>International Development, 22, 367-389. Horton, D., Oros, R., Paz Ybarnegaray, R., López, G., Velasco, C.,<br>Rodríguez, F. Escobar, E., Rotondo, E., Hareau, G., Thiele, G. 2011 <u>https://doi.org/10.1002/jid.1694</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2011 |  |
| The aim of the Participatory Market Chain Approach (PMCA) is to foster pro-poor innovation in potato market<br>chains. After promising results in Peru and Bolivia, it was applied in Uganda. The Ugandan experience indicates<br>that the PMCA can stimulate technological and institutional innovation in locally relevant agricultural<br>commodity chains by promoting new collaborative arrangements between researchers and development<br>professionals and other diverse stakeholders, including small farmers, market agents and policy makers.<br>Successful introduction of this new arrangements relies on intensive capacity-development process that fosters<br>the development of social networks, changes in attitudes, and the acquisition of social as well as technical<br>knowledge and skills. |      |  |
| Cavatassi, R.; Gonzales-Flores, M.; Winters, P.; Andrade-Piedra, J.L.; Espinosa, P.; Thiele, G. 2011. Linking smallholders to the new agricultural economy: The case of the Plataformas de Concertacion in Ecuador. Journal of Development Studies. (UK). ISSN 0022-0388. 47(10):1545-1573. <u>http://hdl.handle.net/10568/67694</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2011 |  |
| This article examines the challenges of linking smallholders to high-value food markets by looking at the experience of the Plataformas programme in the Ecuadorian Sierra. Multiple evaluation methods are employed to ensure identification of program impact. The findings suggest that the programme successfully improved the welfare of beneficiary farmers, as measured by yields and gross margins. These benefits are achieved through improving the efficiency of agricultural production and through selling at higher prices. No significant                                                                                                                                                                                                                                                            |      |  |

|                                                                                      | secondary health or environmental effects were found. Overall, the programme provides clear evidence that combining production support with facilitating market access can be successful.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                                                                                      | Tenkouano, A., Pillay, M. & Coulibaly, O. (2011). Hybrid distribution to farmers: adoption and challenges. In M. Pillay and A. Tenkouano, Banana breeding: progress and challenges (p. 305-319). Boca Raton: Taylor & Francis.<br>http://hdl.handle.net/10568/82888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2011 |  |
|                                                                                      | The adoption of new banana cultivars by large-scale producers is a relatively straightforward process when the commercial incentives for adoption are high or when there are no other alternatives. This was evidenced by the replacement of 'Gros Michel' by the Cavendish varieties. Therefore, this chapter will consider hybrid distribution to smallholder farmers who are responsible for the bulk of banana and plantain production in developing countries, usually under complex cultural and technological circumstances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |
| 1.2. 30 million<br>people, of which<br>50% are women,<br>assisted to exit<br>poverty | Dontsop-Nguezet, P.M., Manyong, V., Abdoulaye, T., Arega, A., Amato, M.S., Ainembabazi, J.H., & Okafor, C. (2016). Non-farm activities and adoption of improved cassava and beans varieties in South-Kivu, DR Congo. Tropicultura, 34(3): 262-275. <a href="http://hdl.handle.net/10568/77858">http://hdl.handle.net/10568/77858</a><br>Non-farm activities have been generally considered as important strategy for overcoming credit constraints faced by rural households as well as for reducing poverty through income effect. This paper employs binary probit and average treatment effect to estimate the impact of participation in non-farm activities on adoption of improved cassava and beans varieties in South-Kivu, DR Congo. Results showed on one hand that the participation rate in non-farm activities in South-Kivu was 38% and 52.1% respectively for crafts and small businesses. On the other hand, the rate of adoption of new cassava and beans varieties of non-farm activities, household assets in terms of livestock owned, market access and access to the information on new technologies. These results demonstrate the tendency of rural households to include the practice of non-farm activities among their strategies for survival and diversify their sources of income or supplement farm income. Results of this study indicate a positive relationship between engagement of rural households in non-farm activities and their propensity to adopt improved varieties. There is still a huge gap between potential adoption rate and actual rate of adoption for cassava and beans improved varieties in the study area. Therefore, actors involved in the development of the agricultural sector have to be aware of the importance of these factors even when they are working for the promotion of purely agricultural activities. | 2016 |  |

| Impact of agricultural technology adoption on asset ownership: the case of improved cassava varieties in Nigeria. Awotide, B.A., Alene, A.D., Abdoulaye, T. et al. Food Sec. (2015) 7: 1239.<br>https://doi.org/10.1007/s12571-015-0500-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2015 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| Using household survey data from a sample of about 850 households selected from six States in south-west<br>Nigeria, this paper analyses the effects of the adoption of improved cassava varieties (ICVs) on asset ownership<br>among smallholder farmers. The results of the linear regression with endogenous treatment effects showed<br>that adoption of ICVs is positively related to asset ownership. The results further showed that ICVs had greater<br>impact on asset ownership among female-headed households. The impact analysis using propensity score<br>matching (PSM) showed a significant and positive effect of adoption of ICVs on asset ownership and a negative<br>effect on asset poverty. The empirical results suggest that improved agricultural technologies can play a key<br>role in strengthening asset ownership of smallholder farmers for increased agricultural productivity and income<br>generation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |  |
| Ayedun, B., Okuneye, P.A., Dipeolu, A. & Abdoulaye, T. (2013). Socioeconomic assessment of adoption of production and processing technologies on farming households in Nigeria. Journal of Agricultural Management and Rural Development 4 (1) 137-147. <u>http://hdl.handle.net/10568/77455</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2013 |  |
| Using multistage sampling techniques, 480 farming households from Intervention villages - IVs and the Non-<br>Intervention villages - NIVs were sampled from South Zones of Nigeria and interviewed. This study was carried<br>out to provide credible evidence of the impact of IITA-ICP (International Institute of Tropical Agriculture,<br>Integrated Cassava Project) research on cassava and to draw lessons from these interventions. Using<br>descriptive and econometric tools, the result showed that cassava occupies 43% of the total field cultivated for<br>crops. Awareness and adoption of production and processing technology were generally poor: for production<br>technology, it was highest for improved cassava sett both in awareness (87%) and adoption (68%) and IVs took<br>the lead. In processing technology among households, grating machine had the highest awareness (88%) and<br>adoption rate (78%) followed by pressing machine. In many cases, intervention households and enterprises had<br>better awareness and adoption rates. Poverty status estimation revealed that less people were below poverty<br>lines among adopters compared to non-adopters, and among IVs compared to counterfactuals. Using logit<br>model, variables that had poverty reducing effect included 'being from intervention villages, adoption of grater<br>machine for processing cassava, having non-farm income, and being educated. |      |  |

|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | [] |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
|                                                                                                   | Mignouna, D.B., Abdoulaye, T, Alene, A, Aighewi, B., Pelemo, O., Manyong, V., & Akoroda, M. (2013).<br>Economic analysis of seed yam production systems in Nigeria. Journal of Root Crops Vol. 39 (2) 221-229.<br><u>http://hdl.handle.net/10568/77440</u><br>The study three scenarios of yam seed production: 1) minisetts, 2) minisetts combined with vine cuttings; 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2013 |    |
|                                                                                                   | ware yam to seed yam via vine cuttings. From the net present value (NPV) and benefit : cost ratio (BCR)<br>analyses, the seed yam production systems including minisetts were more viable than current traditional seed<br>yam production systems (scenario 3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |    |
|                                                                                                   | Rusike, J., Lukombo, S.S., Msemo, J., Osei-sarfoh, A., Fannah, S., Okechukwu, R& Chibeba, A.M. (2012).<br>Evaluating the effects of -Unleashing the power of cassava in response to the food price crisis in Africa-<br>(UPoCA) prior to implementation: taking stock of where we were. In: Proceedings of the 11th triennial<br>Symposium of the ISTRC-AB held at Memling Hotel: Tropical roots and tuber crops and the challenges of<br>globalization and climate changes, (pp. 312-325), 4-8 October, Kinshasa, Democratic Republic of Congo.<br><u>http://hdl.handle.net/10568/80437</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2012 |    |
|                                                                                                   | Most development researchers and practitioners agree that the sharp rise in international prices for<br>agricultural commodities that emerged in 2003 and peaked in 2008 resulted in a global food crisis. To combat<br>the crisis, IITA and national partners in seven African countries are evaluating the effects of cassava research<br>for development approach on increasing the productivity of production and processing of cassava for home<br>consumption and marketing surplus produce. This paper uses farm household and econometric modeling with<br>baseline and counterfactual data to predict the impact of implementing the project prior to its full<br>implementation. The results show that cassava is at different stages of transformation from a famine reserve,<br>food security crop and rural food staple to a cash crop for urban consumption and manufacture of industrial<br>products. The impact of UPOCA will likely depend on the stage of transformation of the cassava sector in the<br>country. UPoCA will likely have the most impact if interventions are aligned with the stage reached by the<br>country. |      |    |
| 2.1. Improve the<br>rate of yield<br>increase for<br>major food<br>staples from<br>current <1% to | Rusike, J., Mahungu, N.M., Lukombo, S.S., Kendenga, T., Bidiaka, S.M., Alene, A& Manyong, V.M. (2012).<br>The impact of the emergency response to the outbreak of the cassava mosaic disease in the Democratic<br>Republic of Congo. In: Proceedings of the 11th triennial Symposium of the ISTRC-AB held at Memling Hotel:<br>Tropical roots and tuber crops and the challenges of globalization and climate changes, (pp. 3-30), 4-8 October,<br>Kinshasa, Democratic Republic of Congo. <u>http://hdl.handle.net/10568/80508</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2012 |    |
| 1.2-1.5% per year                                                                                 | This paper evaluates the impact of an emergency research for development project implemented in the Democratic Republic of Congo from 2000 to 2009 by various actors including the International Institute of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |

|                                                                       | Tropical Agriculture in response to the outbreak of the Cassava Mosaic Disease that threatened the national food security. It applies methods developed in the econometric and statistical treatment effects literature on evaluation of social programs. The study evaluates impact by analyzing changes over time of outcomes of sample households in the project areas compared to neighboring non-project areas. We find that the project had statistically significant positive effects on technology adoption, area planted cassava, productivity, profitability, household food security and aggregate supply response. The effects are strongest among lower tails of distribution of outcomes mostly made up of female-headed households who grew the crop mainly for food. These findings are useful for informing agricultural and food policy debates in Africa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                                                                       | Robinson, J. & Srinivasan, C.S. 2013. Case-studies on the impact of germplasm collection, conservation, characterization and evaluation (GCCCE) in the CGIAR. <u>https://ispc.cgiar.org/publications/GCCCE-in-the-cgiar</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2013 |  |
|                                                                       | <ul> <li>Kasetsart 50 (KU 50) is a highly productive hybrid cassava variety developed through active collaboration between CIAT (Centro Internacional de Agricultura Tropical), the Department of Agriculture of Thailand and Kasetsart University in Thailand. KU 50 is currently grown on over one million ha in Thailand and Vietnam (where it is known as KM 94) and has also been adopted in Indonesia, Cambodia and possibly China. It is estimated that the aggregate economic benefits accruing from adoption of KU 50 in Thailand (released in 1992) and Vietnam (released in 1995) currently exceed USD 44 million and USD 53 million respectively (at adoption levels of about 60% and 75%).</li> <li>Cooperation-88 (C88) is a widely adapted, high yielding potato variety developed through a joint programme established between CIP (Centro Internacional de la Papa) and Chinese NARS to improve late blight resistance in potato adapted to the sub-tropical highlands. C88 is currently grown on about 400,000 ha in five provinces of southwestern China, the largest area being planted in Yunnan. It is estimated that the economic benefits accruing from C88 adoption in China at the level of adoption in 2010 were USD 350 million and will increase to USD 465million per year if an adoption ceiling of 600,000 ha is reached in 6-8 years. C88 has also stimulated growth in the potato processing industry, as it is suitable for both the table and chipping. The adoption of C88 is having a substantial impact on poverty, providing economic benefits to the poor estimated at USD 192 million a year in 2010, a figure that is set to increase as adoption increases.</li> </ul> |      |  |
| 2.2. 30 million<br>more people, of<br>which 50% are<br>women, meeting | Mignouna, D.B., Abdoulaye, T., Alene, A., Manyong, V.M., Dontsop, P.N., Ainembabazi, J.H. & Asiedu, R. (2015).<br>A Microeconometric analysis of household consumption expenditure determinants in yam-growing areas of<br>Nigeria and Ghana. TROPICULTURA, 33(3), 226-237. <u>http://hdl.handle.net/10568/72997</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2015 |  |
| minimum dietary                                                       | This paper provides an analysis of microeconomic factors that explain household consumption expenditure in rural areas using cross-sectional data obtained from 1400 randomly selected yam producing households of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |  |

| energy<br>requirements                                                                                                                  | Nigeria and Ghana. The correlates of consumption expenditure were examined using two techniques: ordinary<br>least squares (OLS) and a quantile regression (QR) approach for a more comprehensive picture at different<br>points of the distribution. Determinants of consumption expenditure are markedly different between the<br>regressions and across the conditional quantiles of the expenditure in both countries. Results further indicate<br>that age, education, and household size were important in explaining consumption expenditure using OLS.<br>However, via conditional QR, the following additional factors became evident: membership of formal and<br>informal institutions, main occupation, family structure, and farm size. Only education was consistently<br>significant in both regressions and across the conditional quantiles, suggesting that responses to investments in<br>education lead to increase in expenditure that will stimulate other sectors of the economy.                                                                            |      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| 2.3. 150 million<br>more people, of<br>which 50% are<br>women, without<br>deficiencies in<br>one or more<br>essential<br>micronutrients | Alan de Brauw, Patrick Eozenou & Mourad Moursi (2015) Programme Participation Intensity and Children's<br>Nutritional Status: Evidence from a Randomised Control Trial in Mozambique, The Journal of Development<br>Studies, 51:8, 996-1015, DOI: 10.1080/00220388.2015.1018907<br><u>https://doi.org/10.1080/00220388.2015.1018907</u><br>Agricultural interventions are thought to have the potential to improve nutrition, but little rigorous evidence is<br>available about programmes that link the two. In this article, we study impacts of an integrated agricultural<br>and nutritional biofortification project, the REU in Mozambique. We first provide evidence on dietary impacts of<br>the programme and then examine impacts of the programme by participation intensity. Using OLS and IV<br>techniques, we find that more intense participation in both project components led to larger impacts. The<br>results therefore have important implications for refining the design of future projects attempting to link<br>agricultural and nutrition interventions. | 2015 |  |
|                                                                                                                                         | KELLY M. JONES and ALAN DE BRAUW (2015), Using Agriculture to Improve Child Health: Promoting Orange<br>Sweet Potatoes Reduces Diarrhea <u>http://dx.doi.org/10.1016/j.worlddev.2015.04.007</u><br>Vitamin A deficiency (VAD) is prevalent throughout the developing world, and causes night blindness and<br>increases child morbidity and mortality. We studied the health benefits of biofortification in reducing VAD,<br>using a cluster-randomized impact evaluation in 36 villages in northern Mozambique. Based on a sample of<br>1,321 observations of children under the age 5, biofortification reduced diarrhea prevalence by 11.4 percentage<br>points (95% CI 2.0–20.8), and by 18.9 percentage points in children under the age three (95% CI 6.6–68.3).<br>Diarrhea duration was also reduced. This is promising evidence that child health can be improved through<br>agricultural interventions such as biofortification.                                                                                                                                         | 2015 |  |

| Loechl, C.; Lubowa, A.; Cole, C.; Prain, G.; Low, J. 2010. School-based nutrition education and promotion of<br>orange-fleshed sweetpotato in urban and peri-urban areas of Kampala: Impacts and lessons learnt. Lima<br>(Peru). International Potato Center (CIP) Urban Harvest. 50 p. Urban Harvest Working Paper Series. no.6<br><u>http://hdl.handle.net/10568/67219</u>                                                                                                                                                                                                                                                                                                                                                                                               | 2010 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| The study provides evidence of the results of the project Promotion of Orange-Fleshed Sweetpotato Varieties<br>through Schools in Urban and Peri-urban Communities of Kampala, Uganda. Results are assessed in terms of<br>changes: 1) in vitamin A-related knowledge, attitudes and practices among schoolchildren, mothers and other<br>childcare; 2) in consumption of orange-fleshed sweetpotatoes and other vitamin A-rich foods among 2-6-year-<br>old children. Four groups, defined based on the type of the project intervention, were compared in the study:<br>Group 1: Agricultural Technologies/Extension & Nutrition Education; Group 2: Agricultural<br>Technologies/Extension only; Group 3: Nutrition Education only; Group 4: No intervention (control). |      |  |

#### TABLE A-2: LIST OF NEW OUTCOME CASE STUDIES FROM THIS REPORTING YEAR (SPHERE OF INFLUENCE)

| Title of outcome case study                                                                                                                                                                                       | No. of Sub-IDO                                                                                                                                                            | Links to evidence*                                                                                         | Space for additional,<br>very brief details,<br>including on cross-<br>cutting issues |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Adoption of improved cassava varieties in Nigeria<br>gives 64% productivity gain as a result of adoption of<br>improved cassava varieties                                                                         | 1.4.3 - Enhanced genetic gain; 1.4.2 - Closed yield<br>gaps through improved agronomic and animal<br>husbandry practices                                                  | http://hdl.handle.net/10568/80706                                                                          | See narrative in section 1                                                            |  |
| Adoption of improved potato varieties in Peru by 62% of potato farmers                                                                                                                                            | 1.4.3 - Enhanced genetic gain; 1.4.2 - Closed yield<br>gaps through improved agronomic and animal<br>husbandry practices                                                  | http://hdl.handle.net/10568/83497                                                                          | See narrative in section 1                                                            |  |
| A network of more than 270 economically viable<br>decentralized seed multipliers in Kenya, Ethiopia and<br>Malawi has been established and improved farmer<br>access to quality seed potato.                      | 1.3.1 - Diversified enterprise opportunities                                                                                                                              | Project reports                                                                                            | See narrative in section 1                                                            |  |
| Making 'invisible' woman's contributions to the value<br>chain 'visible' with gender Responsive Tools:<br>Experience from Roots, Tubers and Bananas Value<br>Chains in Uganda and Ecuador                         | B.1.3 - Improved capacity of women and young<br>people to participate in decision-making; D.1.1 -<br>Enhanced institutional capacity of partner research<br>organizations | http://gender.cgiar.org/webinar-<br>gender-mainstreaming-<br>participatory-market-chain-<br>approach-pmca/ | See narrative in section 1                                                            |  |
| Over 1,100 registered vine multipliers in 14 countries<br>in SSA result in over 0.5 million households reached<br>with improved sweetpotato varieties, mostly orange-<br>fleshed types for nutrition enhancement. | 1.3.1 - Diversified enterprise opportunities; 2.1.2 -<br>Increased access to diverse nutrient-rich foods                                                                  | Project reports                                                                                            | See narrative in section 1                                                            |  |
| Young women and men in Congo improve on-farm production and processing of cassava in 10 rural communities.                                                                                                        | B.1.3 - Improved capacity of women and young people to participate in decision-making; 1.3.1 - Diversified enterprise opportunities                                       | Project reports and newsletters                                                                            | See narrative in section 1                                                            |  |
| Advocacy for biofortification strategies in Nigeria,<br>Tanzania and Regional                                                                                                                                     | C.1.3 - Conducive agricultural policy environment;<br>D.1.1 - Enhanced institutional capacity of partner<br>research organizations                                        | Project reports and studies                                                                                | See narrative in section 1                                                            |  |

\*Please submit outcome case studies in MARLO, MEL or other MIS, and provide links, using the outcome case study template.

#### **TABLE B: STATUS OF PLANNED MILESTONES**

| FP | Mapped and<br>contributing<br>to Sub-IDO | 2022 CRP outcomes<br>(from proposal)                                                                                                                                                                       | Milestone*                                                                             | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Enhanced<br>genetic gains                | Outcome 1,1: For each<br>RTB crop, populations<br>with at least 3 end-users<br>preferred traits and<br>adapted to 2 targeted<br>regions are available (For<br>more details please refer<br>to Table FP1,4) | M1.1 Advanced tools<br>applied for genomic<br>mapping and editing for all<br>RTB crops | Completed                    | <ul> <li>DI1.2.1.2/10627 - Genome-Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content (https://cgspace.cgiar.org/handle/10568/83065) this paper shows evidence that negative correlation between DM and carotenoid content in cassava is not a pleiotropic effect, and thus is possible to break this correlation by breeding.</li> <li>DI1.2.1.3/6334 - Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz) (https://doi.org/10.1007/s11032-017-0718-5)</li> <li>DI1.2.1.2/8845 - QTL markers associated with tolerance to cassava brown streak disease (CBSD), cassava mosaic disease (CMD), and cassava green mite (CGM) (https://cgspace.cgiar.org/handle/10568/82972) (https://cgspace.cgiar.org/handle/10568/82970).</li> <li>DI1.2.1.2/10912 - A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan cassava brown streak (https://cgspace.cgiar.org/handle/10568/89689)</li> <li>DI1.2.3.2/11032 - Whole genome sequencing of guinea yam and marker development for sex determination (https://cgspace.cgiar.org/handle/10568/89726).</li> <li>DI1.2.3.2/6356 - Evolution of the banana genome (Musa acuminata) is impacted by large chromosomal translocations (http://hdl.handle.net/10568/81504).</li> </ul> |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                      | 2022 CRP outcomes<br>(from proposal)                                                                                                              | Milestone*                                                                                                                                                                           | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                               |                                                                                                                                                   |                                                                                                                                                                                      |                              | DI1.2.5.1/6378 - Musa pan genome database developed<br>( <u>http://panmusa.greenphyl.org/</u> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1  | Enhanced<br>genetic gains<br>Increased<br>conservation<br>and use of<br>genetic<br>resources  | Outcome 1,2: Across RTB<br>crops, average 25%<br>reduction of time needed<br>for traits discovery and<br>incorporation into<br>breeding pipelines | M1.2 Participatory methods<br>for trait definition and<br>selection (including at least<br>30% of female participants)<br>used in at least (5)<br>RTB/partners' joint<br>assessments | Completed                    | <ul> <li>DI1.1.3.2/8676 - Participatory Varietal Selection of potato clones using the Mother &amp; Baby Trial design a gender responsive trainer's guide (http://hdl.handle.net/10568/81221) associated with the electronic field book and analytical software HIDAP (https://research.cip.cgiar.org/gtdms/hidap/) was used by researchers of CIP and partners in LAC (Peru and Colombia) and Asia (India, Nepal, Bhutan and Bangladesh).</li> <li>DI1.1.5.3/5837 - Participatory variety selection (PVS) process to identify and understand farmers criteria for selection and adoption of new yam varieties realized in West Africa (Nigeria and Ghana). (internal report)</li> </ul> |
| 1  | Enrichment<br>of plant and<br>animal<br>biodiversity<br>for multiple<br>goods and<br>services | Outcome 1,3:<br>Conservation status of<br>wild relatives and<br>landraces of at least 3<br>RTB crops improved in 3<br>key hotspots                | M1.3 Best practices and<br>existing systems for<br>assessing and monitoring<br>the conservation status of<br>RTB wild relatives and<br>landraces identified                          | Completed                    | <ul> <li>DI1.4.1.2/5866 - Targeted exploration and collection missions (East coast of Papua New Guinea) for Musa wild and cultivar diversity (http://hdl.handle.net/10568/89857).</li> <li>DI1.4.3.1/8519 - MGIS: Managing banana (Musa spp.) genetic resources information (http://hdl.handle.net/10568/82646).</li> <li>DI1.4.3.5/5946 - Baseline catalogue for a Peruvian potato diversity hotspot (Junín) (http://hdl.handle.net/10568/89110).</li> <li>DI1.4.1.4/5883 - Training manual for hotspot based monitoring methods of potato diversity at different scales. (Reported file not uploaded in public repository)</li> </ul>                                                 |
| 1  | Enhanced<br>adaptive<br>capacity to<br>climate risks                                          | Outcome 1,4: At least<br>20% of newly developed<br>RTB breeding populations<br>with enhanced resilience                                           | M1.4 SMART targets for<br>traits linked with enhanced<br>resilience of RTB<br>populations to climate                                                                                 | Extended                     | DI1.1.5.2/10634 - Roots, Tubers and Bananas: Planning and research for climate resilience. A six-step framework for climate-smart breeding is presented in this article ( <u>https://doi.org/10.1515/opag-2017-0039</u> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                                             | 2022 CRP outcomes<br>(from proposal)                                                                                                                                                                         | Milestone*                                                                                                                                                                            | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Enhanced<br>capacity to<br>deal with<br>climatic risks<br>and extremes                                               | to climatic shocks<br>available for testing in<br>FP2                                                                                                                                                        | shocks formulated and<br>included in breeding<br>program designed for at<br>least 2 RTB crops                                                                                         |                              | DI1.1.2.1/5809 - Working Document on SMART* trait objectives for RTB<br>crops Breeding (*Specific, Measurable, Attainable, Realistic, and Time bound)<br>(Internal document).<br><i>Explanation: Preliminary review of ongoing RTB crops breeding programs and</i><br><i>identification of SMART targets for traits is being realized.</i>                                                                                                                                                                                          |
| 1  | Enhanced<br>institutional<br>capacity of<br>partner<br>research<br>organizations                                     | Outcome 1,5:<br>Collaboration for more<br>effective breeding<br>enhanced through a<br>breeding community of<br>practices including at<br>least 40 stakeholders in<br>10 countries                            | M1.5 Breeding community<br>of practice established in<br>collaboration with at least<br>15 stakeholders in 6<br>countries                                                             | Completed                    | DI1.1.1.1/8659 and 11307 – Workshop Report: RTB Breeding community of<br>practice and NextGen breeding clusters: foundation and planning workshop<br>( <u>http://hdl.handle.net/10568/89161</u> ) and Asia Cassava Breeder Network's<br>Meeting Report, Bangkok, 3rd - 9th December, 2017 ( <u>http://www.acb-<br/>net.com/home/contact.aspx</u> ).<br>Support to sweetpotato breeding CoP in Africa for germplasm sharing,<br>variety development and training<br>( <u>http://www.sweetpotatoknowledge.org/topics/breeding/</u> ). |
| 1  | Enhanced<br>individual<br>capacity in<br>partner<br>research<br>organizations<br>through<br>training and<br>exchange | Outcome 1,6: Enhanced<br>capacity in genomic<br>selection and advanced<br>breeding methods of at<br>least 150 R&D partners,<br>of which at least 30% are<br>female, through short<br>and long-term trainings | M1.6 Trainings for breeders<br>and geneticists on gender<br>roles and consumer<br>preferences organized                                                                               | Completed                    | Workshops and webinars organized within the framework of the CGIAR<br>Gender and Breeding Initiative, coordinated by the RTB and CIP.<br>( <u>http://www.rtb.cgiar.org/gender-breeding-initiative/activities/</u> )<br>See also <u>Table D</u> , Indicator C-4, for more details                                                                                                                                                                                                                                                    |
|    |                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2  | Diversified<br>enterprise<br>opportunities                                                                           | Outcome 2,1: 20,000,000<br>people (4,000,000 HH), of<br>which 50% are women,<br>increased their annual<br>income by increasing RTB<br>sales and diversifying<br>market strategies                            | M2.1 Rapid multiplication<br>techniques for<br>seed/planting material<br>validated for at least 2 RTB<br>crops and framework to<br>support best fitting options<br>for different seed | Completed                    | CA2.3.4.2/5108 - Three Semi-Autotropic Hydroponics (SAH) labs have been<br>established in three locations in Nigeria. One in an international research<br>center (IITA, Ibadan), another in a national research center (NRCRI, Umudike)<br>and one in a private sector enterprise (Nigeria Flour Mills, Ilorin) as part of<br>BASICS project. (Donor report).<br>SW2.6.4.2/11421 - Sand, Storage, Sprouting: Triple S Flipchart (Flyer in MEL)                                                                                      |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                                                   | 2022 CRP outcomes<br>(from proposal)                                                         | Milestone*                                                                                                                           | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                            |                                                                                              | multipliers categories<br>developed                                                                                                  |                              | <ul> <li>SW2.6.4.2/ 8396 - Specialised Sweetpotato Vine Multiplication in Lake Zone,<br/>Tanzania: What "Sticks" and What Changes?<br/>(http://hdl.handle.net/10568/81127).</li> <li>YA2.7.3.1/5301 - Public and private partners trained to enhance technical<br/>capacity on functional aeroponics systems for pre-basic and basic seed yam<br/>production. Manual for aeroponics in Nigeria and Ghana<br/>(http://yiifswa.iita.org/wp-content/uploads/2017/10/Manual-for-Clean-<br/>Foundation-Seed-Yam-Final.pdf).</li> <li>YA2.7.3.1/5306 - Fully functional temporary Immersion Bioreactor systems<br/>(TIB) in the research institutes established and operational -24 units of the<br/>SETIS type Temporary Immersion Bioreactor System with 4 programmable<br/>logic control points were installed for production of Breeder seed yam<br/>plantlets at the National Centre for Genetic Resources and Biotechnology,<br/>and staff trained. Short report (Internal document)</li> <li>YA2.7.3.1/8687 - Semi-autotrophic hydroponics system (SAH) for yam<br/>multiplication evaluated- Yam SAH has proven to be as successful as cassava<br/>SAH showing good multiplication rates in the lab and produces seed tubers<br/>when transplanted to the field. Short report (Internal document)</li> </ul> |
| 2  | Closed yield<br>gaps through<br>improved<br>agronomic<br>and animal<br>husbandry<br>practices<br>Enhanced<br>genetic gains | Outcome 2,2: At least<br>5,000,000 HH increased<br>their annual RTB yield by<br>at least 10% | M2.2 Crop-specific<br>evidence collected on the<br>effect of genotype,<br>management and<br>environment on seed<br>degeneration rate | Completed                    | CC2.1.2.3/11268 - A Risk Assessment Framework for Seed Degeneration:<br>Informing an Integrated Seed Health Strategy for Vegetatively Propagated<br>Crops ( <u>http://hdl.handle.net/10568/81225</u> ).<br>SW2.6.4.2/11555 - Effect of sources of sweetpotato planting material for<br>quality vine and root yield ( <u>http://hdl.handle.net/10568/83095</u> ). Comparison<br>of net tunnel material vs healthy looking vines from field for 4 varieties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| FP | Mapped and<br>contributing<br>to Sub-IDO                          | 2022 CRP outcomes<br>(from proposal)                                                                                                                                          | Milestone*                                                                                                                                                            | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Increased<br>conservation<br>and use of<br>genetic<br>resources   | Outcome 2,3: Targeted<br>breeding programs<br>increased by 10% the<br>diversity of the genetic<br>base used (e.g. number<br>of banana wild species<br>used as parental lines) | M2.3 Gender-differentiated<br>users-need and preferences<br>for trait selection assessed<br>in 4 countries and results<br>communicated to orient<br>breeding programs | Extended                     | <ul> <li>BA2.2.6.4/5031 - Consumer preferences of EMBRAPA dessert bananas hybrids recorded in Uganda. (Summary report to donor).</li> <li>BA2.2.1.1/11147 - Tools for understanding the agricultural production systems and their socio-economic context in target regions for the introduction of new banana cultivars - Baseline intra-household survey – (http://hdl.handle.net/10568/89321)</li> <li>Explanation: ongoing research and publications expected in 2018, additional funds mobilized through RTBFoods project.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2  | Increased<br>availability of<br>diverse<br>nutrient-rich<br>foods | Outcome 2,4: Annual<br>production of at least one<br>nutrient-rich RTB crop<br>increased by 5-10% in 10<br>targeted countries                                                 | M2.4 At least one RTB<br>candidate variety rich in<br>vitamins and/or<br>micronutrients proposed in<br>(10) target countries for<br>national trials                   | Extended                     | <ul> <li>BA2.2.2.10/11146 - Sensory evaluation of provitamin A carotenoid-rich<br/>banana cultivars on trial for potential adoption in Burundi and Eastern<br/>Democratic Republic of Congo. (http://hdl.handle.net/10568/90576)</li> <li>BA2.2.3.5/4936-4937-4938 - Total carotenoid and pVAC content established<br/>in plantain 64 varieties, 58 hybrids and 50 diploid AA. Top 5 plantain varieties<br/>with highest mean total carotenoids can be considered for fast-track delivery<br/>of high provitaminA varieties. (Donor report)</li> <li>CA2.3.1.4/5079 - Biofortification regional trial report for Cameroon-<br/>multilocation trial results. (Summary technical report)</li> <li>Eight OFSP varieties released in Ethiopia, Tanzania and Madagascar in<br/>2016/2017. (SPHI report, September 2017)</li> <li><i>Explanation: OFSP and Vit-A rich cassava and banana varieties already<br/>released in more than 10 countries. Ongoing efforts to release further<br/>improved varieties and in more countries.</i></li> </ul> |
| 2  | Enhanced<br>adaptive<br>capacity to<br>climate risks              | Outcome 2,5: Capacity to<br>deal with climate risks<br>and extremes increased<br>for at least 1,000,000 HH                                                                    | M2.5 Climate responsive<br>breeding targets developed<br>for 3 RTB crops in at least 5<br>target environments                                                         | Extended                     | See M1.4 SMART targets for traits linked with enhanced resilience of RTB populations to climate shocks formulated and included in breeding program designed for at least 2 RTB crops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                    | 2022 CRP outcomes<br>(from proposal)                                                                                                                                              | Milestone*                                                                                                                                             | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Enhanced<br>capacity to<br>deal with<br>climatic risks<br>and extremes      |                                                                                                                                                                                   |                                                                                                                                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2  | Gender-<br>equitable<br>control of<br>productive<br>assets and<br>resources | Outcome 2,6: At least<br>35% increase in number<br>of female and young<br>beneficiaries of at least<br>500,000 HH perceive to<br>have better control over<br>assets and resources | M2.6 Baseline of gender<br>roles in seed multiplication<br>and/or crop production<br>and/or varietal selection<br>available in five<br>countries/crops | Extended                     | CC2.1.2.4/6265 - Best practice guidelines for integrating gender into seed<br>systems and the RTB seed systems framework (file in MEL).<br>https://mel.cgiar.org/uploads/reporting/7h5zuU40YNtr2WZ0an3zRIcyS3f9Nx<br>.pdf<br>CC2.1.2.4/10238 - Gender-responsive banana seed-system characterization<br>in Uganda (file in MEL).<br>https://mel.cgiar.org/uploads/reporting/KzA1SHo61cP7alqvPHyBoYQo5zR1R<br>0.docx<br>Explanation: Gender roles assessed in one country                                                                                                                                                  |
| 2  | Conducive<br>agricultural<br>policy<br>environment                          | Outcome 2,7: Regulatory<br>frameworks for seed<br>production and seed<br>quality control (including<br>QDS) under<br>implementation in10<br>countries                             | M2.7 Regulatory<br>frameworks for seed<br>production and seed quality<br>control (including QDS)<br>under discussion in 5<br>countries                 | Extended                     | CC2.1.5.2/6294 - Certification guidelines for cassava in Tanzania (file in MEL).<br>https://mel.cgiar.org/uploads/reporting/HzXJoXt3rKxIPkGBvW793djzhm7IhS.<br>pdf<br>Breeder and commercial cassava seed certification standards discussed with<br>NASC officials (Nigeria) including training on certification protocols and<br>facilitation of regional exchanges (fact finding trip in East African countries).<br>(Donor report).<br>CC2.1.6.2/6299 - Seed Tracker for RTB Crops ( <u>http://seedtracker.org/</u> ).<br><i>Explanation: Regulatory frameworks analyzed and under discussion in two<br/>countries</i> |
| 2  | Enhanced<br>individual<br>capacity in<br>partner                            | Outcome 2,8: Every year,<br>8,000 R&D stakeholders<br>(50% female) trained<br>through short term                                                                                  | M2.8 75 individuals (50%<br>female) trained through<br>long term programs (e.g.<br>MSc and PhD students)                                               |                              | See <u>Table D</u> , Indicator C-4, for more details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| FP | Mapped and<br>contributing<br>to Sub-IDO                         | 2022 CRP outcomes<br>(from proposal)                                                                                                                       | Milestone*                                                                                           | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | research<br>organizations<br>through<br>training and<br>exchange | programs on designing<br>and implementing<br>smallholder-oriented<br>breeding programs and<br>sustainable seed systems                                     |                                                                                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3  | Closed yield<br>gaps through<br>improved<br>agronomic            | Outcome 3.1: In areas<br>affected by pests and<br>diseases, RTB yield<br>restored to pre-infection<br>conditions for at least at<br>least 1,500,000 farmer | M3.1 Baseline of pest<br>incidence and damage<br>available for 4 countries                           | Completed                    | CC3.1.1.1/8890 - First Report of Cassava Common Mosaic Disease and<br>Cassava common mosaic virus Infecting Cassava (Manihot esculenta) in Peru<br>(https://doi.org/10.1094/PDIS-10-16-1540-PDN)<br>CC3.1.3.1/2738 - Population structure of Ralstonia solanacearum in Peru<br>(https://doi.org/10.3389/fpls.2017.01221)<br>CC3.1.5.2/2784 - Phytoplasma infection of a tropical root crop triggers<br>bottom-up cascades by favoring generalist over specialist herbivores<br>(https://doi.org/10.1371/journal.pone.0182766)<br>BA3.4.4.1/10626 - Relative susceptibility of Musa genotypes to banana<br>bunchy top disease in Cameroon and implication for disease management<br>(http://hdl.handle.net/10568/83214) |
|    |                                                                  | are female headed<br>households                                                                                                                            |                                                                                                      |                              | CA3.6.2.1/10933-Spatial analysis of cassava mosaic disease epidemics<br>(https://doi.org/10.1094/PHYTO-03-17-0105-FI)<br>CA3.6.2.1/10941-Cassava mosaic begomoviruses and interactions with<br>cassava varieties in Zambia (http://hdl.handle.net/10568/89937)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                                                  |                                                                                                                                                            | M3.2 Global Pest Risk<br>Analysis (PRA) available for<br>at least 3 target RTB pests<br>and diseases | Extended                     | CC3.1.2.1/2697 - PRA document for potato pests Tuta absoluta and Tecia<br>solanivora for Kivu region (working document)<br>CC3.1.2.1/2699-PRA for the bud midge Prodiplosis longifila for SSA countries<br>(working document)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                                                     | 2022 CRP outcomes<br>(from proposal)                                                                           | Milestone*                                                                                                                                                     | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                              |                                                                                                                |                                                                                                                                                                |                              | <ul> <li>CC3.1.2.1/2701 – Pest Risk Analysis document for cassava green mite<br/>(Mononychellus mcgregori/tanajoa) (working document)</li> <li>CC3.1.2.2/2708 - Pest Risk Analysis for Xanthomonas campestris pv.<br/>musacearum, causative organism of Xanthomonas wilt on banana plants-for-<br/>planting (working document)</li> <li>2711-PRA documents for banana diseases (Xanthomonas Wilt of Banana,<br/>BBTD and Fusarium TR4) in east and central Africa finalized (working<br/>document)</li> <li><i>Explanation: PRAs in draft form. To be finalized and made publicly available.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3  | Increased<br>resilience of<br>agro-<br>ecosystems<br>and<br>communities,<br>especially<br>those<br>including<br>smallholders | Outcome 3.2: 1,800,000<br>ha of current RTB<br>production area<br>converted to sustainable<br>cropping systems | M3.3 At least 5 gender-<br>sensitive and site-specific<br>practices for crop, soil<br>fertility and water<br>management tested under<br>diverse agro-ecologies | Completed                    | CC3.1.5.7/2864 - IPM strategies for RTB production systems<br>(https://cgspace.cgiar.org/handle/10568/91969).<br>CC3.1.5.7/2867, 2868, 2869 - Hand held decision support systems for potato<br>late blight management (http://cip.mentagalactica.com/index.html).<br>CC3.2.1.1/8829, 8830, 8832 - Smartphone-based decision support tool (beta<br>version) with suite of SOPs, ODK forms and training material for standardized<br>data collection in cassava agronomy trials<br>(https://mel.cgiar.org/uploads/reporting/S0meufttr2Fhpr6ri5JhzScRVOkldJ.p<br>df)<br>BA3.3.5.1/8620, 8621, 8623 - Symptomless banana suckers sourced from<br>Xanthomonas wilt infected fields are a viable alternative for seed within<br>infected banana-based landscapes lacking access to clean planting materials<br>(http://hdl.handle.net/10568/89644). A control package revolving around<br>the removal of single diseased banana stems is effective for the restoration<br>of Xanthomonas wilt infected fields (http://hdl.handle.net/10568/82867).<br>Bacterial diseases of bananas and enset: current state of knowledge and<br>integrated approaches toward sustainable management<br>(http://hdl.handle.net/10568/82896). |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                                                       | 2022 CRP outcomes<br>(from proposal)                                                                                                                    | Milestone*                                                                                                                           | 2017<br>milestones<br>status | Provide evidence for completed milestones <sup>**</sup> or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                |                                                                                                                                                         |                                                                                                                                      |                              | CA3.6.3.3/4619 - Community phytosanitation to manage cassava brown streak disease ( <u>http://dx.doi.org/10.1016/j.virusres.2017.04.020</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3  | Enhanced<br>adaptive<br>capacity to<br>climate risks<br>Enhanced<br>capacity to<br>deal with<br>climatic risks<br>and extremes | Outcome 3.3: Capacity to<br>deal with climate risks<br>and extremes increased<br>for at least 1,000,000 HH                                              | M3.4 Downscaled climate<br>change models linked to<br>insect disease modelling for<br>at least 5 major<br>pest/regional combinations | Extended                     | CC3.1.4.1/8528, 8529, 8531 - A new module called "Geographical simulation<br>by point" was added to ILCYM software. It allows to easily locate the<br>estimated risk index values in georeferenced points and is linked to the<br>temperature database.<br>(https://research.cip.cgiar.org/confluence/display/ilcym/Home)<br>CC3.2.1.6/9036 - Climate change impact on global potato production<br>(https://doi.org/10.1016/j.eja.2017.11.008).<br>See also: M3.2 Global Pest Risk Analysis (PRA) available for at least 3 target<br>RTB pests and diseases                                                                                                                                                                                                                                          |
| 3  | Gender-<br>equitable<br>control of<br>productive<br>assets and<br>resources                                                    | Outcome 3.4: New<br>technologies and<br>practices have been<br>equally adopted women<br>and men farmers                                                 | M3.5 Gender differentiated<br>needs assessment of<br>capacity development<br>available in at least 8<br>pest/country combinations    |                              | BA3.4.5.3/9084, 9085 - Baseline study to evaluate gender dynamics in<br>banana seed systems in Cameroon, Nigeria and Benin + Lessons on gender-<br>responsive approaches in banana seed systems management (internal<br>reports)<br>CC3.1.2.3/8743 - Crowd-sourcing platform ( <u>http://www.pestdisplace.org</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3  | Conducive<br>agricultural<br>policy<br>environment                                                                             | Outcome 3.5: 25 National<br>and 5 regional plant<br>protection agencies with<br>strategies for<br>containment and<br>management under<br>implementation | M3.6 Cost effective<br>diagnostic tools and<br>protocols developed for at<br>least 3 key pests and<br>diseases                       | Completed                    | CA3.6.2.1/10935 - Transfer learning to develop artificial intelligence systems<br>for diagnosing cassava diseases (https://doi.org/10.3389/fpls.2017.01852).<br>BA3.4.3.1/3258-Digital diagnostics platform for BBTV surveillance and<br>diagnosis. The Crop Disease Surveillance (CDS) is a digital application for<br>rapid reporting of pest occurrence and pest diagnosis by visual inspection of<br>'specimens' submitted as 'digital images'. The CDS app can be used with any<br>internet enabled device such as smartphone, tablet, computer or other. The<br>CDS features enable follow-up inspections, lab confirmatory testing, and<br>solutions to prevent and control crop pests. (Brochure in MEL)<br>(https://mel.cgiar.org/uploads/reporting/6a4F2bUvi9UlvDH9mNerWY0d5As<br>mK6.pdf) |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                                                                 | 2022 CRP outcomes<br>(from proposal)                                                                                                                                                                                    | Milestone*                                                                                                                                                                                                                             | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                        |                              | CC3.1.5.7/2867, 2868, 2869 - Hand held decision support systems for potato late blight management ( <u>http://cip.mentagalactica.com/index.html</u> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3  | Increased<br>capacity for<br>innovation in<br>partner<br>development<br>organizations<br>and in poor<br>and<br>vulnerable<br>communities | Outcome 3.6: Growing<br>number of extension<br>services (governmental<br>org., NGOs and private<br>sector) providing advice<br>on improved ICM and<br>IPDM increased                                                    | M3.7 Engagement of<br>stakeholders in impact<br>pathway analysis for<br>ICM/IPDM in at least 3<br>cluster/country<br>combination                                                                                                       | Completed                    | <ul> <li>BA3.3.1.2/11080-Proceedings for 3.3 Banana Wilts Cluster Planning meeting (available in MEL). Stakeholder workshop analyzed current situation and future actions for blood disease, bugtok, Foc TR4 and bacterial wilts (BXW) in Malawi, Mozambique, Tanzania, Uganda, China, India, Indonesia, Philippines and Australia.</li> <li>CA3.5.1.2/2957-Mitigation plan for CMD outbreaks in Cambodia (internal document)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4  | Diversified<br>enterprise<br>opportunities                                                                                               | Outcome 4.1: 700,000<br>households, 25% of<br>which are female headed,<br>have increased their<br>income by 15-20% by<br>increasing and<br>diversifying RTB sales<br>(food, feed, industrial<br>raw material and seeds) | M4.1 RTB value chains,<br>including processing supply<br>chains and fresh market<br>chains, analyzed in 5<br>countries, with a gender-<br>sensitive approach, to<br>identify opportunities for<br>products improvement/<br>development | Completed                    | CC4.1.3.6/11337 - Economic Viability of Ware Potato Storage in Ambient<br>Stores in Eastern Uganda (http://hdl.handle.net/10568/88017).<br>CC4.1.3.6/11338 - Market and Value Chain Analysis of Ware Potato from<br>Eastern Uganda with a focus on postharvest management practices and<br>losses (http://hdl.handle.net/10568/89337)<br>SW4.4.2.3/9067 – Project report – Gender-sensitive development of roots<br>and tuber crops (cassava, potato, sweetpotato) in Malawi. (Internal<br>document)<br>CA4.2.5.1/10854 - Analysis of the cassava value chain in Ivory Coast (external<br>link)<br>CA4.2.5.2/11148 - Gender analysis of cassava production and processing into<br>gari in Central and Southern Benin (file in MEL)<br>CA4.2.5.2/4854 - Consumption patterns of ugali in Tanzania by gender, social<br>level and age. Working papers (files in MEL) |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                   | 2022 CRP outcomes<br>(from proposal)                                                                                                                                                                                     | Milestone*                                                                                                                                                                                          | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4  | More<br>efficient use<br>of inputs                                         | Outcome 4.2: 20,000<br>small scale processors, 30<br>% of which are female,<br>reduced water- and<br>energy- related<br>production costs by 15-<br>20% in cassava sector<br>with growing spillover in<br>other RTB crops | M4.2 Baseline of<br>efficiencies and processing<br>losses available for 5 local<br>SME types in 3 countries                                                                                         | Extended                     | CA4.2.1.2/4813 - Publication on Physical Properties of cassava grits before<br>and after pneumatic drying (https://doi.org/10.1111/jfpe.12397)<br>CA4.2.1.2/4814 - MSc thesis: Effect of cassava root hardness on rasping<br>performance (file in MEL)<br>CA4.2.1.4/4817 - Improved energy performance of small-scale pneumatic<br>dryers used for processing cassava in Africa<br>(http://dx.doi.org/10.1016/j.biosystemseng.2016.10.001)<br>Explanation: Further assessment and equipment adaptation planned in 2018.                                                                                                                                                                                                                                           |
| 4  | Reduced pre-<br>and post-<br>harvest<br>losses, incl.<br>climate<br>change | Outcome 4.3: Post-<br>harvest physical and<br>quality losses reduced in<br>at least 10 countries<br>through better post-<br>harvest management,<br>improved storage, and<br>utilization of waste across<br>RTB crops     | M4.3 RTB value chains<br>analyzed in 5 countries to<br>identify priority entry<br>points for reducing post-<br>harvest losses, improving<br>storage, and stepping up<br>waste utilization           | Completed                    | <ul> <li>CC4.1.3.1/11047 - Reducing postharvest losses and promoting product differentiation in the cooking banana value chain (http://hdl.handle.net/10568/82704, http://hdl.handle.net/10568/89514).</li> <li>CC4.1.3.5/11311 - Sweet potato wastes in major pig producing districts in Uganda: an opportunity for investment in silage technologies (http://hdl.handle.net/10568/89395)</li> <li>CA4.2.4.2/4847 - Technical data on wastewater from selected cassava processing technologies. Thesis (file in MEL)</li> <li>See also: M4.1 RTB value chains, including processing supply chains and fresh market chains, analyzed in 5 countries, with a gender-sensitive approach, to identify opportunities for products improvement/ development</li> </ul> |
| 4  | Optimized<br>consumption<br>of diverse<br>nutrient-rich<br>foods           | Outcome 4.4: Diet quality<br>indices increased by 20%<br>for at least 2,000,000<br>farmer households and<br>urban/rural consumers                                                                                        | M4.4 For ongoing<br>dissemination of OFSP,<br>biofortified cassava, and<br>other nutritious RTB crops:<br>nutrition<br>education/counseling and<br>SBCC methodologies,<br>partnerships, metrics and | Completed                    | CA4.3.5.1/6536 – Country (Nigeria and Tanzania) and regional advocacy<br>plans for scaling up biofortified crops for nutrition security (file in MEL)<br>CA4.3.5.3/6543 - Nutrition education for behavior change communication<br>(BCC) programs. ( <u>https://cipotato.org/bnfb/four-orange-fleshed-</u><br><u>sweetpotato-ofsp-vines-gold-capacity-development-impact/</u> )                                                                                                                                                                                                                                                                                                                                                                                   |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                    | 2022 CRP outcomes<br>(from proposal)                                                                                                                                                 | Milestone*                                                                                                                  | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                             |
|----|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                             |                                                                                                                                                                                      | results documented and analyzed in 10 countries                                                                             |                              | Report: A situational Analysis of Regional Investments, Policies, Legislation<br>and Advocacy Efforts on Food-based Approaches to Combating<br>Micronutrient Deficiency in Sub-Saharan Africa: Focus on Biofortification<br>( <u>external link</u> )                                                                                                                                                                                |
|    |                                                                             |                                                                                                                                                                                      |                                                                                                                             |                              | SW4.4.1.1/5254 - Nutrition education and counseling model for out-scaling<br>in Tanzania. Internal report on activities organized to improve nutritional<br>knowledge and practices and diversified use of OFSP by both female and<br>male caregivers of children under 5 years. (internal document – VISTA<br>project).                                                                                                            |
|    |                                                                             |                                                                                                                                                                                      |                                                                                                                             |                              | <ul> <li>SW4.4.1.1/9079 - Design and develop at least 3 nutrition sensitive SBCC and<br/>Information, Education and Communication (IEC) materials.</li> <li>Video in Swahili -add English subtitles and post on-line</li> <li>Draft Recipe book - MISST Project Orange-Fleshed Sweet potato<br/>(OFSP), Soya Beans, Millet, Sorghum, Pigeon Peas, Quality Protein<br/>and Provitamin a Maize; utilization and Processing</li> </ul> |
|    |                                                                             |                                                                                                                                                                                      |                                                                                                                             |                              | SW4.4.3.2/13430 - An Orphan Crop, The Orange-Fleshed Sweet potato, in<br>West Africa: Can We Reposition it? ( <u>http://www.rroij.com/open-access/an-orphan-crop-the-orangefleshed-sweet-potato-in-west-africacan-we-reposition-itpdf</u> )                                                                                                                                                                                         |
| 4  | Gender-<br>equitable<br>control of<br>productive<br>assets and<br>resources | Outcome 4.5: At least<br>35% increase in number<br>of women and youth<br>beneficiaries in at least<br>200,000 HH who perceive<br>to have better control<br>over assets and resources | M4.5 Gender analysis of<br>RTB value chains and RTB<br>post-harvest intervention<br>approaches documented in<br>4 countries | Completed                    | See also: M4.1 RTB value chains, including processing supply chains and fresh<br>market chains, analyzed in 5 countries, with a gender-sensitive approach, to<br>identify opportunities for products improvement/ development and<br>Milestone 5.6<br>CC4.1.5.1/10987 - Formative Gender Evaluation: Technical Report on the<br>Viable Sweetpotato Technologies in Africa – Tanzania project<br>(http://hdl.handle.net/10568/82707) |

| FP | Mapped and<br>contributing<br>to Sub-IDO           | 2022 CRP outcomes<br>(from proposal)                                                                                                     | Milestone*                                                                                                                                                                           | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                    |                                                                                                                                          |                                                                                                                                                                                      |                              | <ul> <li>Blog: Creating a niche for acceptance of vitamin A cassava in Nigeria: Women as key actors (<u>https://greatagriculture.org/content/news/blog/creating-niche-acceptance-vitamin-cassava-nigeria-women-key-actors</u>)</li> <li>SW4.4.1.3/5262 - Commercialization of Sweetpotato based silage: can women entrepreneurs compete favorably? (internal document)</li> <li>CC4.1.5.1/4571 - Gender mainstreamed guidelines for designing RTB post-harvest technologies and RTB interventions in Uganda (file in MEL).</li> <li>CC4.1.5.1/11258 - Assessing selected agricultural policies for gender-responsive upgending of the capiting based uplue chain (internel document)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4  | Conducive<br>agricultural<br>policy<br>environment | Outcome 4.6: Food-based<br>nutrition programs/<br>initiatives promoting RTB<br>crops under<br>implementation in at<br>least 10 countries | M4.6 RTB crops and<br>products compliant with<br>national nutrition and<br>safety standards for<br>inclusion in mainstream<br>national nutrition programs<br>in at least 2 countries | Completed                    | responsive upgrading of the cooking banana value chain (internal document)<br>CC4.3.1.2/6514 - Report on Genotypes with best physiochemical properties<br>identified. Evaluation of proximate composition and pasting properties of<br>high quality cassava flour (HQCF) from cassava genotypes (Manihot<br>esculenta Crantz) of b-carotene-enriched roots<br>(http://hdl.handle.net/10568/83228).<br>CA4.2.2.1/4819 - Nutritional and sensory properties: Snack food made from<br>high-quality cassava flour and legume blend<br>(http://dx.doi.org/10.1002/fsn3.464)<br>Consumer's acceptability and willingness-to-pay for composite bread baked<br>with high quality cassava flour from yellow-fleshed cassava roots<br>http://hdl.handle.net/10568/91691<br>CA4.2.3.3/10857 - Retention of Pro-vitamin A carotenoid in Composite Bread<br>baked with High Quality Cassava Flour from Yellow-fleshed Cassava Roots.<br>Working paper presented at the 13th Triennial Symposium of the<br>International Society for Tropical Root Crops-Africa Branch, White Sands<br>Hotel, Dar es Salaam, Tanzania, March 5 – 10, 2017. |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                                                                 | 2022 CRP outcomes<br>(from proposal)                                                                                                                                                                                                                                                                       | Milestone*                                                                                                             | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                          |                                                                                                                                                                                                                                                                                                            |                                                                                                                        |                              | <ul> <li>SW4.4.2.2/9071 - Root and tuber crops for agricultural transformation in<br/>Malawi RTC-ACTION Malawi - Semiannual report (homemade products such<br/>as doughnuts, juice, porridge, and mandazi (pancakes) + OFSP purée and<br/>cookies) (donor report).</li> <li>SW4.4.2.2/5269 - Food safety knowledge, attitude and practices of orange<br/>flesh sweetpotato puree handlers in Kenya<br/>(http://hdl.handle.net/10568/91984).</li> <li>CC4.1.2.1/ 9344 - Effects of Simulated Human Gastrointestinal Digestion of<br/>Two Purple-Fleshed Potato Cultivars on Anthocyanin Composition and<br/>Cytotoxicity in Colonic Cancer and Non-Tumorigenic Cells.<br/>(https://doi.org/10.3390/nu9090953)</li> </ul>                                                                                                                                                                                                                                         |
| 4  | Increased<br>capacity for<br>innovation in<br>partner<br>development<br>organizations<br>and in poor<br>and<br>vulnerable<br>communities | Outcome 4.7: 60<br>development-focused<br>organizations, including<br>women's networks and<br>alliances, having<br>increased their capacity<br>for innovation (e.g.<br>enhanced human capital<br>and improved<br>collaboration network in<br>relevant domains) to<br>scale up fuller utilization<br>of RTB | M4.7 Partnership models<br>and value chain approaches<br>tested to strengthen<br>institutional capacity for<br>scaling | Completed                    | CA4.2.4.1/10974 - Scaling HQCP mash production in Nigeria and Tanzania:<br>creating new enterprises – engaging processors. (file in MEL)<br>SW4.4.3.2/5279 - From lab to life: Making storable orange-fleshed<br>sweetpotato purée a commercial reality<br>(http://hdl.handle.net/10568/91985)<br>Tackling vitamin-A deficiency with biofortified sweetpotato in sub-Saharan<br>Africa (https://cgspace.cgiar.org/handle/10568/81126)<br>Success Factors for Commercializing Agricultural Research. Lessons from<br>Feed the Future Partnering for Innovation (link)<br>SW4.4.3.4 – Does Information on Food Production Technology Affect<br>Consumers' Acceptance of Biofortified Foods? Evidence from a Field<br>Experiment in Kenya (https://doi.org/10.1080/10496505.2017.1383914)<br>Effect of Farmers' Multidimensional Beliefs on Adoption of Biofortified Crops<br>Evidence from Sweetpotato Farmers in Tanzania<br>(http://hdl.handle.net/10568/90959) |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                                   | 2022 CRP outcomes<br>(from proposal)                                                                                            | Milestone*                                                                                                                                                                                       | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | Diversified<br>enterprise<br>opportunities                                                                 | Outcome 5.1: Income<br>increased by 20% for at<br>least 550,000 HH                                                              | M5.1 Trade-offs and<br>synergies among different<br>SDI options for market-<br>driven household income<br>improvement in RTB-based<br>farming systems analyzed in<br>at least 2 target countries | Completed                    | CC5.2.2.1/7543 - Effects of Xanthomonas wilt and other banana diseases on<br>ecosystem services in banana-based agroecosystems (Conference paper<br><u>http://library.wur.nl/WebQuery/wurpubs/511969)</u><br>Agro-ecological integration of shade- and drought-tolerant food/feed crops<br>for year-round productivity in banana-based systems under rain-fed<br>conditions in central Africa (Conference paper<br><u>http://library.wur.nl/WebQuery/wurpubs/511968</u> )                                                                                                                                                                                                                                                                                                                              |
| 5  | Closed yield<br>gaps through<br>improved<br>agronomic<br>and animal<br>husbandry<br>practices              | Outcome 5.2: Whole-<br>farm productivity<br>increased by 25% for at<br>least 1,000,000 HH                                       | M5.2 Scaling strategies<br>assessed and<br>recommendations<br>formulated in at least two<br>technology x country<br>combinations                                                                 | Completed                    | CC5.4.2.3/7083 - Scaling readiness: Accelerating the scaling of RTB interventions. Newsletter No.3 ( <u>http://hdl.handle.net/10568/90666</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5  | Optimized<br>consumption<br>of diverse<br>nutrient-rich<br>foods                                           | Outcome 5.3: Diet quality<br>indices increased by 20%<br>for at least 300,000<br>farmer households                              | M5.3 Partnership<br>arrangements in RTB-<br>related agriculture for<br>nutrition interventions<br>documented in target<br>countries                                                              | Completed                    | See: M4.7 Partnership models and value chain approaches tested to strengthen institutional capacity for scaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5  | Agricultural<br>systems<br>diversified<br>and<br>intensified in<br>ways that<br>protect soils<br>and water | Outcome 5.4: Improved<br>soil management<br>practices adopted on at<br>least 200,000 ha<br>cultivated by smallholder<br>farmers | M5.4 In at least 3 RTB-<br>related farming systems,<br>effects of selected SDI<br>approaches on soil water<br>and nutrient cycles<br>assessed and documented                                     | Completed                    | CC5.2.1.1/7536 - Characterization of potato-based systems.<br>Key ecosystem services and ecological intensification of agriculture in the<br>tropical high-Andean Puna as affected by land-use and climate change<br>(https://cgspace.cgiar.org/handle/10568/80557)<br>Soil organic carbon stocks and fractionation under different land uses in the<br>Peruvian high-Andean Puna (https://cgspace.cgiar.org/handle/10568/90584)<br>SWOT analysis of potato cultivation under arid conditions in western<br>Rajasthan (India) (https://cgspace.cgiar.org/handle/10568/90670)<br>CC5.2.1.1/7537 - Typologies of RTB systems based on agrobiodiversity<br>trends.<br>Farming and the geography of nutrient production for human use: a<br>transdisciplinary analysis (http://hdl.handle.net/10568/80813) |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                        | 2022 CRP outcomes<br>(from proposal)                                                                                                                                              | Milestone*                                                                                                                       | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | Enhanced<br>adaptive<br>capacity to<br>climate risks<br>Enhanced<br>capacity to | Outcome 5.5: Capacity to<br>deal with climate risks<br>and extremes increased<br>for at least 500,000 HH                                                                          | M5.5 Households options<br>for improving their<br>resilience to climate risks<br>and extremes assessed in<br>RTB-related farming |                              | Dietary species richness as a measure of food biodiversity and nutritional<br>quality of diets (http://hdl.handle.net/10568/89861)<br>CC5.2.2.2/7549, 10536 - The Role of RTB in livelihoods in North West<br>Vietnam - Opportunities for SID for better nutrition.<br>Report - Using Optifoods to Model Potential of Roots, Tubers and Bananas to<br>Improve Diet Quality (Working paper)<br>Report - The Role of Roots, Tubers, and Bananas in the Diets of Children<br>And Women in Mai Son, Vietnam (Working paper)<br>Blog: https://www.bioversityinternational.org/news/detail/improving-diets-<br>in-vietnam-with-roots-tubers-and-bananas/<br>CC5.2.2.2/9089 - An Innovative Approach to Sustainable Intensification:<br>Using Diets as an Entry Point (Working paper)<br>CC5.3.1.7/10929 - Indigenous Knowledge Systems and Climate Change<br>Management in Africa (Book)<br>(https://publications.cta.int/en/publications/publication/2009/) |
|    | deal with<br>climatic risks<br>and extremes                                     |                                                                                                                                                                                   | systems in 5 countries                                                                                                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5  | Gender-<br>equitable<br>control of<br>productive<br>assets and<br>resources     | Outcome 5.6: At least<br>35% increase in number<br>of female and young<br>beneficiaries of at least<br>200,000 HH perceive to<br>have better control over<br>assets and resources | M5.6 Gender-responsive<br>assessments of RTB value<br>chains realized in at least<br>two countries                               | Completed                    | See also <u>Milestone 4.5</u><br>SW4.4.3.2/5279 - Mudege, Netsayi N. Sarah Mayanja, and Tawanda<br>Muzhingi, 2017. Women and men farmer perceptions of economic and<br>health benefits of orange fleshed sweet potato (OFSP) in Phalombe and<br>Chikwawa districts in Malawi. ( <u>http://hdl.handle.net/10568/80900</u> )<br>Mayanja, S., Grant, F.K., Kakuhenzire, R. & Okuku, H.S. (2017). Rapid market<br>assessment: Viable Sweetpotato. Technologies in Africa – Tanzania. Technical                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Report. International Potato Center (CIP).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved<br>capacity of<br>women and<br>young people<br>in decision-<br>making       Outcome 5.7: RTB<br>delivery flagships and at<br>least 55 research and<br>development partner<br>organizations with more<br>gender-responsive<br>planning and<br>indecision-<br>making       M5.7 Tools and methods<br>for CapDev on gender<br>responsive and<br>developed       CC4.1.5.1/4571 - Gender mainstreaming in r<br>postharvest technologies and interventions:<br>and gaps. Lima (Peru). CGIAR Research Progr<br>Bananas (RTB). RTB Working Paper (http://h<br>CC5.3.1.5/7641 - The role of gender norms in<br>Chikwawa and Phalombe, Malawi<br>(https://cgspace.cplar.org/handle/10568/89         5       Women and<br>implementation<br>processes, reflected in at<br>least 5 additional<br>collaborative<br>arrangements with public<br>sector and civil society<br>organizations supporting<br>gender transformation       M5.7 Tools and methods<br>for CapDev on gender<br>responsive and<br>transformative approaches<br>developed         6       Widege, Netsayi N and S Mayanja (20)<br>Blog: Mudege, Netsayi N and S Mayanja (20)<br>Blog: Mudege, Netsayi N (2017) Why gender<br>harvest technologies http://www.rb.cglar.or<br>matters-developing post-harvest-technologie<br>Video: Why gender matters agricultural rese<br>https://www.youtube.com/watch?v=fuaPUd | tb.cgiar.org/gender-breeding-<br>oot, tuber and banana crops'<br>Identification of lessons learnt<br>am on Roots, Tubers and<br>dl.handle.net/10568/89806)<br>n access to agricultural training in<br>051)<br>other social determinants of<br>TB systems (GENNOVATE).<br>498)<br>17) Why gender matters in<br>rg/blog/publication/gender-<br>ition/<br>matters in developing post-<br>rg/blog/publication/gender-<br>es/<br>arch |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                                                                         | 2022 CRP outcomes<br>(from proposal)                                                                                                                                                                                                                                               | Milestone*                                                                                                                                                                                | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                              | Video: What did you learn from the gender training and how do you use it in<br>your work?<br><u>https://youtu.be/5tlSoc95Fqo</u><br>Kawarazuka, N., Kharlyngdoh, A., Marbaniang, E., Syndor, A. (2017). Gender-<br>responsive participatory videos: a guide for facilitators. English and<br>Vietnamese versions available at <u>https://genderinagr.wordpress.com/other-<br/>document/</u>                                                                                                                                                                                    |
| 5  | Increased<br>capacity of<br>beneficiaries<br>to adopt<br>research<br>outputs                                                                     | Outcome 5.8: At least 66<br>cases where RTB<br>crops/technologies are<br>newly included in policies<br>or programs executed by<br>government agencies,<br>NGOs, and/or private<br>sector                                                                                           | M5.8 At least 1 systems<br>innovation coalition<br>established in 5 countries<br>selected for site integration<br>and problem identification<br>and prioritization exercises<br>conducted | Completed                    | CC5.4.2.3/7091 - Synthesis of mature multi-stakeholder collaborations and<br>platforms in AR4D ( <u>http://hdl.handle.net/10568/78379</u> )<br>CC5.4.2.3/7093 - Synthesis of innovation platform compositional dynamics<br>( <u>http://hdl.handle.net/10568/80715</u> )<br>CC5.4.2.3/7092 - Second Edition of Rapid Appraisal of Agricultural Innovation<br>Systems (RAAIS) toolkit ( <u>http://hdl.handle.net/20.500.11766/7525</u> )<br>CC5.4.2.3/7090 - Guidelines for effective use of multi-stakeholder platforms<br>in AR4D ( <u>http://hdl.handle.net/10568/82550</u> ) |
| 5  | Enhanced<br>institutional<br>capacity of<br>partner<br>research<br>organizations<br>Enhanced<br>individual<br>capacity in<br>partner<br>research | Outcome 5.9: At least<br>1,500<br>research/development<br>staff in RTB and in mixed-<br>type partner<br>organizations across<br>prime target countries<br>with strengthened<br>research and innovation<br>capacities including<br>gender-responsive and<br>transformative research | M5.9 At least 4 ex post<br>impact studies completed<br>M5.10 20 individuals (50%<br>female) trained through<br>long term programs (e.g.<br>MSc and PhD students)                          | Completed                    | See <u>Table I-1</u> for more details<br>See <u>Table D</u> , Indicator C-4, for more details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| FP | Mapped and<br>contributing<br>to Sub-IDO                                                                                                 | 2022 CRP outcomes<br>(from proposal)                                                                                                                 | Milestone*                                                        | 2017<br>milestones<br>status | Provide evidence for completed milestones** or explanation for extended<br>or cancelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | organizations<br>through<br>training and<br>exchange                                                                                     |                                                                                                                                                      |                                                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5  | Increased<br>capacity for<br>innovation in<br>partner<br>development<br>organizations<br>and in poor<br>and<br>vulnerable<br>communities | Outcome 5.10: At least 5<br>partnerships and scaling<br>models tested in a<br>minimum of 5 target<br>countries and adjusted to<br>be fit for purpose | M5.11 Comparative<br>assessment of scaling<br>models (desk study) | Completed                    | CC5.4.2.EF2/10837 - What kinds of 'systems' are we dealing with?<br>Implications for systems research and scaling<br>(http://hdl.handle.net/10568/90255)<br>CC5.4.2.EF2/10836 - Systems research in the CGIAR as an arena of struggle:<br>competing discourses on the embedding of research in development<br>(https://blackwells.co.uk/bookshop/product/Agronomy-for-Development-<br>by-James-Sumberg-editor/9781138240315)<br>CC5.4.2.EF2/10835 - Reforming the research policy and impact culture in the<br>CGIAR: Integrating science and systemic capacity development<br>(http://hdl.handle.net/10568/88119)<br>Hermans F, Sartas M, van Schagen B, van Asten P, Schut M (2017) Social<br>network analysis of multi-stakeholder platforms in agricultural research for<br>development: Opportunities and constraints for innovation and scaling. PLoS<br>ONE 12(2): e0169634. (https://doi.org/10.1371/journal.pone.0169634) |

\* Milestones include both outputs, output use and outcomes along the impact pathways.
\*\* Provide link to any relevant open accessible document.

| Cross-cutting | Number (%) scored<br>2 (Principal) | Number (%) scored<br>1 (significant) | Number (%)<br>scored 0 | Total overall number<br>of outputs |
|---------------|------------------------------------|--------------------------------------|------------------------|------------------------------------|
| Gender        | 21 (6%)                            | 54 (16%)                             | 262 (78%)              |                                    |
| Youth         | 5 (1%)                             | 17 (5%)                              | 315 (93%)              | 337                                |
| CapDev        | 27 (8%)                            | 75 (22%)                             | 235 (70%)              |                                    |

#### TABLE C: CROSS-CUTTING ASPECT OF OUTPUTS

The main areas where outputs have been scored as principal for gender relevance are:

- breeding and variety selection. Here the focus is on the identification of gender-differentiated constraints and needs that may help in orienting breeding targets (examples are: CA2.3.3.1 Prioritized cassava breeding traits utilizing data to support gender disaggregated trait preferences in at least two countries; BA2.2.1.2 Gender-differentiated constraints/expectations/priorities of farmers and other actors of local banana value-chain in the Caribbean documented) and on the development of tools and approaches to implement gender-sensitive variety selection ( examples are: DI1.1.3.2 Trait dictionary and ontology with gender-responsive scoring for Participatory variety selection (PVS) for RTB crops is available in the Crop-Ontology platform for use by RTB trial management systems; DI1.1.3.8 Methodologies for the inclusion of gender integrated data from PVS into RTB crop breeding);
- 2) seed systems. Here the gender-sensitive research work focus on the identification and development of methods and best practices for assessing and mainstreaming gender equity in the seed system interventions (examples are: CC2.1.1.1 Protocol to understand the complementarity among the linked products, combine and use them in a systematic way and gender responsive way; CC2.1.2.4 Best practice guidelines for integrating gender into seed systems ; CC2.1.4.1 Characterization of seed systems at farm and community level (informal and interface informal / formal; PO2.5.3.1 Identify gender-based constraints and opportunities and provide gender-responsive interventions);
- 3) pest and disease management. Better understanding of gender roles in production systems and development of gender-sensitive practices characterize this research area (examples are: BA3.3.3.3 Gender roles and contribution in production recovery and in improving banana-based household livelihoods; CC5.2.1.1 Characterization of RTB farming households and existing sustainable intensification and diversification interventions.BA3.4.5.3 Tools for analysis of role of gender and generation in banana and cropping system management, banana marketing and in community BBTD recovery strategies; CC3.1.1.4 Gender-responsive research protocols, methods, guidelines and manuals developed to strengthen research and impact of IPM; CC3.1.5.1 Farmers pest and disease management practices in RTB crops and gender related aspects evaluated and documented for at least 12 targeted countries in Africa, Asia and Latin America);
- 4) inclusive value chains. Methodologies and tools are developed to assess and support the design of market-oriented interventions. (examples are: CA4.2.5.2 Case study on the gender implications of the transition from traditional to industrial cassava markets in at least two countries: Surveys and data interpretations; CA4.3.3.1 Gender-sensitive tools to identify key acceptability criteria of biofortified cassava varieties by end users and consumers, for different types of cassava-based products; CC4.1.5.1 Guidelines for designing gender responsive post-harvest technology and RTB innovations to improve marketing and value addition for RTB products; CC4.1.5.3 Improved methods for value chain development: The case of the gender sensitive Participatory Market Chain Approach);
- 5) **design and implementation of gender-sensitive R4D initiatives**. Evidences on the effects on gender equity are provided and recommendations formulated to foster gender-sensitive and gender-transformative approaches (examples are: CC4.1.5.2 Recommendations to contribute to the design of research and development initiatives that promote agricultural innovation linked to food security

and nutrition with a gender perspective; CC5.3.2.2 - Journal papers and policy briefs on the role of gender norms in agricultural transformation and women empowerment targeting policy makers and donors; CC5.3.2.4 - Gender and technology development and adoption; CC5.3.4.1 - Capacity development materials and approaches on strategic gender and youth research and gender data analysis developed and tested in the different flagships).

The main areas where outputs have been scored as principal for **youth** relevance are:

- Strategy and framing document. (CC5.3.3.1 Strategy for improving youth's access to productive resources and decision-making processes at household community, farm and landscape level developed and shared with next users; CC5.3.3.2 - A framework for private public partnerships to promote youth employment and agripreneurship);
- 2) capacity development approaches. (CC5.3.4.1 Capacity development materials and approaches on strategic gender and youth research and gender data analysis developed and tested in the different flagships; CC5.3.3.3 Establishing global youth connections).

The main areas where outputs have been scored as principal for **capacity development** relevance are:

- networks and platforms. (examples are: DI1.1.1.2 Web-based portal for repository of contacts, protocols, tools and training materials for clonal crop breeding; DI1.2.5.2 Open access databases for management of phenotypic and genotypic information with integrated analysis and decision support tools; SW2.6.5.3 Intensification of sweetpotato breeders network in Asia; YA2.7.1.1 Network of yam breeding programs in West Africa sharing germplasm, testing advanced clones and releasing varieties; BA2.2.4.4 Comprehensive portal on wild Musa species; CC3.1.1.1 Knowledge bank (online data bank) for PRAs, surveillance, diagnostics, species distribution, pest and disease modeling and risk mapping, new and updated IPM strategies in RTB crops generated, and regularly updated; CC5.4.3.2 Well-functioning ProMusa platform).
- 2) capacity development approaches and toolkits. (examples are: CC2.1.2.4 Best practice guidelines for integrating gender into seed systems and the RTB seed systems framework are developed and shared with scientists and partners working on seed systems; CA3.5.2.3 User-friendly toolkits & associated adult education materials for disease surveillance & diagnostics devised and tested in at least 2 target countries of Asia and Latin America (2018); CA4.2.2.1 Participatory approach with processors and consumers in the adoption of an improved variety or technological process developed and tested in at least two countries for a combination of two varieties and two processes; CC5.3.4.1 Capacity development materials and approaches on strategic gender and youth research and gender data analysis developed and tested in the different flagships).

#### TABLE D: COMMON RESULTS REPORTING INDICATORS

#### DATA COLLECTION ON THESE INDICATORS IS ONGOING

#### TABLE D-1: KEY CRP RESULTS FROM 2017, IN NUMBERS

Please complete the table on the common reporting indicators below. See instructions in separate guidance in the common results indicators manual (available early 2018). Please note that supporting evidence must either be uploaded to an MIS system (MARLO, MEL or others) or keep evidence on file for possible checking.]

| Sphere    | Indicators                                                                                                                                                                                   | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments                                                                                                           |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|           | I1/I2*. Projected uptake (women and<br>men) /hectares from current CRP<br>investments ( <u>for innovations at user-</u><br><u>ready or scaling stage only – see</u><br><u>indicator C1</u> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |
| Influence | I3. Number of policies/ investments<br>(etc) modified in 2017, informed by<br>CGIAR research                                                                                                 | <ol> <li>A national advocacy brief prepared by the<br/>Federal Ministry of Budgets and Planning in<br/>Nigeria,</li> <li>The food security and nutrition strategy</li> <li>(2016–2025) of the Federal Ministry of<br/>Agriculture and Rural Development of Nigeria<br/>(FMARD) and</li> <li>The Ministry of Agriculture, Livestock and<br/>Fisheries' Food Security plan and the Food<br/>and Nutrition Centre (TFNC) 5-year strategic<br/>plan in Tanzania.</li> </ol> | Ref. Outcome case<br>study: Advocacy<br>for biofortification<br>strategies in<br>Nigeria, Tanzania<br>and Regional |
|           | C1. Number of innovations by phase -<br>new in 2017                                                                                                                                          | <ul> <li>(2) Stage 1: end of research phase</li> <li>(1) Stage 2: end of piloting phase</li> <li>(6) Stage 2: end of piloting phase</li> <li>(22) Stage 3: available for uptake</li> <li>(17) Stage 4: uptake by next user</li> <li>(48) Total</li> </ul>                                                                                                                                                                                                               |                                                                                                                    |
|           | C2. Number of formal partnerships<br>in 2017, by purpose (ongoing + new)                                                                                                                     | <ul> <li>(77) Phase 1: Discovery/Proof of concept</li> <li>(37) Phase 2: Piloting</li> <li>(7) Phase 2: Piloting &amp; Phase 3: Scaling up and scaling out</li> <li>(97) Phase 3: Scaling up and scaling out</li> <li>(218) Total</li> </ul>                                                                                                                                                                                                                            |                                                                                                                    |
|           | C3. Participants in CGIAR activities<br>2017<br>(new +ongoing)                                                                                                                               | Trials and studies:<br>TOT 2,011 (NA% Women)<br>Knowledge exchange:<br>TOT 12,826 (NA% Women)<br>Scaling activities:<br>TOT 52,977 (NA% Women)                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |
|           | C4. People trained in 2017                                                                                                                                                                   | Academic Degree (PhD, MSc, BSc):<br>TOT 222 (43% Women)<br>Research placement or training visit:<br>TOT 75 (41% Women)<br>Short term trainings:<br>TOT 53,500 (NA% Women)                                                                                                                                                                                                                                                                                               |                                                                                                                    |
| 2         | C5. Number of peer-reviewed publications                                                                                                                                                     | TOTAL 132 peer reviewed journal articles<br>published in 2017<br>[link to full list of CRP publications]<br>of which 110 (83%) are published in ISI<br>journals<br>of which 103 (78%) are open access                                                                                                                                                                                                                                                                   | 682 authors from<br>65 organizations<br>contributed in the<br>journal articles in<br>the list                      |
| Control   | C6. Altmetrics                                                                                                                                                                               | See narrative assessment in the box below                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |

\*Please note: I = Sphere of Influence and C = Sphere of Control

#### **C6.** Altmetric Narrative assessment

With an overall attention score of <u>103 points</u>, RTB's top scoring publication in 2017 was '<u>Genomic prediction</u> <u>unifies animal and plant breeding programs to form platforms for biological discovery</u>' published in journal Nature Genetics. Altmetric registered two news stories about the publication, although one is in fact <u>a press</u> <u>release</u> published on the website of the UK Biotechnology and Biological Sciences Research Council, which was involved with the study, and the other is a republishing of that release by the website <u>SeedQuest</u>. Altmetric also registered one blog about the publication, which was actually the same press release it already captured as a news story, raising questions around the accuracy of scoring. The research received significant social media attention with 148 tweets and one public Facebook post, following promotion by the authors and their respective institutions. It should also be noted that this publication was found through a manual search and was not included in the list of RTB publications exported from Altmetric, despite being tagged RTB and featuring in the program's CGSpace collection. It is unclear why it was not captured in the Altmetric export and whether other high-ranking publications may have been missed.

The second highest scoring RTB publication with <u>46 points</u> was '<u>Evolution of the banana genome (Musa acuminata) is impacted by large chromosomal translocations</u>' published in the journal Molecular Biology and Evolution. Stories based on the research were published by five news outlets including <u>Science Daily</u> and <u>Phys.org</u>, and appear to be the result of a press release published by Oxford University Press that was disseminated through <u>EurekAlert</u>. The article received modest attention on social media, with 14 tweets and one publicly accessible Facebook post. When compared to the top scoring publication, this indicates the importance of a high volume of content such as tweets for calculating an Altmetric score. The third highest scoring publication with <u>32 points</u> was '<u>Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa</u>' by CIP scientists, which received <u>38</u> tweets and was mentioned in three blog posts. '<u>Trait variation and genetic diversity in a banana genomic selection training population</u>' was the fourth highest scoring publication in 2017 with a <u>score of 22</u>. The publication link was included in one blog and 23 tweets. The four publications are within the top 5% of all research outputs scored by Altmetric.

In addition to the press release registered twice as a news story and a blog, a further anomaly was found in the results reported by Altmetric. Specifically, the absence of the publication '<u>Gender in agricultural change:</u> <u>Towards more inclusive innovation in farming communities'</u>. This publication was featured and linked in two RTB blogs in 2017, '<u>Skilled youth hold the key to the future of farming</u>' and '<u>Understanding gender norms to improve effectiveness of interventions</u>'. At the time of writing, RTB is awaiting confirmation as to whether Altmetric includes the RTB blog in its manually curated list of 9,000 blogs, which may explain why these posts and potentially others were not captured.

As the social media promotion of RTB publications is mostly done by sharing blogs that highlight and link to the publication, rather than a direct link to the publication itself, it appears RTB's own social media accounts contribute little to Altmetric scores. This approach is taken to position the research within content that draws out the key findings and which is more appropriate for broader and non-scientific audiences. Additionally, it is an approach that increases traffic to the RTB website, another important goal for the program's social media use. A complementary approach will be considered to increase the contribution of RTB social media to Altmetric scores.

Similarly, the use of traditional media to publicize publications will be prioritized as it is a key channel to promote research. In 2017, research by RTB was featured in news outlets with a combined audience of over 12 million readers, according to the media monitoring service used by the program, Meltwater. Despite this, only a small number of news articles were registered by Altmetric, signifying the need to ensure (where possible) that the correct link to a publication is included in a press release or a news story.

# TABLE D-2: LIST OF CRP INNOVATIONS IN 2017 (FROM INDICATOR #C1 IN<br/>TABLE D-1)

| FP | Cluster | Name of Innovation:                                                                                                                                                                    | Stage                                                    | Contribution | Innovation<br>Type                                          | Geographic Scope:                                                                                                      |
|----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1  | 1.1     | BrAPI - Application<br>programming interface (API)<br>for breeding RTB community                                                                                                       | Stage 4:<br>uptake by<br>next user                       | RTB          | Research and<br>Communication<br>Methodologies<br>and Tools | Global                                                                                                                 |
| 1  | 1.2     | Breeder-ready markers for<br>leaf blight and virus<br>resistance in potato                                                                                                             | Stage 4:<br>uptake by<br>next user                       | RTB          | Research and<br>Communication<br>Methodologies<br>and Tools | Global                                                                                                                 |
| 2  | 2.1     | Positive selection to improve<br>on-farm seed potato<br>management                                                                                                                     | Stage 4:<br>uptake by<br>next user                       | RTB          | Production<br>Systems and<br>Management<br>Practices        | In the Andes<br>(Bolivia, Ecuador,<br>and Peru) and in<br>Africa<br>(Ethiopia, Uganda,<br>Kenya, Rwanda<br>and Malawi) |
| 2  | 2.4     | Varieties for mid altitude,<br>humid subtropical agro-<br>ecologies in SSA, focusing on<br>heat tolerance, late blight<br>and virus resistance<br>Climate smart mid altitude<br>potato | Stage 4:<br>uptake by<br>next user                       | RTB          | Genetic<br>(varieties and<br>breeds)                        | Kenya, Rwanda,<br>Ethiopia,<br>Cameroon, Nigeria<br>and Malawi                                                         |
| 2  | 2.6     | Triple S – Storing<br>Sweetpotato Roots in Sand<br>and Sprouting                                                                                                                       | Stage 4:<br>uptake by<br>next user                       | RTB          | Production<br>Systems and<br>Management<br>Practices        | Uganda, Ethiopia,<br>Mozambique,<br>Mozambique,<br>Tanzania, Kenya,<br>Nigeria, Malawi,<br>Ghana, Burkina<br>Faso      |
| 2  | 2.1     | Use of low cost Net Tunnels<br>for Management of<br>Sweetpotato Viruses among<br>Famer-multipliers                                                                                     | Stage 4:<br>uptake by<br>next user                       | RTB          | Production<br>Systems and<br>Management<br>Practices        | East Africa, South<br>East Asia                                                                                        |
| 2  | 2.4     | Apical cuttings for seed potato systems                                                                                                                                                | Stage 4:<br>uptake by<br>next user                       | RTB          | Production<br>Systems and<br>Management<br>Practices        | Kenya                                                                                                                  |
| 2  | 2.2     | Addressing vitamin A<br>deficiency through vitamin<br>A-rich banana cultivars in<br>East African farming and<br>food systems                                                           | Stage 2:<br>end of<br>piloting<br>phase (if<br>relevant) | RTB          | Genetic<br>(varieties and<br>breeds)                        | Burundi, Congo                                                                                                         |
| 2  | 2.2     | NARITA hybrids for East<br>Africa                                                                                                                                                      | Stage 2:<br>end of<br>piloting<br>phase (if<br>relevant) | RTB          | Genetic<br>(varieties and<br>breeds)                        | Uganda, Tanzania                                                                                                       |
| 2  | 2.1     | Multi-stakeholder<br>framework for intervening in<br>RTB seed systems                                                                                                                  | Stage 4:<br>uptake by<br>next user                       | RTB          | Social science                                              | Ethiopia, Ecuador,<br>Nigeria, Tanzania                                                                                |

| FP | Cluster | Name of Innovation:                                                                                                                        | Stage                                                    | Contribution | Innovation<br>Type                                          | Geographic Scope:                                                        |
|----|---------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|-------------------------------------------------------------|--------------------------------------------------------------------------|
| 2  | 2.1     | Impact network analysis<br>(INA) validated as a tool to<br>understand and describe<br>RTB seed systems                                     | Stage 4:<br>uptake by<br>next user                       | RTB          | Social science                                              | Ethiopia, Ecuador,<br>Georgia, Kenya,<br>Vietnam,<br>Cambodia            |
| 2  | 2.1     | Integrated seed health<br>approach                                                                                                         | Stage 3:<br>available<br>for uptake                      | RTB          | Production<br>Systems and<br>Management<br>Practices        | Georgia, Nigeria,<br>Kenya, Uganda                                       |
| 2  | 2.1     | Seed Tracker                                                                                                                               | Stage 3:<br>available<br>for uptake                      | RTB          | Research and<br>Communication<br>Methodologies<br>and Tools | Nigeria                                                                  |
| 2  | 2.2     | NABIO (matooke) hybrids                                                                                                                    | Stage 3:<br>available<br>for uptake                      | RTB          | Genetic<br>(varieties and<br>breeds)                        | Uganda                                                                   |
| 2  | 2.4     | Decentralized seed<br>multiplier approach to seed<br>potato production                                                                     | Stage 4:<br>uptake by<br>next user                       | RTB          | Social science                                              | Ethiopia, Kenya,<br>Malawi                                               |
| 2  | 2.4     | Varieties for humid tropical<br>and sub-tropical highlands,<br>focusing on late blight<br>resistance                                       | Stage 4:<br>uptake by<br>next user                       | RTB, CCAFS   | Genetic<br>(varieties and<br>breeds)                        | Kenya, Tanzania,<br>Rwanda, Ethiopia,<br>Cameroon, Nigeria<br>and Malawi |
| 2  | 2.4     | Varieties for mid-altitude,<br>semi-humid subtropical<br>agro-ecologies in SSA,<br>focusing on heat, drought<br>and virus tolerance        | Stage 4:<br>uptake by<br>next user                       | RTB          | Genetic<br>(varieties and<br>breeds)                        | Kenya, Tanzania,<br>Rwanda, Ethiopia,<br>Cameroon and<br>Malawi          |
| 3  | 3.2     | Scaling out dual CBSD and<br>CMD resistant varieties for<br>the mid-altitude agro-<br>ecologies of East and Central<br>Africa              | Stage 3:<br>available<br>for uptake                      | RTB          | Genetic<br>(varieties and<br>breeds)                        | Malawi,<br>Mozambique,<br>Kenya, Tanzania,<br>Uganda                     |
| 3  | 3.3     | Out-scaling Single Diseased<br>Stem Removal (SDSR) for<br>quick and effective banana<br>recovery in XW affected<br>regions                 | Stage 4:<br>uptake by<br>next user                       | RTB          | Production<br>Systems and<br>Management<br>Practices        | DR Congo,<br>Rwanda, Uganda<br>and Burundi                               |
| 3  | 3.1     | Hand-Held Decision Support<br>System for Potato Late Blight<br>Management (HH-DSS)                                                         | Stage 2:<br>end of<br>piloting<br>phase (if<br>relevant) | RTB          | Research and<br>Communication<br>Methodologies<br>and Tools | Ecuador                                                                  |
| 3  | 3.1     | AdiosMacho- <i>Po<sup>®</sup></i> and<br>AdiosMacho- <i>St<sup>®</sup></i> : innovative<br>biorational products to<br>control potato pests | Stage 3:<br>available<br>for uptake                      | RTB          | Production<br>Systems and<br>Management<br>Practices        | Peru, Bolivia,<br>Ecuador, Bhutan,<br>Nepal, Australia                   |
| 3  | 3.4     | Recovering Banana<br>Production from Bunchy Top<br>Disease                                                                                 | Stage 3:<br>available<br>for uptake                      | RTB          | Production<br>Systems and<br>Management<br>Practices        | Malawi, Nigeria,<br>DR Congo                                             |
| 3  | 3.6     | Community action to<br>manage cassava brown<br>streak disease                                                                              | Stage 2:<br>end of<br>piloting<br>phase (if<br>relevant) | RTB          | Production<br>Systems and<br>Management<br>Practices        | Tanzania                                                                 |

| FP | Cluster | Name of Innovation:                                                                                                                                                                                    | Stage                                                    | Contribution | Innovation<br>Type                                          | Geographic Scope:                      |
|----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|-------------------------------------------------------------|----------------------------------------|
| 3  | 3.2     | Developing decision support<br>tools to scale agronomic<br>technologies for cassava                                                                                                                    | Stage 2:<br>end of<br>piloting<br>phase (if<br>relevant) | RTB          | Production<br>Systems and<br>Management<br>Practices        | Nigeria, Tanzania                      |
| 3  | 3.1     | Insect Life Cycle Modeling<br>software (ILCYM)                                                                                                                                                         | Stage 3:<br>available<br>for uptake                      | RTB          | Biophysical research                                        | Global                                 |
| 3  | 3.4     | BBTV CDS surveillance and<br>reporting mobile app                                                                                                                                                      | Stage 3:<br>available<br>for uptake                      | RTB          | Research and<br>Communication<br>Methodologies<br>and Tools | Nigeria                                |
| 3  | 3.4     | BBTV tolerant Musa varieties and hybrids                                                                                                                                                               | Stage 3:<br>available<br>for uptake                      | RTB          | Genetic<br>(varieties and<br>breeds)                        | Cameroon                               |
| 3  | 3.5     | Crop disease Surveillance platform                                                                                                                                                                     | Stage 2:<br>end of<br>piloting<br>phase                  | RTB          | Research and<br>Communication<br>Methodologies<br>and Tools | Global                                 |
| 3  | 3.5     | Field detection of pathogens                                                                                                                                                                           | Stage 3:<br>available<br>for uptake                      | RTB          | Research and<br>Communication<br>Methodologies<br>and Tools | Global                                 |
| 3  | 3.6     | Absolute quantification of<br>cassava brown streak viruses<br>using standard curves                                                                                                                    | Stage 3:<br>available<br>for uptake                      | RTB          | Research and<br>Communication<br>Methodologies<br>and Tools | Global                                 |
| 4  | 4.1     | Waxing: A technology for<br>extending the shelf-life of<br>fresh cassava roots in Africa                                                                                                               | Stage 3:<br>available<br>for uptake                      | RTB          | Production<br>Systems and<br>Management<br>Practices        | Uganda, Nigeria                        |
| 4  | 4.2     | High quality cassava peel for animal feed                                                                                                                                                              | Stage 3:<br>available<br>for uptake                      | RTB          | Production<br>Systems and<br>Management<br>Practices        | Nigeria and<br>Tanzania                |
| 4  | 4.1     | Sweetpotato silage-based diet for pig feeding                                                                                                                                                          | Stage 3:<br>available<br>for uptake                      | RTB          | Production<br>Systems and<br>Management<br>Practices        | Uganda                                 |
| 4  | 4.4     | Orange-fleshed Sweetpotato<br>Purée for Bakery<br>Applications in Kenya                                                                                                                                | Stage 3:<br>available<br>for uptake                      | RTB          | Production<br>Systems and<br>Management<br>Practices        | Sub-Saharan Africa                     |
| 4  | 4.2     | Flash dryer for cassava                                                                                                                                                                                | Stage 3:<br>available<br>for uptake                      | RTB          | Production<br>Systems and<br>Management<br>Practices        | Colombia, Nigeria,<br>Uganda, Tanzania |
| 4  | 4.3     | Regional Investments,<br>Policies, Legislation and<br>Advocacy Efforts on Food-<br>based Approaches to<br>Combating Micronutrient<br>Deficiency in Sub-Saharan<br>Africa: Focus on<br>Biofortification | Stage 4:<br>uptake by<br>next user                       | RTB          | Social science                                              | Sub-Saharan Africa                     |

| FP | Cluster | Name of Innovation:                                                                                                                                                                                                                         | Stage                                                                          | Contribution | Innovation<br>Type                                   | Geographic Scope:            |
|----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------|------------------------------------------------------|------------------------------|
| 4  | 4.4     | Nutrition and health<br>education model for out-<br>scaling the use of OFSP                                                                                                                                                                 | Stage 4:<br>uptake by<br>next user                                             | RTB          | Social science                                       | Sub-Saharan Africa           |
| 4  | 4.2     | Development of cassava-<br>based products and<br>consumer preference of the<br>products to identify the<br>preferred products                                                                                                               | Stage 3:<br>available<br>for uptake                                            | RTB          | Production<br>Systems and<br>Management<br>Practices | DR Congo, Nigeria,<br>Zambia |
| 4  | 4.3     | Retention of PVAC in cassava<br>bread                                                                                                                                                                                                       | Stage 3:<br>available<br>for uptake                                            | RTB          | Production<br>Systems and<br>Management<br>Practices | Nigeria                      |
| 4  | 4.3     | Cassava genotypes with best physiochemical properties                                                                                                                                                                                       | Stage 3:<br>available<br>for uptake                                            | RTB          | Genetic<br>(varieties and<br>breeds)                 | Global                       |
| 5  | 5.2     | Basket of alternative shade<br>and drought tolerant<br>food/feed crop options to<br>sustainably manage banana<br>based systems under rein-<br>fed conditions in Central<br>Africa                                                           | Stage 1:<br>end of<br>research<br>phase<br>(discovery<br>/proof of<br>concept) | RTB          | Social science                                       | Central Africa               |
| 5  | 5.3     | Youth agri-preneurs: a<br>vehicle to make RTB<br>innovations an attractive<br>business for the next<br>generation                                                                                                                           | Stage 3:<br>available<br>for uptake                                            | RTB          | Social science                                       | DR Congo                     |
| 5  | 5.3     | Best practice guidelines for<br>integrating gender into seed<br>systems and the RTB seed<br>systems framework are<br>developed and shared with<br>scientists and partners<br>working on seed systems                                        | Stage 1:<br>end of<br>research<br>phase<br>(discovery<br>/proof of<br>concept) | RTB          | Social science                                       | Global                       |
| 5  | 5.4     | Gender sensitive M&E tool<br>for the Participatory Market<br>Chain Approach                                                                                                                                                                 | Stage 3:<br>available<br>for uptake                                            | RTB          | Social science                                       | Ecuador, Uganda              |
| 5  | 5.4     | Guidelines for innovation<br>platforms in agricultural<br>research for development:<br>decision support for<br>research, development and<br>funding agencies on how to<br>design, budget and<br>implement impactful<br>innovation platforms | Stage 4:<br>uptake by<br>next user                                             | RTB          | Social science                                       | Global                       |
| 5  | 5.4     | Social Network Approach for<br>Guiding and Leveraging R4D<br>Investments                                                                                                                                                                    | Stage 3:<br>available<br>for uptake                                            | RTB          | Social science                                       | Rwanda, Burundi,<br>DRC      |
| 5  | 5.4     | Rapid Appraisal of<br>Agricultural Innovation<br>Systems (RAAIS) Toolkit                                                                                                                                                                    | Stage 4:<br>uptake by<br>next user                                             | RTB          | Social science                                       | Global                       |
| 5  | 5.4     | Scaling readiness approach -<br>A science-based approach to<br>develop scaling strategies                                                                                                                                                   | Stage 2:<br>end of<br>piloting                                                 | RTB          | Social science                                       | Global                       |

| FP | Cluster | Name of Innovation: | Stage     | Contribution | Innovation<br>Type | Geographic Scope: |
|----|---------|---------------------|-----------|--------------|--------------------|-------------------|
|    |         |                     | phase (if |              |                    |                   |
|    |         |                     | relevant) |              |                    |                   |

# **TABLE E: INTELLECTUAL ASSETS**

| Year<br>reported | Applicant(s) /<br>owner(s)<br>(Center or partner) | Patent or<br>PVP Title | Additional information* | Link or PDF of<br>published<br>application/<br>registration | Public communication<br>relevant to the<br>application/registration |
|------------------|---------------------------------------------------|------------------------|-------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|
| 2017             | NA                                                | NA                     | NA                      | NA                                                          | NA                                                                  |

\* For patents, please indicate: (a) type of filling: provisional / non-provisional; national direct, national designated; multi-territory; (b) patent status: filled, pending, matured to non-provisional, discontinued, registered or lapsed; (c) application / registration; (d) date of filling; (e) Date of Registration; (f) Date of Expiry / renewal

\* For PVP, please indicate: (i) variety name, (ii) status, (iii) country; (iv) application/registration number, (v) date of filling, (vi) date of registration/grant; (vii) date of expiry/renewal, (viii) breeder and crop

#### TABLE F: MAIN AREAS OF W1/2 EXPENDITURE IN 2017

| Expenditure area *                                                   | Estimated                                        | Space for your comments                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      | percentage of<br>total W1/2<br>funding in 2017** | [please remove notes below]                                                                                                                                                                                                                                                                                                                                                  |
| Planned research: principal<br>or sole funding source                | 40.99%                                           | Promoting collaboration and learning across<br>centers/crops and with other CRPs on core science<br>domains (e.g. advanced breeding, seed systems, pest<br>risk assessment under climate change scenarios, post-<br>harvest and processing) and integrative, cross-cutting<br>areas (gender, science of scaling, site integration)                                           |
| Planned research:<br>Leveraging W3/bilateral<br>funding              | 22.00%                                           | Strategic allocations to crop-specific research areas<br>(e.g. development and use of advanced breeding<br>methods, management of major pest and diseases,<br>post-harvesting and processing).                                                                                                                                                                               |
| Catalyzing new research<br>areas                                     | 8.93%                                            | "Seed funding" allocated to cross-center research<br>teams looking at better integration of sustainable<br>intensification and diversification pathways into RTB<br>initiatives.                                                                                                                                                                                             |
| Gender                                                               | 12.28%                                           | Gender coordination by PMU, cluster to strategic<br>research on gender and youth dimensions in RTB agri-<br>food systems, three main areas of gender integrated<br>research (breeding, seed systems, pest and disease<br>management)                                                                                                                                         |
| Youth                                                                | 3.16%                                            | Development and implementation of RTB approach to better include youth in program portfolio                                                                                                                                                                                                                                                                                  |
| Capacity development                                                 | 4.18%                                            | Support to DI1.1-Breeding community of practice as<br>learning a brokering space connecting crop-specific<br>breeding communities and feeding them with inputs<br>(e.g. User preferences, emergence of new pests and<br>diseases) coming from other flagships.<br><b>NB.</b> Other funds allocated to CapDev are included in the<br>two lines dedicated to Planned research. |
| Start-up or maintenance of<br>partnerships (internal or<br>external) | 4.11%                                            | Strategic partnerships on discovery, post-harvesting and scaling research                                                                                                                                                                                                                                                                                                    |
| Monitoring, learning and self-evaluation                             | 3.25%                                            | ME&L coordination and support by PMU, workshops<br>and capacity development, development and<br>maintenance of online platform (MEL), annual meeting                                                                                                                                                                                                                         |
| Evaluation studies and<br>Impact Assessment studies                  | 8.33%                                            | Dedicated cluster, collaboration with PIM on foresight studies                                                                                                                                                                                                                                                                                                               |
| Emergency/contingency                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                              |
| Other                                                                | 5.46%                                            | PMU costs, ISC costs, annual meetings                                                                                                                                                                                                                                                                                                                                        |
| TOTAL FUNDING<br>(AMOUNT)                                            | 112.69%                                          |                                                                                                                                                                                                                                                                                                                                                                              |

\*use these categories wherever possible, delete unneeded rows and add rows if none of these are suitable. \*\*we recognize that (i) some funding may fit more than one category but please try to apportion funding to its principal use and (ii) percentages may not add up to 100%

# TABLE G: LIST OF KEY EXTERNAL PARTNERSHIPS

| FP | Stage of research*                     | Name of partner                                                                          | Partner type*            | Main area of partnership*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|----------------------------------------|------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, | Phase 1:                               | Natural Resources                                                                        | Academic and             | Development of gender-aware user-preferred product profiles for RTB breeding under the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2, | Discovery/Proof of                     | Discovery/Proof of Institute Research RTBFoods project taking into account, food science |                          | RTBFoods project taking into account, food science and economic considerations as well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4  | concept                                |                                                                                          |                          | Methods to be shared widely with RTB Breeding teams as appropriate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1  | Phase 2: Piloting                      | Intertek Lab                                                                             | Private Sector           | The High throughput genotyping platform (HTPG) is a genotyping project. The service is provided<br>by Intertek Lab which became operational in 2017 and offers high-throughput single-plex SNP<br>assay for forward breeding (marker-assisted selection) at competitive rates.                                                                                                                                                                                                                                                                                                                                                                   |
| 1  | Phase 1:<br>Discovery/Proof of         | Cornell University                                                                       | Academic and<br>Research | Genomic Open-source Breeding Informatics Initiative (GOBII) is a system-wide initiative composed of computational infrastructure and analysis pipelines designed for breeders serving                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | concept                                |                                                                                          |                          | smallholders in the developing world to apply high density genomic information in cultivar development to increase the rate of genetic gain delivered to farmers. Members of the DI1.2 cluster collaborate closely with GOBII to ensure that the 'omics' tools developed in the project are available for use in breeding programs.                                                                                                                                                                                                                                                                                                              |
| 1  | Phase 2: Piloting                      | Donald Danforth<br>Plant Science<br>Center, USA                                          | Academic and<br>Research | DDPSC leads the development of virus resistant cassava in SSA (VIRCA project). The technology,<br>the partners, and the studies needed to obtain commercial approval are very similar to those<br>future GCT products lead by RTB centers. Hence, we have established a partnership to<br>harmonize our strategies to develop regulatory studies, solving stewardship issues, and<br>interactions with regulatory and biosafety authorities.                                                                                                                                                                                                     |
| 2  | Phase 3: Scaling up<br>and scaling out | University of Florida                                                                    | Academic and<br>Research | Development of biophysical tools and tools linking biophysical and socio-economic components of RTB seed systems: impact network analysis, degeneration models, and management performance mapping.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2  | Phase 3: Scaling up<br>and scaling out | County<br>governments,<br>Kenya                                                          | Government               | Capacity building of diverse institutions developed into partnerships, supporting RBM approach<br>that emphasises partnerships to drive the theory of change. In Kenya, county governments and<br>NGOs lead activities on the ground. Through these partnerships, CIP has access to the wide-<br>spread networks of county government and NGO officers situated to reach dispersed farming<br>communities enabling wide scaling-out of technologies and innovations. A case supporting the<br>partnership model whereby a central center provides technical backstopping and<br>communications support, handing over implementation to partners. |
| 2  | Phase 2: Piloting                      | Stokman Rozen,<br>Kenya<br>Genetcis<br>technologies                                      | Private Sector           | Private sector partnerships continue to develop to contribute to seed potato production through technical backstopping, and jointly attending several agricultural trade shows and field days. The main opportunity to address is increasing market opportunities for apical cuttings to shift from the initial project support to market demand sustaining private sector investment and                                                                                                                                                                                                                                                        |

| FP | Stage of research*  | Name of partner     | Partner type* | Main area of partnership*                                                                          |
|----|---------------------|---------------------|---------------|----------------------------------------------------------------------------------------------------|
|    |                     | international       |               | production. Extending the model to smaller-scale producers is being piloted. This will inform      |
|    |                     | Limited, Kenya      |               | seed business models targeting differing profiles of entrepreneur.                                 |
| 2  | Phase 3: Scaling up | Borlaugh Vision     | Development   | Intensification of potato in rice fallow in North West Bengal. A baseline survey of 120            |
|    | and scaling out     |                     | organizations | households was conducted to study and document the cropping systems and socio-economic             |
|    |                     |                     |               | conditions of farmers in North Bengal to bring rice fallow under potato in lowland, mid-hill and   |
|    |                     |                     |               | uplands. More than 1100 farmers trained on improved potato production practices and double         |
|    |                     |                     |               | transplanting of boro rice to bring non-traditional area under potato.                             |
| 2  | Phase 1:            | North Carolina      | Academic and  | In collaboration with the North Carolina State University we are developing new tools and          |
|    | Discovery/Proof of  | State University    | Research      | mapping populations for sweetpotato. Worth noting the Beauregard x Tanzania 6x mapping             |
|    | concept             |                     |               | population and M9 x M19 2x mapping population are hold in trust at CIP's genebank in Lima          |
|    |                     |                     |               | (about 100 genotypes / breeding material) and these populations became very important in           |
|    |                     |                     |               | research and development across countries.                                                         |
| 2  | Phase 1:            | University of       | Academic and  | In collaboration with the Diversity Arrays Technology at the University of Canberra, Australia we  |
|    | Discovery/Proof of  | Canberra            | Research      | are searching for DArT marker associations with sweetpotato virus disease resistance (SPVD)        |
|    | concept             |                     |               | and its components sweetpotato chlorotic stunt virus (SPCSV) and sweetpotato feathery mottle       |
|    |                     |                     |               | virus (SPFMV). Woth noting DArT marker are so far the only fast through-put marker system          |
|    |                     |                     |               | avaible for sweetpotato and this system is also used through this collaboration by CIP's           |
|    |                     |                     |               | genebank for checking genotypes true to identity and phylogenetic relationships.                   |
| 3  | Phase 1:            | University of       | Academic and  | A collaboration has been made possible between UoW-M, CIP and IITA through a project funded        |
|    | Discovery/Proof of  | Wisconsin -         | Research      | by BMGF on Next generation phytosanitation. UoW-M is developing in this project a microfluidic     |
|    | concept             | Madison             |               | molecular pathogen detection system based on isothermal amplification that can be used in the      |
|    |                     |                     |               | field. It will be loaded with targets for major potato, sweetpotato, yam and banana viruses. If    |
|    |                     |                     |               | validated the tool can be applied for international phytosanitation, surveillance and monitoring   |
|    |                     |                     |               | or quality control in seed systems. UoW-M brings in expertise on diagnostic hardware               |
|    |                     |                     |               | development that we were completely lacking and which can be complementary to other tools          |
| 2  |                     |                     |               | developed in this cluster.                                                                         |
| 3  | Phase 2: Piloting   | National Root Crops | NARES/NARS    | Collaboration in ACAI project, stepwise acquisition of responsibility for the activities conducted |
|    |                     | Research Institute  |               | by the development partners on Cassava fertilizer recommendations, best planting practices,        |
|    | Dhase 2: Dilatin -  | (NRCRI), Nigeria    | Acadomic and  | scheduled planting and harvesting and intercropping.                                               |
| 3  | Phase 2: Piloting   | University of       | Academic and  | Collaboration with BMGF Gender-Responsive Researchers Equipped for Agricultural                    |
|    |                     | Cornell (GREAT)     | Research      | Transformation (GREAT) project to use tools and study designs to assess the household and          |
|    |                     |                     |               | community variety preference choices. To our members, L Nkangala and A Bonaventure Aman,           |
|    |                     |                     |               | are serving as advisory board members.                                                             |

| FP | Stage of research*                     | Name of partner                                                          | Partner type*            | Main area of partnership*                                                                                                                                                                                                                                                                                              |
|----|----------------------------------------|--------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | Phase 3: Scaling up                    | General Directorate                                                      | Government               | To tackle emerging cassava mosaic disease issue in the country, GDA and CIAT had an                                                                                                                                                                                                                                    |
|    | and scaling out                        | of Agriculture                                                           |                          | enthusiastic collaboration in 2017 including hands-on field survey training and development of                                                                                                                                                                                                                         |
|    |                                        | (GDA), Cambodia                                                          |                          | mitigation plan for CMD outbreaks.                                                                                                                                                                                                                                                                                     |
| 3  | Phase 2: Piloting                      | Penn State<br>University, USA                                            | Academic and<br>Research | Artificial intelligence for smartphone-based cassava disease and pest damage identification                                                                                                                                                                                                                            |
| 4  | Phase 1:<br>Discovery/Proof of         | Kwame Nkrumah<br>University of                                           | Academic and<br>Research | The main activities involve quality evaluation of the physico-chemical, functional and sensory characteristics, and the consumer acceptability of boiled/pounded yam made from selected yam                                                                                                                            |
|    | concept                                | Science and                                                              | Research                 | varieties. Starch extraction and functional properties have been completed.                                                                                                                                                                                                                                            |
|    |                                        | Technology<br>(KNUST), Ghana                                             |                          |                                                                                                                                                                                                                                                                                                                        |
| 4  | Phase 3: Scaling up                    | NAZYA Foods                                                              | Private Sector           | Received training on production of High quality cassava flour (HQCF) and the company is also                                                                                                                                                                                                                           |
|    | and scaling out                        | Plot 23280, PHI,<br>Lusaka, Zambia                                       |                          | collecting HQCF from IITA- Cassava processing center operated by the IITA-Zambia Youth<br>Agripreneurs. The company has their products all over supermarkets in Lusaka.                                                                                                                                                |
| 4  | Phase 3: Scaling up                    | Forum for                                                                | Development              | Within the framework of the Building Nutritious Food Baskets (BNFB) Project, collaboration with                                                                                                                                                                                                                        |
|    | and scaling out                        | Agricultural<br>Research in Africa<br>(FARA)                             | organizations            | FARA allowed for better policy engagement and advocacy at regional level.                                                                                                                                                                                                                                              |
| 4  | Phase 2: Piloting                      | Natural Resources<br>Institute, UK                                       | Academic and<br>Research | Partnership with NRI is contributing to: 1) the assessment of the energy efficiency of a small-<br>scale cassava flash dryer; 2) the analysis of the correlations between physicochemical and<br>textural characteristics, sensory attributes and consumption patterns of traditional cassava<br>products in Tanzania. |
| 5  | Phase 3: Scaling up<br>and scaling out | Department of<br>Agricultural and<br>Applied Economics,<br>Virginia Tech | Academic and<br>Research | Major role in developing the ISPC paper and the position paper on rural transformation; M.Sc. thesis on adoption of potato varieties in Peru approved; partners in GeneBank and C88 impact studies (draft papers).                                                                                                     |
| 5  | Phase 3: Scaling up<br>and scaling out | Michigan State<br>University                                             | Academic and<br>Research | Leading role and major collaborator in the SIAC project; collaborator for the rural transformation study.                                                                                                                                                                                                              |
| 5  | Phase 3: Scaling up                    | Swedish University                                                       | Academic and             | Leading role major collaborator in the consumer/market studies of biofortified sweetpotato                                                                                                                                                                                                                             |
|    | and scaling out                        | of Agricultural<br>Sciences                                              | Research                 |                                                                                                                                                                                                                                                                                                                        |
| 5  | Phase 3: Scaling up                    | Cornell University,                                                      | Academic and             | RTB collaborated with the Gender-responsive Researchers Equipped for Agricultural                                                                                                                                                                                                                                      |
|    | and scaling out                        | USA,                                                                     | Research                 | Transformation (GREAT) project to build capacity of researchers within RTB to integrate gender into research and analysis. Additionally, the gender team collaborated with others within                                                                                                                               |
|    |                                        | Makerere                                                                 |                          | centers to integrate gender into development of training modules.                                                                                                                                                                                                                                                      |
|    |                                        | University, Uganda                                                       |                          |                                                                                                                                                                                                                                                                                                                        |

| FP | Stage of research* | Name of partner      | Partner type* | Main area of partnership*                                                                    |
|----|--------------------|----------------------|---------------|----------------------------------------------------------------------------------------------|
| 5  | Phase 1:           | Leibniz Institute of | Academic and  | Developing and testing ICT tools to support scaling of BXW control and prevention strategies |
|    | Discovery/Proof of | Agricultural         | Research      | using GIS and Social Network Analysis.                                                       |
|    | concept            | Development in       |               |                                                                                              |
|    |                    | Transition           |               |                                                                                              |
|    |                    | Economies (IAMO),    |               |                                                                                              |
|    |                    | Germany              |               |                                                                                              |

\* See instructions in the common results indicators manual (available early 2018).

# TABLE H: STATUS OF INTERNAL (CGIAR) COLLABORATIONS AMONG PROGRAMS AND BETWEEN THE PROGRAM AND PLATFORMS

| Name of CRP or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brief description of collaboration (give and take among CRPs) and value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relevant |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | added*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FP       |
| CRP on Policies,<br>Institutions and<br>Markets, PIM                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In collaboration with PIM, through the project "Making seed systems and<br>markets for vegetatively propagated crops (VPCs) work for the poor" we<br>conducted three case studies: Kenya (potato); Nigeria (cassava) and<br>Vietnam (potato and cassava). The cross crop and country study will allow<br>us to understand and draw out insights on: the types of public<br>policies, regulations or regulatory reforms are in place or not viz quality<br>assurance for the seed of RTB crops; the current level of access,<br>availability, and quality of RTB planting material; and the level/type of<br>quality assurance that is effective to increase access, availability, and<br>quality of RTB planting material. The findings will form an evidence base<br>for a more informed dialogue with regulatory bodies on options for the<br>types of public policies, regulations or regulatory reforms are required to<br>provide effective quality assurance for VPC planting material. | 2        |
| CRP on Policies,<br>Institutions and<br>Markets, PIM                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contributions to foresight analysis, policy and institutional analysis, co-<br>location of scientists and joint/complementary investments in tools<br>development and partnering. A peer reviewed paper generated in 2017.<br>New funding leveraged for 2018: the proposal "Changing world, changing<br>climate: Meeting complex demands with nutritious roots, tubers and<br>bananas value chains" was approved and will be a joint RTB-PIM<br>collaboration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        |
| CRP on Policies,<br>Institutions and<br>Markets, PIM                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRP on Policies,RTB researchers worked closely with researchers from PIM onInstitutions and"Approaches and tools for value chain development" based on 6 case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| CRP on Policies,<br>Institutions and<br>Markets, PIMThe PIM FP4 team worked closely in 2017 with researchers from RTB<br>based at CIP to explore the potential for a study on social protection and<br>agriculture among potato growing households in the Andes. These<br>discussions culminated in a workshop in December 2017 involving<br>government officials to discuss how to design the study. Staff from the<br>IFPRI FP4 team traveled from Washington DC to Lima to participate in the<br>workshop. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5        |
| Big Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Data management and analytics using RTBbases (sweetpotatobase) and<br>complementary tools such as HIDAP that can be shared across programs<br>and platforms via BrAPI. Worth noting: (currently HIDAP can be used to<br>analyze not only breeding data but also participatory variety selection,<br>and in future agronomic data which all make up big data) We will be<br>adapting all this to sweetpotato and sharing with RTB teams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2, 3     |
| Big Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Smartphone image based diagnostics, pioneered/developed in cassava<br>with help of Big Data, to be expanded into diseases of other crops (e.g.<br>banana) in RTB. Could be further expanded into other crop specific CRPs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2, 3     |
| Excellence in<br>Breeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RTB is linked to each of the modules of EiB plaform. While it is early, we anticipated collaborations, complementarities and synergies in efforts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1, 2     |

<sup>1</sup> Naziri, D.; Mayanja, S.; Ssemwanga, J.; Donovan, J. 2017. Approaches and tools for inclusive value chain development: lessons from Uganda for improved impact. Enterprise Development and Microfinance. ISSN 1755-1978. 28(4):323-341. <u>http://hdl.handle.net/10568/91979</u>

<sup>2</sup> Webinar on gender mainstreaming through PMCA: <u>http://gender.cgiar.org/webinar-gender-mainstreaming-participatory-market-chain-approach-pmca/</u>

| Name of CRP or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Brief description of collaboration (give and take among CRPs) and value                                                                                               | Relevant |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | added*                                                                                                                                                                | FP       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The RTB breeding and discovery flagships are tightly linked to the EiB platform and present opportunities for mutual benefits.                                        |          |
| Genebank<br>Platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Links between ex situ and in situ conservation and use for RTB crops.                                                                                                 | 1, 2     |
| Genebank<br>Platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sharing knowledge and tools (BBTV indexing tools) for Genebank international distribution of Musa germplasm efforts                                                   | 3        |
| GenebankThere is substantial collaboration on virus elimination work from cassava<br>landraces and breeding lines. Capacity for this technology is being<br>strengthened at KEPHIS for virus elimination in landraces for conservation<br>purposes, supported by the Genetic Resources Platform, but a spin-off<br>from this is the ability to efficiently eliminate viruses from elite cassava<br>germplasm, to be fed into 'clean seed systems' for dissemination.<br>CA3.6.3.1 - Harmonized international germplasm exchange protocols is<br> |                                                                                                                                                                       | 3        |
| Rice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exploring opportunities for integrating RTB crops in rice-based systems (notably sweetpotato) in Rwanda and DR Congo                                                  | 2, 5     |
| CRP on Water,<br>Land and<br>Ecosystems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRP on Water,WLE FS5 Seeks to lever evidence-based policy advocacy geared towardsLand andsustainable intensification at the landscape scale. It will rely on farm-to- |          |
| CCAFS Contribution in the scientific conference and writeshop held in Galway,<br>Ireland. Exploration of options for climate smart breeding. Participation in<br>climate smart agriculture meeting and interactions among CRPs and<br>centers.                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       | 1, 2, 3  |
| A4NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A4NH Collaboration in Tanzania and Nigeria on building advocacy for promotion of biofortification.                                                                    |          |
| Gender platform 2 projects awarded for seed system work are jointly funded by RTB centers.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |          |

\*e.g. scientific or efficiency benefits

# TABLE I: MONITORING, EVALUATION, IMPACT ASSESSMENT AND LEARNING

#### TABLE I-1: STATUS OF EVALUATIONS, IMPACT ASSESSMENTS AND OTHER LEARNING EXERCISES PLANNED IN THE 2017 POWB

| Studies/learning<br>exercises in 2017                                                                                                           | Status                                                                                               | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (from POWB)                                                                                                                                     |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FORESIGHT ANAL                                                                                                                                  | YSIS                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CC5.1.1.2 - RTB<br>crops productivity<br>projections under<br>alternative<br>socioeconomic<br>and climate<br>scenarios                          | Manuscript submitted to Global Food Security as part<br>of a joint special issue developed with PIM. | The role of roots, tubers and bananas (RT&B) in achieving nutritional security and providing income opportunities for the poor under changing socioeconomic and climate scenarios is analyzed in this paper.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EX-ANTE ASSESS                                                                                                                                  | MENT STUDIES                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fusarium<br>oxysporum f. sp.<br>cubense tropical<br>race 4 of<br>bananas: Disease<br>spread and global<br>loss projections<br>(CC5.1.2.1/10846) | <u>Brief</u> available                                                                               | Scientists have recently estimated that tropical race 4 of the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc TR4) could spread to 1.65 million ha of current banana lands by 2040 if no significant interventions are instituted (Scheerer et al 2016). This is about 17% of the current area under production. The annual production potential of this area is estimated at 36 million tonnes with an estimated value of over 10 billion dollars at current prices. This estimate does not even take into consideration the impact of production loss on livelihoods along the banana value chains and on the environment.                        |
| Setting priorities<br>for potato<br>research under<br>different future<br>change scenarios<br>(CC5.1.2.1/5995)                                  | Manuscript accepted. It will be published in 2018                                                    | This article examines how the estimated impacts of crop technologies vary with alternate methods and assumptions, and also discusses the implications of these differences for the design of studies to inform research prioritization. Drawing on international potato research, it shows how foresight scenarios, realized by a multi-period global multi-commodity equilibrium model, can affect the estimated magnitudes of welfare impacts and the ranking of different potato research options, as opposed to the static, single-commodity, and country assumptions of the economic surplus model which is commonly used in priority setting studies. |
| CC5.1.2.2 - Ex-<br>ante analysis of<br>economic<br>benefits and<br>returns on                                                                   | Manuscript submitted.                                                                                | The Yam Improvement for Income and Food Security in West Africa (YIIFSWA) project<br>promoted the development, deployment and dissemination of an array of technologies and<br>agronomic interventions in Nigeria and Ghana to address constraints affecting yam<br>productivity. Key technologies deployed include: adaptive yam minisett technique (AYMT),<br>vine rooting technique, conventional tissue culture (CTC), aeroponics system (AS), temporary                                                                                                                                                                                                |

| investments in        |                                                          | immersion bioreactor system (TIBS), somatic embryogenesis (SE), varieties adapted to various     |
|-----------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| yam seed systems      |                                                          | stresses, diagnostic tools for seed health management, nematode resistant cultivars, crop        |
|                       |                                                          | management and postharvest practices. This study assesses the potential economic returns,        |
|                       |                                                          | the number of beneficiaries and poverty reduction resulting from the use of                      |
|                       |                                                          | technologies/intervention options for yam production. The technologies are expected to reach     |
|                       |                                                          | not less than 18.7 million households by 2037 in Nigeria and Ghana.                              |
| <b>EX-POST IMPACT</b> | ASSESSMENT STUDIES                                       |                                                                                                  |
| CC5.1.3.3 -           | Floro IV, Victorino O.; Labarta, Ricardo A.; Becerra     | The study examines factors affecting the adoption of improved cassava varieties of 217           |
| Comprehensive         | López-Lavalle, Luis Augusto; Martinez, Jose M.;          | households in the Cauca Department in southwest Colombia. Using DNA fingerprinting               |
| database on           | Ovalle, Tatiana. 2017. Household Determinants of the     | through Single Nucleotide Polymorphisms (SNPs) different cultivars were identified in farmers'   |
| cassava varieties     | Adoption of Improved Cassava Varieties using DNA         | fields. This information was used to remove possible bias in the adoption model that could       |
| used by farmers       | Fingerprinting to Identify Varieties in Farmer Fields: A | have resulted from a misclassification of improved varieties (IVs). As a result, we found that   |
| in Cauca &            | Case Study in Colombia. Journal of Agricultural          | farmers substantially overestimate their use of IVs and there are important differences in the   |
| Vietnam               | Economics 1-19 p.                                        | determinants of adoption between farmer self-identification and DNA fingerprinting. This         |
|                       | http://hdl.handle.net/10568/89044                        | finding implies that the incorporation of DNA fingerprinting in IV adoption studies is important |
|                       |                                                          | to ensure the accuracy of future agricultural economic research and the relevance of             |
|                       | Dataset available for Vietnam                            | subsequent policy recommendations.                                                               |
|                       |                                                          | In terms of acreage, DNA fingerprinting found that only 12.6% of land was cultivated with IVs    |
|                       |                                                          | while farmer self-identification pegged this figure at 24.4% or an overestimation of the         |
|                       |                                                          | number of ha by 11.8%.                                                                           |
| CC5.1.3.4 -           | 6803-Use of expert panels for ex ante and ex post        |                                                                                                  |
| Outcomes of crop      | food security impact assessment of root and tuber        |                                                                                                  |
| germplasm             | crops technologies validated in Asia (SIAC 2.1)          |                                                                                                  |
| improvement           |                                                          |                                                                                                  |
| research:             | Datasets available                                       |                                                                                                  |
| potatoes and          |                                                          |                                                                                                  |
| sweetpotatoes         |                                                          |                                                                                                  |
| varietal release      |                                                          |                                                                                                  |
| and adoption in       |                                                          |                                                                                                  |
| Asia                  |                                                          |                                                                                                  |
| CC5.1.3.5 -           | 6809-M.S. thesis and journal article assessing impacts   |                                                                                                  |
| Impacts of potato     | of potato variety Cooperation 88 (C88) in Yunnan         |                                                                                                  |
| variety               | Province of China                                        |                                                                                                  |
| Cooperation 88        |                                                          |                                                                                                  |
| (C88) in Yunnan       |                                                          |                                                                                                  |

| Province of China assessed                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC5.1.6.8 -<br>Adoption<br>determinants of<br>potato varieties<br>in Peru                                          | Pradel, W.; Hareau, G.; Quintanilla, L.; Suarez, V.<br>2017. Adopcion e impacto de variedades mejoradas<br>de papa en el Peru: Resultado de una encuesta a nivel<br>nacional (2013). Lima (Peru). Centro Internacional de<br>la Papa. ISBN 978-92-9060-211-8. 48 p.<br><u>http://hdl.handle.net/10568/83497</u>                                                                                                                                                                                                                                                   | See section 1.1 for a summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CC5.1.3.8 - Ex-<br>post analysis of<br>the livelihood<br>impacts of<br>cassava improved<br>varieties in<br>Nigeria | <ul> <li>Wossen, T., G. Tessema., T. Abdoulaye, I. Rabbi, A.</li> <li>Olanrewaju, A. Alene, S. Feleke, P. Kulakow, G.</li> <li>Asumugha, A. Adebayo, and V. Manyong. 2017. The cassava monitoring survey in Nigeria final report. IITA, Ibadan, Nigeria. ISBN 978-978-8444-81-7. 66 pp.</li> <li>http://hdl.handle.net/10568/80706</li> <li>Wossen, T., T. Abdoulaye, A. Alene, S. Feleke, I. Rabbi, G. Asumugha, P. Kulakow, and V. Manyong. 2017.</li> <li>Impact of improved cassava varieties in Nigeria final report. RTB / IITA, Ibadan, Nigeria</li> </ul> | Report 1: Results from CMS showed that more than 60% of farm households have adopted<br>improved cassava varieties in Nigeria. The distribution of adoption by gender also revealed<br>that the adoption rate among male-headed households (MHHs) was about 61.5% while among<br>female-headed households (FHHs) it was relatively low, about 48.6%. While combining DNA<br>fingerprinted data with the CMS socioeconomic data, average adoption rates tended to be<br>similar, the misclassification rate is large. Misclassification happens when farmers who think<br>they are growing improved varieties grow local varieties or when farmers who think they are<br>growing local varieties grow improved varieties. Therefore, for examining the determinants of<br>adoption, the measurement of "improved varieties" matters as the determinants of adoption<br>are different while using farmers' self-reported and DNA fingerprinted data. Three sources of<br>heterogeneity largely explain the probability of correctly classifying cassava into improved and<br>local varieties. These include level of education, access to information (such as mobile phone<br>ownership and access to extension access), membership of formal and informal organizations,<br>and location. |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Report 2: This report answers the following key research question: Does adoption of improved cassava varieties have any significant causal effects on productivity and poverty? The results of this project showed that about 60% of the farmers growing cassava have adopted improved varieties. However, when adoption was measured using DNA-fingerprinting approach, it was found that about 66% of the farmers have adopted improved cassava varieties. Despite higher adoption rates, the intensification rate of improved cassava varieties was found to be about 38%, which is quite modest. The productivity effect of adoption of improved cassava varieties was estimated using alternative measures of adoption (using self-reported adoption data from household surveys and DNA-fingerprinted adoption data) as well as specifications (OLS and IV estimation strategies). Using OLS estimation strategy, we found that the effect of adoption of improved cassava varieties suggest a 64% productivity gain as a result of adoption of improved cassava varieties. Using a poverty line of USD1.25 per person per day, adoption has led to a 4.7% and 4.02% poverty                                                                                                        |

|                                                                                                                        |                                                                                                                                                                                                               | reduction in the closed economy and small open economy case, respectively. This poverty reduction role of adoption at USD1.25 per person per day poverty line implies that 6.2%-7.15% of the rural poor cassava producers have escaped poverty in the current year due to adoption of improved cassava varieties. Similarly, at the poverty line of USD1.9 per person per day poverty line, adoption has led to a 2.06% to 2.92% poverty reduction in a small open economy and closed economy, respectively. These changes correspond to a 2.9%-4% poverty reduction among rural poor cassava producers.                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC5.1.3.9 - Ex-<br>post analysis of<br>the Impacts of<br>yam seed<br>technologies in<br>Nigeria and<br>Ghana           | Impact Assessment Report of YIIFSWA Project<br>Linked with: CC5.1.3.1 - Database on yam producing<br>household in Nigeria and Ghana and impact<br>indicators                                                  | This study focused on providing an answer to the question of how much impact the adaptive yam minisett technique (AYMT) interventions of YIIFSWA project had had on rural farm households' income and food security and how this has contributed to the reduction of poverty in Nigeria. We started by documenting the rate of AYMT awareness and adoption among the sampled farmers. The result showed that the AYMT adoption rate was about 18%; the awareness rate was 23%. Furthermore, the proportion of adopters among the exposed farmers was 75%, confirming that awareness / exposure is very important in achieving a high rate of AYMT adoption. Therefore, policy and programs that would further increase the farmers' awareness were recommended. In addition, the existing extension program was encouraged to be well rehabilitated and supported to improve the performance of extension agents and increase the number of contacts with farmers to improve their awareness. |
| CC5.1.3.11 - Ex-<br>post analysis of<br>the livelihood<br>impacts of<br>cassava<br>technologies in<br>Tanzania and DRC | Preliminary report available<br>Linked with: CC5.1.3.2 - Database with information on<br>cassava producing household surveys in DRC and<br>Tanzania                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CC5.1.3.12 -<br>Impacts of RTB<br>crop technologies<br>on rural<br>transformation                                      | 10726-Pathways from research on improved staple<br>crop germplasm to poverty reduction for smallholder<br>farmers<br>Alwang, E., Agricultural Systems (2017),<br>http://dx.doi.org/10.1016/j.agsy.2017.10.005 | Innovations to improve staple crop germplasm can reduce poverty and otherwise improve<br>farmer livelihoods through complex and multiple pathways. This paper reviews the evidence<br>for one prominent pathway—through increased incomes (in cash and kind) for poor farmers<br>who adopt the technology. An important determinant of poverty reduction is the ability of<br>poor producers to adopt productivity-enhancing varieties, and the paper analyzes recent<br>household-level data from two African countries to examine if poor producers face unique<br>barriers to adoption. A second determinant of poverty reduction is the area available to plant<br>these varieties and whether the intensity of adoption is great enough to significantly reduce<br>poverty. The paper uses a double-hurdle estimation framework to model the adoption/area<br>planted joint decision for maize farmers in Ethiopia and sweetpotato farmers in Uganda. The                                |

| CC5.1.6.17 - An ex<br>post assessment<br>of impact of BXW<br>disease and the<br>control practices<br>on different<br>household<br>livelihood options<br>in East and<br>Central Africa | Donor report and Manuscript available                 | focus of the analysis is the effect of poverty-related variables on adoption/area planted decisions. Farmer wealth, landholding, education, location, and access to support and information services are included to understand how correlates of poverty affect adoption decisions. We find evidence that landholding size is an important barrier to poverty reduction; poor farmers are able to adopt improved varieties, but their intensity is constrained by land availability. In Uganda, farmers at the 95th percentile of adoption area received about USD 0.13 per person per day from the incremental yield, covering < 50% of the mean household poverty gap. This gain only comes under optimistic assumptions and most adopters do not have sufficient area for the direct income effect to be large. The evidence suggests that direct, short-term impacts of increased productivity to increased income may be limited in magnitude. Nonetheless, we recognize that other, less direct pathways may be important, particularly over longer times. Impacts through indirect pathways are, however, more difficult to measure. This has implications for the design of M & E and the crafting of appropriate targets for outcomes of research on staple crops which should focus perhaps on the other pathways where poverty reduction is more probable. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC5.1.6.20 - Ex-<br>post analysis of<br>the impacts of                                                                                                                                | Dataset and preliminary report available              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| improved cassava                                                                                                                                                                      | Linked with: CC5.1.6.20 - Ex-post analysis of the     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| varieties on                                                                                                                                                                          | impacts of improved cassava varieties on smallholder  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| smallholder                                                                                                                                                                           | livelihoods in Sierra Leone                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| livelihoods in                                                                                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sierra Leone                                                                                                                                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Assessing the                                                                                                                                                                         | Jote, A., Feleke, S., Tufa, A., Manyong, V., & Lemma, | Applying stochastic frontier Cobb-Douglas production function, the study assessed the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| efficiency of                                                                                                                                                                         | T. (2017). Assessing the efficiency of sweetpotato    | efficiency of sweetpotato (Ipomoea batatas) producers in the Southern region of Ethiopia. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| sweetpotato                                                                                                                                                                           | producers in the southern region of Ethiopia.         | study revealed the existence of fairly large technical inefficiency in sweetpotato production.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Producers in the<br>southern region<br>of Ethiopia | Experimental agriculture, 1-16.<br>Https://doi.org/10.1017/s0014479717000199 | The technical efficiency ranged from 12.6 to 93.7%, with more than half of the producers<br>above the mean efficiency level (66.1%). This suggests that there is room for output gains<br>through technical efficiency improvement. If the average producers in the study region are to<br>achieve the technical efficiency level of the most efficient producer in the sample (93.7%), they<br>can realize nearly 30% output gains. The analysis of allocative efficiency also revealed that<br>sweetpotato producers were producing sweetpotato with sub-optimal utilization of<br>production inputs, suggesting that potential for output gains remains to be exploited through<br>reconfiguration of the existing resource use. They can make more value out of their<br>sweetpotato production by reconfiguring their current utilization of production inputs in<br>favour of more land and manure but less seed rate. Furthermore, age and education are<br>important determinants of the efficiency of sweetpotato production. In view of these findings,<br>it is advisable to put in place appropriate extension intervention programmes that enable |
|----------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    |                                                                              | sweetpotato producers to exploit the potential gains in sweetpotato output through technical and allocative efficiency improvement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## TABLE I-2: UPDATE ON ACTIONS TAKEN IN RESPONSE TO RELEVANT EVALUATIONS (IEA, CCEES AND OTHERS)

**NB:** This table provides an update on the implementation status of the action plan prepared as part of the management response to the RTB independent evaluation realized in 2015 (IEA – 2015) under the supervision of Independent Evaluation Arrangement (IEA). The first management response was presented the 24th January 2016, the last column of the table indicates the current status of each action planned.

| Name of<br>the evaluation<br>IEA - 2015                                                      | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Management response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Action Plan                                                                                                                                                                                                                                                                                                                                                                    | By whom                                                                                                                                                                                         | By when            | Status (Updated)                                                                               |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------|
| The first<br>management<br>response was<br>presented the<br>24 <sup>th</sup> January<br>2016 | Recommendation 1<br>(integrated breeding<br>programs):<br>RTB needs to make further efforts to<br>enhance integration beyond individual<br>time-bound projects.<br>In particular, further value would be<br>gained by fully integrating the IITA and<br>CIAT cassava breeding programs.<br>There is also clear potential for<br>integration and consolidation of all RTB<br>research on banana and plantain by IITA<br>and Bioversity.<br>This would likely result in rationalization<br>of staff positions, allow better targeting<br>of scarce W1/W2 funds and improve<br>the ability to approach donors as an<br>integrated program. | Partially accepted<br>Agree with the general point that RTB<br>needs to enhance integration beyond<br>individual projects and this will occur with<br>design and implementation of the new RTB<br>Program structure (based on clusters),<br>rationalization of use of W1&2 funds and<br>also with a CGIAR genetic g a in s platform<br>currently under development which will<br>link all Agri-Food Systems CRPs including<br>RTB.<br>Cassava program: Cassava breeders in IITA<br>and CIAT note that "fully integrating"<br>cassava breeding comes with some<br>caveats. Breeding program objectives are<br>different in the three important cassava<br>growing regions, and LAC cassava material<br>is very sensitive to viruses prevalent in<br>Africa and quarantine issues prevent<br>transfer of material. Hence full integration<br>is desirable, but within the context of<br>recognized regionally specific objectives and<br>constraints.<br>Banana program: More interaction<br>between the IITA breeders with the<br>Bioversity scientists, within the framework<br>of RTB, will ensure that breeder and end<br>user preferred traits are characterized and<br>integrated into breeding programs. | <ul> <li>varietal development<br/>clusters of cassava and<br/>banana, as well as cross-<br/>cutting clusters, under<br/>FP1 (Discovery flagship)</li> <li>1.2 Evaluation of progress in<br/>cross center clusters for<br/>varietal development in<br/>cassava and bananas and<br/>FP 1 clusters</li> <li>1.3 Active and effective<br/>breeding platform<br/>cluster</li> </ul> | <ul> <li>1.1 IITA, CIAT,<br/>Bioversity (and<br/>PMU)</li> <li>1.2 PMU, flagship<br/>and cluster<br/>leaders in<br/>reporting</li> <li>1.3 PMU, flagship<br/>and cluster<br/>leaders</li> </ul> | Beginning<br>01/16 | <ul> <li>1.1 Done</li> <li>1.2 As part of annual reporting</li> <li>1.3 Established</li> </ul> |

| Name of<br>the evaluation | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Management response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Action Plan                                                                                                                                                                                                                                                                                                             | By whom                                                                                                                                                                               | By when                                   | Status (Updated)                                                                                                                                                                                      |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Recommendation 2<br>(coherence/ consistencies of<br>clusters):<br>The restructuring of the program into<br>inter-disciplinary and integrated FPs<br>adds coherence to RTB compared to the<br>Theme-based structure.<br>However, in some cases the definition<br>of clusters of activities lacks coherence<br>and consistency with the FP problem<br>definition e.g. the banana disease<br>clusters, single yam cluster and complex<br>clusters in FP4.<br>RTB should review and revise the<br>clusters for improved congruence with<br>the FP problem definition                       | <i>Fully accepted</i><br>We fully agree that the clusters need to<br>be revised for congruence with FP<br>problem definition.<br>In the light of reduction in W1&2 and<br>donor requirements for structuring CRP<br>Phase II, there is also a need to reduce the<br>number of clusters. We have already<br>reduced from 32 to 25 clusters, based on<br>five flagships, including a reduction from<br>three to two banana disease clusters.<br>Given this general reduction in numbers<br>of flagships and clusters (coherence in<br>aggregation levels, funding size, etc.) we<br>feel that a single yam cluster is<br>appropriate. In comparison, there are<br>only two clusters each for the<br>geographically much more widely<br>cultivated crops of potato and<br>sweetpotato. | 2.2 | content for 2 banana<br>disease clusters<br>Improve coherence of<br>clusters in FP4 during<br>preparation of full<br>proposal<br>Continue congruence                                                                                                                                                                    | <ul> <li>2.1 PMU, Bioversity, IITA and FP/cluster leaders</li> <li>2.2 PMU, Priority Assessment Focal points in each Center</li> <li>2.3 PMU, flagship and cluster leaders</li> </ul> | 2.1 03/2016<br>2.2 03/2016<br>2.3 12/2016 | 2.1 Done<br>2.2 Done<br>2.3 Finalizing paper<br>congruence analysis<br>already performed                                                                                                              |
|                           | Recommendation 3 (fund allocation):<br>During 2012-2015, with the exception<br>of complementary and cross-cutting<br>funds, RTB allocated W1/W2 funds to<br>partner centers based on historical<br>funding.<br>RTB has now recognized the need to<br>move towards more strategic allocation<br>of these funds based on program<br>priorities and performance.<br>In the current environment of<br>decreasing W1/W2 funds, RTB should<br>ensure that W1/W2 funds are directed<br>at the highest program priorities as<br>informed by priority assessment and<br>performance evaluation. | Fully accepted<br>The concept of maturing the fund<br>allocation methodology in support of the<br>evolution of the overall system and RTB<br>objectives makes sense. In our view,<br>refining the methodology should consider<br>diverse elements such as: lessons learned,<br>impact potential, programmatic<br>performance (e.g. against indicators),<br>financial performance (e.g. expenditure or<br>absorption rates), as well as set aside<br>needs, mechanisms to apportion funds<br>and risks to build a sustainable program<br>and attain an effective return on<br>investment.<br>We agree that priority assessment can<br>give some insights across crops and                                                                                                            | 3.2 | analysis from priority<br>assessment and take this<br>into consideration in<br>setting budgets by<br>cluster/flagship in full<br>proposal<br>Implement more<br>systematic performance<br>evaluation of base and<br>complementary funding<br>and at cluster level as<br>pilot in 2016 and rom<br>2017<br>Investment flow | <ul> <li>3.1 PMU, Priority</li> <li>Assessment Focal</li> <li>points in each</li> <li>Center</li> <li>3.2 PMU,</li> <li>FP/cluster</li> <li>leaders</li> <li>3.3 PMU</li> </ul>       | 3.1 in<br>process<br>3.2 & 3.3<br>02/2016 | <ul> <li>3.1 Considered,</li> <li>although reduction in</li> <li>W1&amp;2 made this more challenging</li> <li>3.2 Cluster level</li> <li>evaluation introduced from 2017</li> <li>3.3 Done</li> </ul> |

| Name of<br>he evaluation | Recommendation                                                                                                                                                                                                                                                                                                         | Management response                                                                                                                                                                                                                           | Action Plan                      | By whom                                                                        | By when              | Status (Updated)               |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------|----------------------|--------------------------------|
|                          |                                                                                                                                                                                                                                                                                                                        | technologies but it is one element of<br>several and would not e.g. address how<br>much to assign to cross cutting activities<br>or to gender research or CapDev.<br>Also, should recognize that diminished<br>W1&2 reduces ability to direct | cluster level.                   |                                                                                |                      |                                |
|                          |                                                                                                                                                                                                                                                                                                                        | investment and abrupt shifts in funding may be counter to the notion of RTB as an "alliance".                                                                                                                                                 |                                  |                                                                                |                      |                                |
|                          | Recommendation 4<br>(Priority Assessment):<br>RTB should use priority assessment<br>results for setting program priorities<br>and in program planning, including<br>fundraising.<br>In doing so, RTB should also plan for<br>continuous improvements in the data<br>and estimates that support priority<br>assessment. | The assumptions behind the priority<br>assessment results need to be cross<br>checked in light of more recent evidence                                                                                                                        | every three years                | 4.1 & 4.2<br>PMU, Priority<br>Assessment/<br>Impact Assessment<br>focal points | 4.1 2018<br>4.2 2021 | 4.1 Pending<br>4.2 Pending     |
|                          |                                                                                                                                                                                                                                                                                                                        | Using priority assessment results for<br>fundraising has its limitations as<br>donors in majority have their own<br>mechanisms for setting priorities.                                                                                        |                                  |                                                                                |                      |                                |
|                          | QUALITY OF SCIENCE                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                             |                                  |                                                                                |                      |                                |
|                          | Recommendation 5 (publications):                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                  | 5.1 PMU, MC/ DDGs                                                              |                      | 5.1 Done. Guidelines           |
|                          | RTB has published some excellent research papers in appropriate journals                                                                                                                                                                                                                                               | As the reviewers mention, there are good reasons for where RTB science                                                                                                                                                                        | attribution/<br>acknowledgement/ | Research of each<br>Center,                                                    |                      | provided. Follow up continued. |

| Name of the evaluation | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Management response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Action Plan                                                                                                                                                           | By whom                                                                                | By when           | Status (Updated)                                           |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------|
|                        | with high impact.<br>At the same time, the percentage of<br>publications in non-IF journals is<br>disturbingly high – 39 percent.<br>While it is recognized that most RTB<br>crops are at a disadvantage in terms<br>of the range of journals willing to<br>publish on these crops and the<br>need to target African journals to<br>promote research findings to the<br>most appropriate stakeholders,<br>RTB should endeavor to assure that<br>its science quality is consistently<br>high in order to target and publish<br>in higher quality journals for<br>greater international impact. | is published. With emphasis on<br>delivery, this kind of work does not<br>usually go to high impact journals.<br>Giving emphasis to discovery<br>research in Phase II will lead to high-<br>impact publications, but with a<br>longer time-frame.<br>One topic for analysis at the CGIAR-wide<br>level is the trade-off between publication<br>in the higher impact journals and opting<br>for open access journals which may have<br>lower impact factors.                                                                                                                                                                                      | branding and tagging of<br>key words of RTB in<br>publications.<br>5.2 Create incentives for<br>more publications through<br>reporting and<br>performance evaluation. | communication<br>Center Focal points<br>5.2 PMU, MC/DDGs<br>Research of each<br>Center |                   | 5.2 Done with cluster<br>performance bonus<br>2017         |
|                        | Recommendation 6<br>(monitoring quality of<br>science):<br>Although individual Centers are<br>responsible for the performance of<br>their scientists, RTB is responsible for<br>the quality of science implemented and<br>generated by the program.<br>The MC in consultation with the FP<br>leaders should play a more active role in<br>monitoring the quality of science<br>produced by RTB with oversight by the<br>ISC.<br>Reviving Commissioned External<br>Evaluations at CRP-level would be of<br>greatest value.                                                                     | Fully accepted<br>This is a good suggestion. ToRs of both<br>flagship project and cluster leaders will<br>include this aspect.<br>We also agree on the value of CRP<br>commissioned External Evaluations;<br>however, the frequency and intensity of<br>these evaluations should be related to the<br>level of available W1&2 funding, with<br>perhaps an evaluation of one flagship per<br>year under higher levels of funding or in<br>alternate years under a lower funding<br>scenario. It is not only the direct cost of<br>implementation but also the cost of the<br>scientists' time involved which now has to<br>be fully budgeted for. | 6.1 CRP commissioned<br>evaluations will be<br>included in the<br>Evaluation plan,<br>developed for the 2nd<br>Phase.                                                 | 6.1 PMU                                                                                | 01/2017           | 6.1 CRP<br>commissioned<br>evaluations not<br>implemented. |
|                        | Recommendation 7<br>(strengthening breeding<br>programs):<br>RTB needs to further modernize<br>and strengthen its breeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Partially accepted</b><br>We agree with the idea of strengthening<br>the breeding programs. However, this<br>recommendation understates good<br>progress already made and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.1 As part of the redesign of<br>RTB structure a breeders'<br>community of practice is<br>being set up.                                                              | 7.1 PMU, FP and<br>cluster leaders<br>7.2 PMU and FP1                                  | 7.1 in<br>process | 7.1 Done<br>7.2 Done, Michael<br>Friedmann on              |

| Name of the evaluation | Recommendation                         | Management response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Action Plan             | By whom                                                                                                                              | By when                    | Status (Updated)                  |
|------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|
|                        | identity opportunities for improvement | continuous aim to use up-to-date<br>breeding methods.<br>The new genetic gain platform under<br>discussion should help to address all of<br>these points.<br>However, also need to recognize that<br>strengthening breeding programs requires<br>funding and infrastructure to improve the<br>level of excellence. A complementary<br>option is to intensify partnership with<br>private sector and ARIs and with other<br>organizations to increase access to the<br>latest advances in breeding. techniques<br>and infrastructure<br>The training of next generation of plant<br>breeders is critical. However, this may be<br>best achieved by partnering and leveraging<br>other institutions with capabilities and<br>resources for training the next generation<br>of breeders that can complement our<br>limited W1&2 funding. | 7.3 Identify partnering | Flagship and<br>cluster leaders<br>7.3 Flagship 1 and<br>2 leaders and their<br>respective clusters<br>with DDGs<br>Research and PMU | 7.2 03/2016<br>7.3 12/2017 | steering committee<br>7.3 Pending |

| Name of<br>the evaluation | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Management response                                                                                                                                                                                                                                                                                                                                                                                                | Action Plan                                                   | By whom                                               | By when     | Status (Updated)                                                                                                                                                                     |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Recommendation 8 (NARS/consumer<br>needs):<br>RTB should better target client needs by<br>delivering only two to three achievable<br>product profiles for each mandate crop<br>to NARS and placing even greater<br>emphasis on farmer and consumer<br>needs.<br>RTB and NARS should decide together<br>on the division of labor based on NARS<br>capability in each target country.<br>This will allow RTB to provide<br>appropriate back-stopping to NARS in<br>further development of the products<br>into cultivar(s) for release to farmers.                                                                                    | Accepted<br>This is consistent with our approach to<br>have better variety and technology<br>delivery pipelines responding to user<br>demand.                                                                                                                                                                                                                                                                      | proper integration and visibility                             | 8.1 & 8.2<br>PMU, FP and cluster<br>leaders           | 8.2 12/2017 | 8.1 Considered<br>indirectly with<br>RTBFoods and with<br>work in Gender and<br>Breeding. Also,<br>linkage to EiB<br>8.2 Beyond our scope,<br>perhaps included in<br>BPAT initiative |
|                           | EFFECTIVENESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |                                                       |             |                                                                                                                                                                                      |
|                           | Recommendation 9 (CoP Breeding):<br>RTB should develop a community of<br>practice of researchers across all crop<br>breeding undertakings for enhancing<br>effectiveness through better synergy.<br>It will allow the sharing of ideas on<br>methods, data, results and user feed-<br>back, thus leading to integrated data<br>platforms, developing inter-center<br>working groups on traits, enhancing the<br>inter-disciplinarity between lab-<br>genomics and field-breeding,<br>establishing single RTB breeding<br>programs for banana and cassava, and<br>sharing experiences among those<br>engaged in transgenic breeding. | <b>Partially accepted</b><br>Fully agree on the community of practice<br>as noted under recommendation #1, we<br>have reservation about a single RTB<br>breeding program for cassava.<br>All RTB center geneticists and breeders<br>are involved in the planning of the<br>breeding activities for 2016 and Phase II,<br>thus promoting collaboration and a<br>shared mission, enhancing inter-<br>disciplinarity. |                                                               | 9.1 PMU, FP1 and<br>FP leaders and<br>cluster leaders | In process  | 9. Done.                                                                                                                                                                             |
|                           | Recommendation 10 (seed system):<br>The establishment of economically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Partially accepted</b><br>We agree on the importance of seed work                                                                                                                                                                                                                                                                                                                                               | 10.1 Continue supporting work on assessing demand for quality |                                                       | 2017-2019   | 10.1 Done<br>10.2 Seed system                                                                                                                                                        |

| Name of<br>the evaluation | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Management response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Action Plan                                                                                                                                                                  | By whom                                                                   | By when    | Status (Updated)                                                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------|
|                           | sustainable seed systems for RTB crops<br>is of core importance for program<br>effectiveness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in RTB because they are all clonally<br>propagated – and have therefore set up<br>FP2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | planting materials and market<br>driven approaches                                                                                                                           | leaders                                                                   |            | framework<br>published                                                                   |
|                           | Priority should be given to assessing<br>demand for clean high-quality planting<br>material throughout the seed value<br>chain; on understanding the incentives<br>for small holders to purchase quality<br>planting material; as well as<br>mechanisms for strengthening the<br>supply chain with links to marketing and<br>processing.                                                                                                                                                                                                                                                                                                    | Seed system experts should be contracted<br>via the relevant centers and not form part<br>of PMU. Given the volatile and limited<br>nature of W1&2 funds this should be<br>encouraged via the relevant bilateral or<br>W3 project opportunities.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.2 Enable cross crop/cross<br>Partner collaboration on variety<br>release and dissemination for<br>clonally propagated crops.                                              | 10.2 PMU with FP1,<br>FP2, FP5 Leaders<br>and relevant cluster<br>leaders |            |                                                                                          |
|                           | Due to the importance of seed systems<br>research for impact, as RTB moves into<br>scaling-up and scaling-out seed systems<br>activities, it should recruit an expert in<br>RTB seed systems rather than relying on<br>short term inputs from consultants and<br>partners as was noted in Chapter 4                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                              |                                                                           |            |                                                                                          |
|                           | Recommendation 11 (agronomy/crop<br>management):<br>Some aspects of crop management<br>research, for example agronomy and<br>soil fertility research in Theme 5, have<br>not been well-supported.<br>Narrowing the yield gap for farmers<br>may require rebalancing the RTB<br>portfolio towards agronomic and soil<br>fertility research.<br>In order to improve the realized yields<br>in farmer's fields, RTB needs to better<br>integrate research on crop<br>i m p r o v e m e n t and crop<br>management which have been<br>implemented in different Themes to<br>date and will be implemented in<br>different FPs in the new program | Partially accepted<br>We agree that better integration and<br>visibility in the cluster structure is<br>needed.<br>Agronomic aspects are mainly focused in<br>FP3 but due to the nature/logic of the<br>cluster set up, integrated in different<br>clusters also under other FPs.<br>Yield gap analysis shows a strong role for<br>agronomy and soil fertility in improving<br>yields. However, until recently this area of<br>work in RTB crops often appears as more<br>location specific and has not really<br>demonstrated IPGs. And impact<br>assessments with RTB have shown less<br>clear evidence of impacts of<br>agronomic/crop management work.<br>However, this is an important area and | 11.1 Revisit FP 3, its clusters<br>and all other relevant clusters<br>to assure proper integration<br>and visibility of agronomic<br>aspects and feedback loops<br>with FP3. | 11.1 PMU, FP and cluster leaders                                          | In process | 11.1 Pending,<br>hampered by funding<br>reduction (e.g. decision<br>to protect breeding) |

| Name of        | Recommendation                                                               | Management response                                                           | Action Plan                                                    | By whom           | By when    | Status (Updated) |
|----------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|------------|------------------|
| the evaluation |                                                                              |                                                                               | Action Flam                                                    | by whom           | by when    | Status (Opuateu) |
|                | structure.                                                                   | inclusion of more systems work with                                           |                                                                |                   |            |                  |
|                |                                                                              | implementation as Agri-food System CRP,                                       |                                                                |                   |            |                  |
|                |                                                                              | RTB should strengthen human resources                                         |                                                                |                   |            |                  |
|                |                                                                              | and bring novel approaches to bear.                                           |                                                                |                   |            | 10.4.0           |
|                | Recommendation 12 (post-                                                     | Fully accepted                                                                | 12.1 Revisit FP 4, its clusters                                | 12.1 PMU, FP and  | In process | 12.1 Pending     |
|                | harvest research):                                                           | However, should note that cassava has                                         | and all other relevant clusters                                | cluster leaders   |            |                  |
|                | •                                                                            | by some distance the greatest potential                                       | to assure proper integration<br>and visibility of post-harvest |                   |            |                  |
|                | on the crop-specific aspects of value<br>chain improvements that can deliver | currently for local value added from                                          | lessons learnt into other                                      |                   |            |                  |
|                | added value, as these are most likely to                                     | processing driven in part by rapid<br>postharvest physiological deterioration | clusters.                                                      |                   |            |                  |
|                | generate global public goods.                                                | and also by local food preferences. This                                      |                                                                |                   |            |                  |
|                |                                                                              | explains why it has a cluster for post-                                       |                                                                |                   |            |                  |
|                | Assessing lessons from the emerging cassava Theme 6 research results         | harvest innovation. All crops have some                                       |                                                                |                   |            |                  |
|                |                                                                              | potential.                                                                    |                                                                |                   |            |                  |
|                | should help to identify transferable<br>lessons and strategies for other RTB | Some value chain aspects are crop                                             |                                                                |                   |            |                  |
|                | crops, providing a basis for scalability of                                  | related and are not easily transferable as                                    |                                                                |                   |            |                  |
|                | lessons learned.                                                             | such.                                                                         |                                                                |                   |            |                  |
|                | GENDER, CAPACITY DEVELOPMENT AND                                             |                                                                               |                                                                |                   |            |                  |
|                |                                                                              | Fully accepted                                                                | 13.1 Communication                                             | PMU, Center       | 01/2017    | 13.1 Pending     |
|                | knowledge management):                                                       | We agree with the need to include                                             | (strategy/action plan) will be                                 | communication and | -          |                  |
|                | It is recommended that RTB                                                   | communication and knowledge                                                   | integral part of the 2 <sup>nd</sup> Phase                     | KM focal points   |            |                  |
|                | management ensures that adequate                                             | management aspects in the research                                            | proposal.                                                      |                   |            |                  |
|                | resources are made available to                                              | program. However, given shrinking share                                       |                                                                |                   |            |                  |
|                | develop and implement the needed                                             | of W1&2 more of this should be                                                |                                                                |                   |            |                  |
|                | strategy for communication and                                               | embedded in bilateral and W3 projects                                         |                                                                |                   |            |                  |
|                | knowledge management.                                                        | whilst providing a critical support and                                       |                                                                |                   |            |                  |
|                | Flagship and cluster leaders as well as                                      | oversight function at the overall program                                     |                                                                |                   |            |                  |
|                | bilateral project leaders will need                                          | level. The M&E capability of RTB will help                                    |                                                                |                   |            |                  |
|                | access to communication and                                                  | to underpin the design and utility of both                                    |                                                                |                   |            |                  |
|                | knowledge management expertise, and                                          | Recommendations 13 and 14 in an                                               |                                                                |                   |            |                  |
|                | be enabled to incorporate knowledge                                          | integrated way.                                                               |                                                                |                   |            |                  |
|                | management 'experiments' into the                                            |                                                                               |                                                                |                   |            |                  |
|                | design of new projects to achieve the                                        |                                                                               |                                                                |                   |            |                  |
|                | ambitious intentions laid out in the pre-                                    |                                                                               |                                                                |                   |            |                  |
|                | proposal. A strategy similar to the one                                      |                                                                               |                                                                |                   |            |                  |
|                | proposed on capacity development                                             |                                                                               |                                                                |                   |            |                  |
|                | (and drawing on lessons from the                                             |                                                                               | 1                                                              |                   |            |                  |

| e of    | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Management response                                                                                  | Action Plan                                                                                                                                                                   | By whom                                                        | By when                 | Status (Updated)                                                                                                                              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| luation | approach adopted to address gender                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                                               |                                                                |                         |                                                                                                                                               |
|         | issues) is recommended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                               |                                                                |                         |                                                                                                                                               |
|         | IMPACT AND SUSTAINABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | 1                                                                                                                                                                             |                                                                |                         |                                                                                                                                               |
|         | Recommendation 14 (impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fully accepted                                                                                       | 14.1 Finalize ongoing                                                                                                                                                         | 14.1 PMU &                                                     | 14.1 During             | 14.1 Strategy linking ex                                                                                                                      |
|         | assessment):<br>Impact assessment is strategically<br>important for demonstrating impact,<br>justifying resources, and informing<br>program planning.<br>RTB needs a clear strategy of how<br>priority and impact assessments will be<br>linked over time, and how the results<br>from <i>ex-post</i> assessments,<br>complementing <i>ex-ante</i> assessment, will<br>inform program planning. This may<br>lead to changes in the design of <i>ex-post</i><br>assessments.<br>In formulating an impact assessment<br>plan, RTB should scale up activities and<br>apply lessons from the SIAC projects<br>they are currently engaged in. It should<br>also ensure comparable quality of<br>efforts across crops and regions. | However, see point on continuous<br>updating of data for priority assessment<br>(recommendation #4). | Impact Assessment<br>14.2 CRP commissioned<br>evaluations; Impact<br>Assessment will be included<br>in the RBM set-up and<br>Evaluation plan, developed<br>for the 2nd Phase. | Impact<br>Assessment<br>Center focal<br>Points<br>14.2 PMU, MC | 2016<br>14.2<br>01/2017 | post and ex-ante has<br>improved<br>14.2 CRP commissioned<br>evaluations not<br>implemented. Impact<br>assessment is integral<br>to RBM / M&E |
|         | GOVERNANCE AND MANAGEMENT<br>Recommendation 15 (leadership                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fully accepted                                                                                       | Reformulation of the Terms of                                                                                                                                                 | PMU, MC and ISC                                                | In process              | 15. Done                                                                                                                                      |
|         | roles/responsibilities):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The continuous improvement of leadership                                                             |                                                                                                                                                                               | ,                                                              | · ·                     |                                                                                                                                               |
|         | RTB should bring clarity to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roles and responsibilities is seen as a                                                              | as we move to flagship based                                                                                                                                                  |                                                                |                         |                                                                                                                                               |
|         | respective roles, relationships and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | natural progression in the evolution of the                                                          | program structure                                                                                                                                                             |                                                                |                         |                                                                                                                                               |
|         | accountabilities of FP leaders, cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | program. RTB intends to maximize its                                                                 |                                                                                                                                                                               |                                                                |                         |                                                                                                                                               |
|         | leaders and bilateral project leaders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | management effectiveness based on its                                                                |                                                                                                                                                                               |                                                                |                         |                                                                                                                                               |

| Name of the evaluation | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Management response                                                                                                                                                                                                                                                                                                             | Action Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | By whom                                                                                            | By when                                                                                               | Status (Updated)       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------|
|                        | within the management structures of<br>RTB and the centers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | institutional memory and lessons learned.<br>ToR of FP and cluster leaders, and work<br>plans of individual scientists within centers<br>contributing to RTB should be streamlined<br>to clarify the contribution to RTB<br>deliverables, and staff members should be<br>assessed in terms of fulfillment of the<br>commitments |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46.4166.554                                                                                        | 16.1.6000                                                                                             | 16 1 Dono              |
|                        | Recommendation 16<br>(alliance compact):<br>RTB partners should develop and agree<br>on an alliance compact building on the<br>progress already made in inter-center<br>collaboration.<br>Such an alliance would bring clarity and<br>greater understanding to critical<br>partnership questions such as:<br>allocation and use of W1/W2 funds,<br>handling of W3/bilateral projects,<br>participation in RTB governance and<br>management, alignment of<br>management processes, handling of<br>joint appointments, handling joint<br>undertakings and codes of conduct in<br>program participation. |                                                                                                                                                                                                                                                                                                                                 | <ul> <li>16. 1 Identify potential<br/>governance, operational and<br/>business relationships which<br/>could further enhance the<br/>alignment of partner objectives<br/>for strategic goals and could be<br/>included in a soft contractual<br/>vehicle such as an alliance<br/>compact or similar alternative<br/>model.</li> <li>16.2. Building on analysis<br/>under 16.1, agree Strategy<br/>Statements which would<br/>constitute "soft contracts" to<br/>be achieved through<br/>Compact or other<br/>mechanisms for improving<br/>Governance and<br/>Management and agree a<br/>timeline for implementation</li> </ul> | 16.1 ISC and<br>PMU/MC<br>followed by CIP<br>BoT<br>16.2. ISC and<br>PMU/MC followed<br>by CIP BoT | 16.1 from<br>06/2016<br>once the<br>new<br>Systems<br>Office is in<br>place<br>16.2. until<br>11/2016 | 16.1 Done<br>16.2 Done |

| Name of the evaluation | Recommendation | Management response                    | Action Plan | By whom | By when | Status (Updated) |
|------------------------|----------------|----------------------------------------|-------------|---------|---------|------------------|
|                        |                | work should be considered and be       |             |         |         |                  |
|                        |                | aligned with new mechanisms such as an |             |         |         |                  |
|                        |                | 'alliance compact'.                    |             |         |         |                  |

## **TABLE J: CRP FINANCIAL REPORT**

|                                         | Planned budget 2017 |                  |                        |         |        | Actual expen     | diture 2017            | *      | Difference |                  |                        |        |
|-----------------------------------------|---------------------|------------------|------------------------|---------|--------|------------------|------------------------|--------|------------|------------------|------------------------|--------|
|                                         | W1/2                | W3/<br>bilateral | Center<br>Own<br>Funds | Total   | W1/2   | W3/<br>bilateral | Center<br>Own<br>Funds | Total  | W1/2       | W3/<br>bilateral | Center<br>Own<br>Funds | Total  |
| FP1                                     | 3,682               | 7,662            | 246                    | 11,591  | 3,510  | 8,295            | 486                    | 12,292 | 172        | (633)            | (241)                  | (701)  |
| FP2                                     | 4,594               | 30,328           | 159                    | 35,081  | 4,434  | 24,067           | 359                    | 28,861 | 160        | 6,261            | (200)                  | 6,220  |
| FP3                                     | 3,726               | 14,234           | 894                    | 18,855  | 3,419  | 11,884           | 662                    | 15,965 | 307        | 2,350            | 233                    | 2,889  |
| FP4                                     | 1,577               | 15,997           | 31                     | 17,605  | 1,507  | 14,640           | -                      | 16,147 | 69         | 1,357            | 31                     | 1,457  |
| FP5                                     | 3,930               | 14,499           | 60                     | 18,489  | 3,738  | 12,121           | 34                     | 15,893 | 192        | 2,378            | 26                     | 2,596  |
| Strategic Competitive<br>Research grant | 1,063               | -                | -                      | 1,063   | 98     | -                | -                      | 98     | 965        | -                | -                      | 965    |
| CRP Management &<br>Support Cost        | 2,027               | 2,710            | -                      | 4,737   | 1,594  | 2,697            | -                      | 4,291  | 432        | 13               | -                      | 445    |
| CRP Total                               | 20,598              | 85,429           | 1,391                  | 107,418 | 18,301 | 73,704           | 1,542                  | 93,547 | 2,297      | 11,726           | (151)                  | 13,871 |

\*Source [Program participants Q4 Financial report]

| LIST OF W2 DONORS                                        |              |  |  |  |  |  |
|----------------------------------------------------------|--------------|--|--|--|--|--|
| DONORS                                                   | AMOUNT (USD) |  |  |  |  |  |
| Australian Centre for International Agriculture Research | 1,112,298    |  |  |  |  |  |
| Government of Switzerland                                | 2,020,000    |  |  |  |  |  |
| Department for International Development/UK Aid          | 6,437,364    |  |  |  |  |  |
| TOTAL                                                    | 9,569,662    |  |  |  |  |  |

Rese PROG Roo GIAR

RESEARCH PROGRAM ON Roots, Tubers and Bananas The CGIAR Research Program on Roots, Tubers and Bananas (RTB) is a part part of the program on Roots, Tubers and Bananas (RTB) is a part of the program of the international Potato Center implemented jointly with Bioversity International, the International Center for Tropical Agriculture (CIAT), the International Institute of Tropical Agriculture (IITA), and the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), that includes a growing number of research and development partners. RTB brings together research on its mandate crops: bananas and plantains, cassava, potato, sweetpotato, yams, and minor roots and tubers, to improve nutrition and food security and foster greater gender equity especially among some of the world's poorest and most vulnerable populations.

www.rtb.cgiar.org

