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Abstract  

We develop the first spatially integrated economic-hydrological model of the western Lake Erie 

basin explicitly linking economic models of farmers' field-level Best Management Practice 

(BMP) adoption choices with the Soil and Water Assessment Tool model to evaluate nutrient 

management policy cost-effectiveness. We quantify tradeoffs among phosphorus reduction 

policies and find that a hybrid policy coupling a fertilizer tax with cost-share payments for 

subsurface placement is the most cost-effective, and when implemented with a 200% tax can 

achieve the stated policy goal of 40% reduction in nutrient loadings. We also find economic 

adoption models can overstate the potential for BMPs to reduce nutrient loadings by ignoring 

biophysical complexities.   

 

Key Words: Integrated economic-hydrological model; water quality; cost-share; conservation 

practice; nutrient management; the Maumee River watershed 
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1. Introduction 

Agricultural nutrient runoff, especially phosphorus (P), from the Maumee River watershed in the 

western Lake Erie basin has led to frequent and severe water quality crises, including harmful 

algal blooms (HABs) and hypoxia in Lake Erie and the 2014 Toledo water crisis (Lake Erie 

LaMP 2011; Scavia et al. 2014; Stumpf et al. 2012). To address these growing concerns, the 

United States and Canada adopted a revised version of the Great Lakes Water Quality 

Agreement (GLWQA) in 2012, which aims to reduce total phosphorus (TP) and dissolved 

reactive phosphorus (DRP) entering affected areas of Lake Erie by 40% based on 2008 loading 

levels (Binational.net 2012). At the national level, spending on federally funded conservation 

programs is projected to be over $5.5 billion annually, or about $15 per acre per year, during the 

five-year life of the 2014 Farm Bill. At the state level, Ohio’s Senate Bill 1, signed in early 2015, 

requires nutrient management plans for all producers, prohibits manure or fertilizer application 

on frozen grounds and 24 hours before a storm forecast, and encourages injecting or 

incorporating fertilizer or manure application into the ground. Despite these efforts, the 2015 

Lake Erie HAB was even larger and more severe than the HAB recorded in 2011 (Stumpf et al. 

2016) and the issue continues to be at the forefront of environmental and agricultural policy 

issues for the state.  

A key feature of federal and state programs is that they are often voluntary, with 

producers opting to participate receiving a cost-share payment covering part or all of the 

conservation effort. Despite their prevalence, there is a significant lack of empirical evidence of 

the cost-effectiveness of these cost-share programs in terms of their downstream impacts 

(Garnache et al. 2016). While these incentives have effectively encouraged farmer adoption of 

best management practices (BMPs), it is unknown if they are economically cost-efficient, which 
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would greatly depend on the extent to which these land management changes are successful in 

reducing nutrient loadings and improving water quality benefits.  

This article fills a critical policy evaluation gap by developing a spatially integrated 

economic-hydrological model that explicitly links individual conservation adoption decisions by 

heterogeneous farmers on heterogeneous fields with a hydrological process model to evaluate the 

cost-effectiveness of various nutrient management policies. Specifically, we link farmer-survey-

based economic models of BMP adoption with the widely used hydrological-process-based Soil 

and Water Assessment Tool (SWAT) model. The economic models include an ordered logit 

model that explains how BMP adoption costs and cost-share payment subsidies drive changes in 

adoption behavior, and a fertilizer demand model to analyze and predict farmers’ fertilizer 

application rate decisions under fertilizer taxes. Our SWAT model incorporates BMP decisions, 

geophysical data such as soil type, and climate information as inputs to assess the effectiveness 

of different policy scenarios in reducing nutrient runoff at the watershed scale. With this 

integrated economic-hydrological model, we are able not only to quantify the changes in 

conservation practice adoption on an individual field scale in response to policy incentives, but 

also to simulate the resulting impacts from the watershed on water quality changes, specifically 

TP and DRP loadings.  

We apply this model to the biggest Great Lakes watershed—the Maumee River 

watershed—which is the largest source of P loadings into Lake Erie and the primary driver of the 

extent of Lake Erie HABs (Maccoux et al. 2016, Scavia et al. 2014). Using a 2014 survey of 

2,324 respondents of farmers from this watershed that provides extensive information on 

farmers’ BMP choices, field characteristics, and demographics (Burnett et al. 2015), we examine 

three salient in-field conservation practices—subsurface fertilizer placement (via banding or in-
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furrow with seed), post-fall-harvest cover crops, and P fertilizer application rate reduction—all 

of which have been shown to be critical and promising in reducing nutrient runoff (Wilson et al. 

2019; Gildow et al. 2016; Mahler 2001; Scavia et al. 2014). Our integrated model allows us to 

assess the cost-effectiveness of cost-share payments that are currently in place under a range of 

possible payment amounts as well as three hypothetical policies: (a) a fertilizer tax, which ranges 

in magnitude from 0% to 400% of the producer-specific P fertilizer price; (b) a spatially-targeted 

zonal policy that only offers cost-share payments to farmers in the nutrient runoff “hotspot” 

counties; and, (c) a revenue-neutral hybrid policy that administers a fertilizer tax and then 

redistributes those revenues to producers in the form of cost-share payments for adoption of 

subsurface placement or cover crops.   

The integrated modeling and policy analysis is novel, and extends three related areas of 

literature. First, a substantial literature examines farmers’ adoption of BMPs and the role of 

monetary incentives (e.g., Blackstock et al. 2010), adoption costs (e.g., Sheriff 2005; Kurkalova 

et al. 2006), and farmers’ socio-economic and socio-psychological characteristics (e.g., Norris 

and Batie 1987; Zhang et al. 2016; Burnett et al. 2015; Wu et al. 2004). However, these studies 

focus on individual decision making and most do not explicitly consider downstream water 

quality impacts and, thus, are unable to fully evaluate policy effectiveness. Second, a growing 

number of hydrological process-based models have been developed for Lake Erie and other areas 

of the Great Lakes region; however, these models omit behavioral or economic considerations 

and therefore must impose assumptions about BMP adoption (e.g., assuming full or random 

adoption, see Scavia et al. 2017 and  Bosch et al. 2014). Third, nutrient policy evaluation studies 

may consider both economic costs and environmental outcomes, but are either reduced-form in 

nature (e.g., Sohngen et al. 2015) or assume simplified economic adoption outcomes to focus on 



   

 

6 

geophysical or hydrological processes in the watershed (e.g., Laukkanen and Nauges 2014; 

Rabotyagov et al. 2014). A limitation is that, by omitting an explicit farmers’ BMP choice 

model, they are unable to assess the potential impacts of alternative policy interventions or 

account for the potential differences in choice behaviors across heterogeneous farmers.   

Our integrated modeling framework allows us to quantify the tradeoff between P 

reduction and policy costs for a range of alternative policies and to investigate which of these 

policies has the potential to reach the policy target of a 40% reduction in phosphorus loadings to 

Lake Erie. The main results show that either a substantial increase in fertilizer costs through a tax, 

or a hybrid approach that combines a fertilizer tax with cost-share incentives for subsurface 

placement, can meet this policy target. For example, a 400% fertilizer tax could lead to 39.5% 

reduction in TP, while a 200% fertilizer tax that is recycled for cost-share payments for 

subsurface placement can lead to 40.5% reduction in TP.
i
 In comparison, the most ambitious cost 

share program at $80/acre reduces DRP loadings by 13% and TP loadings by 8% and imposes a 

whopping $188 million in annual policy costs. In comparison, farmers in Ohio received about 

$36 million in cost share payments from the USDA EQIP program in 2018 (USDA NRCS 2018). 

Based on the model scenarios and results considered here, this outlay could at best generate less 

than 5% P loading reduction even if used exclusively for incentivizing subsurface placement.  

Another key result of our study is that subsurface placement of fertilizer is a more 

effective BMP than cover crops in terms of reduction P loading. More importantly, looking at the 

cost-share payment programs, despite significantly higher adoption of the targeted BMPs under 

various policy scenarios, the resulting watershed-scale reduction in P loadings at best account for 

less than half of the prescribed 40% nutrient reduction goal. For example, we find that, while the 

$80/acre cost-share payment for farmers to adopt subsurface placement would increase the total 
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cropland acres in the watershed from 46% to 65%, the corresponding percent reduction in 

nutrient loadings is much less—13% and 8% in DRP and TP loadings, respectively. Even with 

the spatially targeted payment that targets the runoff “hotspot” counties, which is more cost-

effective than the uniform cost-share payments, we only observe a similar reduction at a slightly 

lower total cost. The lack of responsiveness in water quality could be a result of the hydrologic 

and biophysical complexities, including legacy P attached to soils and hydrological routing 

within the watershed.  Thus, more innovative policies to increase voluntary or mandatory 

adoptions of BMPs are needed.   

Our article makes policy-relevant contributions to integrated water quality assessment 

modeling. First, our work demonstrates the value and necessity of integrated economic-

biophysical models to identify realistic policy impacts of nutrient management policies and 

quantify the social cost of water quality. Our results show that ignoring biophysical complexity, 

as is typical of most economics models, or imposing unrealistic simplified adoption behavior, as 

is typical of most hydrological models, could lead to significant overestimation of the cost-

effectiveness of agri-environmental policies in reducing nutrient runoff. Second, to the best of 

our knowledge, our integrated economic-biophysical model of the Maumee River watershed 

represents the first integrated modeling of the Lake Erie basin that couples realistic 

representation of farmer BMP adoption behavior with a hydrological process model and 

translates individual behavior changes into watershed-scale water quality outcomes. Third, our 

analysis highlights the need and importance of broadening the nutrient management policy 

toolboxes to move beyond existing cost-share programs. In particular, we show that none of the 

single BMP cost-share payment programs analyzed could achieve the 40% nutrient reduction 

target even with spatial targeting. We also show that a hybrid policy, in which a tax is used to 



   

 

8 

generate the revenues to incentivize additional BMP adoption policy, is superior to expanding 

the existing cost-share programs—not just because it is revenue neutral, but also because it 

applies both a carrot (cost share payments) and stick (higher P fertilizer costs) to incentivize 

farmers.  

 

2. Study Area and Data 

The Maumee River watershed in the western Lake Erie basin is a HUC-6 watershed spanning 

four million acres across three states (northwestern Ohio, northeastern Indiana, and southern 

Michigan) and is the largest source of P loadings into Lake Erie (Scavia et al. 2014) (see Figure 

1). Previous hydrological research shows that 85% of P loadings in this watershed come from 

agricultural fertilizer and manure application on its 10,000 crop farms and 2,000 livestock farms 

(Scavia et al. 2017). As a result, agricultural nutrient management practices in this watershed are 

of significant interest in improving water quality in Lake Erie. 

 

[Insert Figure 1 Here: Map of the Maumee River watershed] 

 

From February to April 2014, we conducted a representative mail survey of 7,500 

farmers in the western Lake Erie basin on their field, farm, and operator characteristics as part of 

a coupled natural-human systems project (Burnett et al. 2015; Martin et al. 2011; Zhang et al. 

2016; Zhang 2015). We also solicited field-specific responses on crop choices, fertilizer 

application, and other BMPs for the 2013 crop year. The addresses of all farmers in the Maumee 

River watershed were provided by a private vendor compiled from lists of farmers receiving 

government payments and from farming magazine subscription rolls. The two-round survey was 
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conducted following Dillman’s Tailored Design method (Dillman 2011). The total set of 

mailings included an announcement letter, a survey packet, a reminder letter, and a replacement 

packet for non-responders. Respondents received a $1 bill in the mailings as an incentive to 

increase the response rate. The survey was pilot-tested using farmers recruited by local extension 

professionals several months before the initial mailings. 

A total of 3,234 surveys were initially returned, and of these returned surveys 438 were 

no longer farming and another 32 did not answer the crop management questions. In total, we 

obtained 2,324 valid survey responses, yielding a response rate of 37%. A comparison between 

our data and the Census of Agriculture data for counties in the Maumee River watershed reveals 

that our sample is skewed toward large farms with high gross sales and farmers earning 

additional off-farm income.
ii
 The average farm size is larger than that of the 2012 Census of 

Agriculture for counties in this watershed; however, larger farms have more potential to impact 

the water quality in Lake Erie (Zhang et al 2016). A descriptive report on this survey can be 

found online at the project website at http://ohioseagrant.osu.edu/archive/maumeebay/ and in 

Burnett et al. (2015). More descriptions on this survey can also be found in Zhang (2015) and 

Zhang et al. (2016).  

Table 1 shows the summary statistics of the survey, including farmers’ BMP adoption, 

their socio-psychological and demographic characteristics, and farm and field characteristics. In 

this article, we focus on three conservation practices identified by multiple models as critical and 

effective in reducing nutrient runoff from the Maumee River watershed. These practices include 

subsurface fertilizer placement via banding or in-furrow with seed (referred to as subsurface 

placement), post-fall-harvest cover crops (referred to as cover crops), and commercial fertilizer 

http://ohioseagrant.osu.edu/archive/maumeebay/
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application rate reduction (referred to as P rate reduction) (Gildow et al. 2016; Kelley and 

Sweeney 2005; Mahler 2001; Scavia et al. 2014, Scavia et al. 2017).  

 

[Insert Table 1 Here: Variable Description and Summary Statistics] 

 

 

We construct our dependent variable for subsurface placement and cover crop adoption—

whether the practice has been adopted already and non-adopters’ self-expressed attitudes towards 

future BMP adoption—using two questions from the survey. Attitudes towards future adoption 

ranges from 0 (will never adopt), to 1 (unlikely to adopt), 2 (likely to adopt), or 3 (will definitely 

adopt). We combine the already adopted farmers into this variable by assigning the adopted 

decisions as 4 (have already adopted). We consider farmers responding 3 or 4 as potentially 

adopting the conservation practice in the next year in the policy simulations, which reduces the 

risk of overestimating the adoption probability of existing adopters. Table 1 shows that 40% and 

18% of farmers have already adopted subsurface placement and cover crops, respectively; and, 

an additional 10% and 5% of producers, respectively, report that they will definitely adopt the 

corresponding practices in the future. Table 1 also shows that on average, farmers in the 

watershed used 100 pounds of P fertilizers on a per acre basis, with higher application rates when 

growing corn or applying for more than one year. For farmers who at least applied some P in 

2013, their average application rates are around 113 pounds per acre.  

We also include the socio-psychological, socio-economic, and field-level spatial 

characteristics as the explanatory variables (Table 1) as established by previous studies (Huang 

et al. 2000; Kurkalova et al. 2006; Zhang et al. 2016). The social-psychological characteristics 

include perceived efficacy, perception of control, risk attitude, and farmer identity, which 

quantitatively measures farmers’ productivity-oriented versus conservationist inclinations 
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(Arbuckle 2013; McGuire et al. 2015). Farmer identity is the difference between conservationist 

values and productionist values, which could range from -4 (greatest identity as productionist) to 

4 (greatest identity as conservationist). For subsurface placement and cover crops, we have a 

practice-specific perceived efficacy measure that represents the farmers’ beliefs in the 

effectiveness of that particular practice at reducing nutrient loss, ranging from 0 (not at all) to 4 

(to a great extent). This psychological factor has been found to be a major driver of farmers’ 

adoption choices of fertilizer timing (Burnett et al. 2015; Zhang et al. 2016), so we expect a 

higher perceived efficacy of a particular conservation practice in reducing soil loss will lead to 

higher adoption rate of P placement or cover crops. Additional socio-psychological measures 

include the farmer’s perceived control over nutrient loss, ranging from 0 (no control) to 6 

(complete control), and the farmer’s risk attitude measured as the willingness to take risks on a 

scale from 0 (not willing to take risks) to 10 (very willing to take risks).  

For socio-economic characteristics, we include the farmer’s age and annual gross income 

for the 2013 production year (farm_income), which ranges from 1 (<$50,000), to 2 ($50,000–

$99,999), 3 ($100,000–$249,999), 4 ($250,000–$499,999), and 5 (>$500,000). For field-level 

characteristics, we include the acreage of the field, soil quality (low, medium, or high), slope 

(0%–2%, 2%–5%, 5%–10%, >10%, not sure), and whether or not the farm is rented. We also 

calculate a farmer- and practice-specific adoption cost for each practice using farmers’ stated 

expenditures on nutrient inputs, machinery, labor, and farm- or regional-level input prices. 

Appendices A and B show the data and the methodology of how we constructed this variable. 

 

 3. Spatially Integrated Economic-hydrological Model 

3.1 Model Overview and Policy Scenarios 
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We link economic models of farmers’ BMP adoption decisions with a hydrological model to 

predict and evaluate the effects of different nutrient management policies on farmers’ 

management decisions and the resulting downstream P loadings into Lake Erie. In particular, we 

develop three separate field-level farmer decision making models—an ordered logit model of 

future subsurface placement adoption, an ordered logit model of future cover crops adoption, and 

a fertilizer demand model for reduction in fertilizer application rates. We use these models to 

predict changes in the adoption of these practices under each nutrient management policy, and 

then link them to the SWAT model to simulate the downstream water quality improvements as 

measured by the reduction in P loadings. The proceeding sections provide more details for each 

of the modeling components of this integrated model. 

Using this integrated economic-hydrological model, we analyze the cost-share payments 

for subsurface placement or cover crops. The cost-share payments we examine range from $1 to 

$80 per acre, for which the midpoint is analogous to the USDA-NRCS Environmental Quality 

Incentives Program payment of $42.99/acre for enhanced nutrient management with deep 

placement. The alternative nutrient management policy scenarios we examine are a fertilizer tax 

and a novel tax/cost-share payment combination policy that imposes fertilizer tax for all farmers 

and then uses the tax revenue collected to offer cost-share payments for subsurface placement or 

cover crops. We hypothesize that alternative nutrient management policies, such as spatially 

targeted policies or the tax-payment combination policy, could be more cost-effective in 

achieving nutrient reduction goals. 

 

3.2 Economic Models of Farmer Decision-making  

3.2.1 BMP Adoption Model Incorporating Changes in Adoption Costs 
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We use an ordered logit model to examine the factors driving the adoption choice of BMPs 

(subsurface placement and cover crops), and then predict the future likelihood of adoption under 

different policy incentive programs. We use the ordered logit model following Zhang et al. 

(2016) because the dependent variable is ordinal and categorical. We estimate the model using 

the “ologit” command via Stata 15 as follows: 

y𝑖𝑘 = 𝛂𝒋 + θ C𝑖̂ + 𝛃 𝐈𝒊 + 𝛄 𝐗𝒊 +  ε,     k = 0, 1, 2, 3, 4                         Eq. [1] 

where the dependent variable y𝑖𝑘 is future adoption decisions of a particular BMP made by 

farmer 𝑖, which ranges from 0 (will never adopt), to 1 (unlikely to adopt), 2 (likely to adopt), 3 

(will definitely adopt), and 4 (already adopted). The key variable of interest is the predicted 

farmer-specific adoption costs for this particular BMP C𝑖̂, which is measured as the additional 

production costs incurred due to farmer 𝑖′𝑠 adoption of this particular BMP. Appendix B shows 

in detail how we calculate this adoption cost measure. In a nutshell, we regress the total field-

level production costs, measured using the expenditures and inputs reported by the farmer 

respondent shown in appendix A, on an already-adopted-BMP dummy and its interaction terms 

with age, field size, and a host of farmer and field characteristics. We use the coefficients for the 

BMP adoption dummy and its interactions to predict the additional production costs induced by 

the adoption of that particular BMP; and, we then use the predicted values at the individual level 

in equation (1) as C𝑖̂. Other explanatory variables in equation (1) include field characteristics 

𝐗𝒊 (e.g., field size, soil quality, slope, and whether or not the field is rented from others) and 

farmers’ demographic and socioeconomic characteristics 𝐈𝒊 (e.g., perceived efficacy of the BMP, 

mean risk level, identity as a farmer, perceived control over nutrient runoff, age, and gross farm 

income). We include county-level fixed effects 𝛂𝒋 and cluster standard errors at the county level 
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to control for unobserved spatial heterogeneity and heteroskedastic errors, which effectively 

controls for spatial dependence.  

Under each scenario with a payment subsidy or a tax-payment combination policy, we 

predict a farmer’s likely future adoption probability by summing the predicted probabilities for 

categories 3 (will definitely adopt) and 4 (already adopted) after the ordered logit model using 

the “predict” command via Stata 15. We interpret the probabilities as a set of rules that govern 

the behavior of BMP adoption in the near future and we convert the predicted probability to a 

binary adoption outcome following Lewis and Plantinga (2007). In particular, we draw a random 

number from uniform distribution U [0, 1] and compare the predicted probability of adoption 

with this random number. If the predicted probability is larger than the random number, then we 

assume the farmer will adopt the BMP, otherwise, we assume the farmer will not adopt the BMP. 

We sum the land acres that are predicted to be operated by future adopters and divide it by the 

total acres across all surveyed producers in a given county. This generates the predicted land 

share of each BMP for each policy scenario at a county level. We ran the economic model 500 

times and looked at the summary statistics for the adoption rate of each county. Their standard 

deviations are all under 0.04 and sample variances are under 0.0012.  Therefore, we are 

confident that our simulation results are representative. We use this predicted share as a means of 

integrating these farmer land management predictions with the hydrological model, as explained 

in section 3.2.5.  

In addition to the uniform cost-share payment, we also explore the spatially targeted 

policies that only focus on the counties with highest level of nutrient runoff. Based on SWAT 

analysis, we identify the top 20% counties with highest total mass of TP or DRP runoff. With 3 

counties overlapping on the two list, we identify nine counties as the runoff “hotspots.”
iii
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3.2.2 Fertilizer Demand Model 

To evaluate the effects of a fertilizer tax policy on commercial P fertilizer application rates, we 

estimate a fertilizer demand model. This reduced-form model is similar in spirit to the model 

presented at length in Zhang (2015). Our farmer survey is based on farmers’ crop and nutrient 

management choices in 2013. This single-year data may not provide enough variation to reveal 

farmers’ true demand elasticity of P fertilizers—over the past decade, the average U.S. P price 

index ranged from $300/ton to $900/ton. As a result, we added two hypothetical questions to 

induce farmers’ responses under alternative P fertilizer price scenarios. Specifically we ask “if 

commercial phosphorus fertilizer prices had been $𝑋/ton, what rate of P would you have applied 

on this field for this most recent crop? ______ lbs/acre,” in which 𝑋 could be 200, 250, 300, 350, 

450, 500, 550, 750, 800, 850, or 900, thus spanning the recent range of fertilizer price 

movements. With this information, we construct a reduced-form panel data model using P 

application rates under the actual price and two hypothetical price scenarios, and identify the 

mean elasticity of P fertilizer demand. Specifically, the panel-data fixed-effects model of 

fertilizer demand is  

                   𝑥𝑖𝑃𝑙𝑡 = 𝜅𝑃𝑙0 +  𝛾𝑃𝑙0 ∗ 𝑟𝑖𝑃𝑙𝑡̅̅ ̅̅ ̅ +  𝜃𝑖𝑙           𝑡 = 1,2,3                              Eq. [2] 

where 𝜃𝑖𝑙 is individual fixed effects; 𝑟𝑖𝑃𝑙𝑡̅̅ ̅̅ ̅ is the normalized P fertilizer prices adjusted by 

fertilizer types; 𝑥𝑖𝑃𝑙𝑡 denotes the fertilizer application rate by farmer 𝑖 for each crop and 

fertilization frequency choice 𝑙; 𝜅𝑃𝑙0 is the intercept denoting the baseline application rate; and, 𝑡 

represents the one actual and two hypothetical fertilizer price scenarios.  

Previous research has demonstrated that farmers’ fertilization choices depend on crop, 

crop rotation, and fertilizer application frequency choice (Zhang 2015). As a result, we estimate 



   

 

16 

Eq. [2] separately for each of five combinations of crop and P application frequency choices 

(denoted by 𝑙)—corn and single year application (corn-single, cs), corn and multi-year 

application (corn-multi, cm), soybean and single year application (soybean-single, ss), soybean 

and multi-year application (soybean-multi, sm) and other crop choices (other, o). For each crop 

and fertilization frequency choice 𝑙, we can estimate the key parameter of interest—the mean 

coefficient for P fertilizer prices (𝛾𝑃𝑙0̂). The estimated demand elasticity based on 𝛾𝑃𝑙0 could be 

interpreted as the “sufficient statistic,” as argued by Chetty (2009), which can be identified using 

reduced-form studies and then used to simulate policy changes and welfare effects for a fertilizer 

tax policy or a policy that couples fertilizer taxes with payments for conservation practices. 

  

3.2.3 Revenue-Neutral Hybrid Policy 

While single policies, be it cost-share payment or fertilizer tax, may not be sufficient to achieve 

the 40% reduction goal, we propose an innovative “revenue neutral” way to link the two types of 

policies to increase effectiveness—using the tax revenue as subsidy for BMP payments. We look 

for the optimal tax that minimizes loading by balancing the tradeoff between reduced fertilizer 

application and reduced revenue for BMP payment when tax is sufficiently high. For simplicity, 

we only focus on the payment for subsurface placement in our article because it is significantly 

more effective than cover crops.  

Suppose the policymaker’s goal is to minimize the P load to Lake Erie, and the revenue 

neutral policy uses the entire fertilizer tax revenue for cost-share payment. That is: 

min
𝜏

𝐿 = 𝑓(𝑥(𝜏)) + 𝑔(𝐵(𝑅))                                             Eq. [3] 

𝑠. 𝑡. 𝑅 = 𝜏𝑥(𝜏) 
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where L is the total P runoff; x is fertilizer applications on farms in the Maumee River watershed; 

B is the quantity of BMPs applied on farms in the watershed; 𝜏 is fertilizer tax; and, R is total 

fertilizer tax revenue. Based on our analysis, 𝑓𝑥 > 0, 𝑔𝐵 < 0, 𝑥𝜏 < 0, and 𝐵𝑅>0. That is, more 

fertilizer application leads to more P runoff, higher BMP adoption leads to lower P runoff, higher 

tax leads to lower fertilizer application, and higher tax revenue means higher total payment to 

BMPs, which leads to higher BMP adoption. To solve the runoff minimization problem, we set 

the first order condition: 

𝑓𝑥𝑥𝜏 + 𝑔𝐵𝐵𝑅𝑅𝜏 = 0                                                       Eq. [4] 

and derive the expression 𝑅𝜏 = −
𝑓𝑥𝑥𝜏

𝑔𝐵𝐵𝑅
< 0, which indicates that optimal tax should be set higher 

than the level that would maximize tax revenues. Eq [4] can be restated as   

𝑓𝑥𝑥𝜏 + 𝑔𝐵𝐵𝑅(𝑥 + 𝜏𝑥𝜏) = 0                                                Eq. [5] 

which implies that the optimal 𝜏∗ = −
𝑓𝑥

𝑔𝐵𝐵𝑅
−

𝑥

𝑥𝜏
. The 

𝑥

𝑥𝜏
 term accounts for the offsetting effect of 

a reduction in x on the amount of revenues available for BMP payments. This makes explicit the 

tradeoff that arises in setting the optimal tax to reduce loadings: increases in the tax will reduce 

fertilizer applications, but reductions in x also reduce the total revenues available for BMP 

payments. This also clarifies how the optimal tax depends on the physical system: the greater the 

effectiveness of fertilizer reduction on reduced loadings, 𝑓𝑥, or the greater the effectiveness of the 

BMP in reducing loadings, 𝑔𝐵, the higher the optimal tax will be. However, the more responsive 

farmers are in the BMP adoption decisions to payments, the lower the optimal tax. Altogether 

this implies that the optimal tax is determined by a combination of behavioral and physical 

relationships. For some conditions, the optimal tax to reduce nutrient loadings may be a corner 

solution in which farmers demand for fertilizer is driven to zero.   
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This approach ignores other private and social costs of fertilizer reduction, including the 

forgone profits that may result from reduced fertilizer use. To account for these, we can reframe 

the problem by defining the optimal tax as the tax that equates the marginal social benefits 

(MSB) and marginal social costs (MSC) of fertilizer use. Suppose the marginal product of 

fertilizer in producing crops is 𝑦𝑥 and the average price of the crop is p. The MSB of fertilizer x 

consists of the marginal private benefit, 𝑝𝑦𝑥, as well as the marginal public benefits of increasing 

x, which are generated through the increase in tax revenues that support the cost-share payments 

for BMPs that reduce ecosystem damages by reducing loadings. Suppose 𝑒𝐿 represents the 

marginal damages of loadings to ecosystem services, then the marginal public benefits of x are 

𝑒𝐿𝑔𝐵𝐵𝑅𝑅𝑥. The MSC consist of both marginal private cost to the farmer with the fertilizer tax 𝜏, 

r(1 + 𝜏) where r is the fertilizer price, and a public cost, which is the ecosystem damages from 

loadings that result from a marginal increase in fertilizer applications, 𝑒𝐿𝑓𝑥. Thus MSB=MSC 

implies: 

𝑝𝑦𝑥 + 𝑒𝐿𝑔𝐵𝐵𝑅𝑅𝑥 = 𝑟(1 + 𝜏) + 𝑒𝐿𝑓𝑥                                                  Eq. [6] 

Given 𝑅𝑥 = 𝜏, the optimal tax that maximizes social net benefits is: 𝜏∗ =
𝑒𝐿𝑓𝑥−𝑝𝑦𝑥+𝑟

𝑒𝐿𝑔𝐵𝐵𝑅−𝑟
.  Assuming 

that the public benefits from reducing nutrient loadings are sufficiently large, so that both the 

numerator and denominator are positive and 𝜏∗ > 0, then the optimal tax increases with the 

marginal ecosystem damages of fertilizer, decreases with the marginal effectiveness of BMP 

payments in reducing loadings, and decreases with the value of the marginal product of fertilizer.   

In the empirical analysis, we implement the hybrid policy analyses by using the estimated 

fertilizer price elasticities to calculate the change in fertilizer use for a range of tax rates at the 

county level and sum up total tax revenues across the watershed. We then allocate the revenues 

for each of the tax scenarios as cost-share payments based on the most efficient payment level, 
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defined as the one that leads to highest adoption rate (see Appendix D), and assume that it is 

administered in such a way that achieves this best possible outcome. Specifically, using the 

combined results of the farmer decision making and hydrological models, we plot changes in 

loadings as a function of the tax rate and compare the outcomes of tax only policies with the 

revenue neutral hybrid policies in Appendix D.  

 

3.2.4 Hydrologic Model – Soil and Water Assessment Tool (SWAT) Model 

SWAT is a watershed-scale model that has been continuously developed over the past 30 years 

by the U.S. Department of Agriculture (USDA) Agricultural Research Service (ARS) (Arnold et 

al. 1998; Gassman et al. 2007). SWAT incorporates a wide variety of biophysical characteristics 

such as topography, land use/cover, soil, and climate, and is able to facilitate farmer land 

management decisions such as fertilizer, crop, and tile drainage choices, and model changes in 

stream flow and the transport of various nutrients (Arnold et al. 1998). Flow and nutrient 

transport processes within the SWAT model are routed at multiple scales. These scales, ranging 

from the smallest to the largest, include Hydrologic Response Unit (HRU), subbasin, and 

watershed levels. Although results can be derived and outputted from these multiple spatial 

scales, model processes exclude water, sediment, and nutrient flows across HRUs and instead are 

aggregated at the subbasin level and are routed across subbasins or through the stream phase of 

the model (Malagó et al., 2017). 

The SWAT model has been extensively used to analyze how land use, agricultural 

management practices, and climate change affect water quality in Lake Erie (e.g., Bosch et al. 

2014; Gildow et al. 2016; Michalak et al. 2013; Scavia et al. 2017). However, these biophysical 

studies assume large-scale or random adoption of conservation practices and do not link the 
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physical process model with economic behavior assessing actual adoption by farmers, which 

makes it hard to predict the practicality and efficiency of the scenarios.  

Building on Gebremariam et al. (2014), Gildow et al. (2016), and Kalcic et al. (2019), we 

build a spatially-explicit SWAT model calibrated to the western Lake Erie basin to simulate the 

hydrology and nutrient cycling of the Maumee River watershed. In particular, we delineate 358 

sub-basins within the watershed, and further divide them into 24,256 HRUs based on spatial 

features in land use, soils, and topography (Kast 2018). Agricultural practices, including crop 

rotations, fertilizer applications, tillage practices, subsurface drainage, and other BMPs are 

incorporated in the model (at HRU-level) in consultation with the USDA-ARS, the Ohio State 

University Agriculture Extension personnel, and our previously-mentioned farmer survey 

(Burnett et al. 2015; Zhang et al. 2016). Key water quality data such as stream flow, TP, and 

DRP, as measured at the Waterville River gaging station, were obtained from the National 

Center for Water Quality Research at Heidelberg University. These data were used to calibrate 

the SWAT model from 2005 to 2010 at a satisfactory level (Moriasi et al. 2007). 

 

3.2.5 Linking Economic Models and SWAT for Policy Simulations  

For a fertilizer-tax-alone policy, the linkages between the economic farmer decision making 

models and SWAT are simple. Specifically, a fertilizer tax would result in higher effective 

fertilizer prices and translate into predicted reduction in fertilizer application rates. The average 

predicted fertilizer rates at the township level are aggregated to the county level then randomly 

allocated to HRUs to obtain the HRU-average changes in P application rates to simulate changes 

in P loadings. 
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For a policy that involves cost-share payments, we rely on the BMP adoption models 

outlined in section 3.2.2 to generate predicted changes in near-term BMP adoption decisions at 

the field level, which are converted to share of adopted acres by pooling across survey 

respondents at the county level. We then downscale the county-level predicted changes in 

adopted acreage share to the 358 sub-basins within the SWAT model, with an average of 4,834 

acres per sub-basin. To do so, we assume that the predicted county-level land share of a given 

BMP, calculated as described in section 3.3, holds at a smaller spatial sub-basin level. We then 

randomly assign BMP adoption to each HRU within a sub-basin, using the predicted share of 

land acres as a constraint, so that the total share of land allocated to a given BMP corresponds to 

the predicted share at both sub-basin and county level. With the newly developed SWAT model, 

we are able to divide the sub-basins into finer scale spatial units of 24,256 HRUs, with an 

average size of 176 acres.  

To evaluate the cost-effectiveness of different policy scenarios, we develop a tradeoff 

frontier that contrasts the policy costs incurred by governments with water quality outcomes 

measured in TP and DRP loading reductions. We assume that the policy costs for the cost-share 

programs are the total outlays of the cost-share payments to farmers, and assume that there are 

no additional program costs given the necessary program structure for administering these 

payments is already in place. In contrast, we assume there is administrative cost from the tax 

policies. Previous studies on the fertilizer tax policy implementations in Europe show that the 

uniform tax would cost 7%–10% of the tax revenue collected while monitoring a spatially 

differentiated fertilizer tax, assumed to be at the individual parcel or management unit, would 

cost 25%–30% of the tax revenue collected (Lankoski et al. 2010). Given that even our zonal 

policy is still quite aggregate in spatial scale, and therefore not nearly as administratively 
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burdensome as a fully spatially differentiated tax, we assume a policy cost of 7% of the total tax 

revenues for the “tax only” policy scenarios and a slightly higher amount, 10%, for the policy 

cost to implement, collect, and recycle the tax under the hybrid revenue-neutral policies. Note 

that because our current economic models do not explicitly model farmers’ profit maximization 

decisions, our policy costs do not include the potential profit impacts induced by these BMP 

adoptions.
iv

   

 

4. Results and Discussions 

4.1 BMP adoption changes under different policy scenarios 

Based on our survey, about 51% of all cropland acres in the Maumee River watershed have 

already adopted subsurface placement and 20% have already adopted cover crops at the time of 

the survey, which is the baseline scenario without policy interventions (Table 2).  

Following equation (1), we use the field- and farmer-specific adoption cost as an 

explanatory variable to estimate effects of socio-psychological, socio-economic, and field-level 

spatial characteristics on adoption choice. As previously explained, appendix B shows the results 

and procedures of how we calculate field- and farmer-specific adoption costs. Regression results 

from ordered logit models are odds ratios, which we translate to exponentiated coefficient 

estimates for easier understanding in Table 2. Note that our objective is to understand and predict 

field-level adoption decisions under different policy interventions rather than causal 

identification, our prediction implicitly relies on the parameters on the adoption costs being 

correctly estimated. A higher adoption cost for subsurface placement or cover crops is 

hypothesized to lead to a lower probability of adopting these practices, which our results 

confirm—a $10 increase in the adoption costs for fertilizer subsurface placement leads to a 24% 
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decrease in the likelihood of adopting this practice in the future. Comparatively, a $10 increase 

in field-level adoption cost for cover crops results in a 28% decrease in the future likelihood of 

adopting cover crops. One factor that consistently affects farmers’ adoption decisions is the 

perceived efficacy of their conservation practices in reducing nutrient runoff. Perceived efficacy 

has a large positive impact on adoption decisions—a one unit increase in the perceived efficacy 

indicator almost doubles the likelihood of future adoption—confirming the finding of Zhang et 

al. (2016) and Wilson et al. (2019). We also find field acreage is positively correlated with BMP 

adoption decisions, possibly due to economies of scale. Other field and farmer characteristics do 

not have consistently significant impacts on farmer’s adoption decisions. Farm income has 

opposite impacts on the adoption decision of subsurface placement and cover crops. These 

results could be explained by the intrinsic differences between these two BMPs and emphasize 

the heterogeneity among BMPs as well as farmers and fields, which is consistent with Zhang et 

al. (2016).  

 

[Insert Table 2 Here: Ordered Logit Model Estimates of Subsurface Placement and Cover Crops 

Adoption] 

 

We aggregate the predicted adoption land share at county level for each payment scenario 

and present the average adoption rates (Figure 2a) measured in percentage of acres (adoption rate 

= total acreage of adoption agricultural land / total acreage of agricultural land). We see that with 

a $20/acre to $80/acre payment, the adoption rate of subsurface placement can increase from 

46% to 65%.
v
 For cover crops, the adoption rate can increase from 20% to 63% of all cropland 
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acres in the watershed. Appendix D shows county-specific predicted adoption rates for all policy 

scenarios.  

 

[Insert Figure 2 Here: Increases in BMP adoptions under different nutrient management policy 

scenarios] 

 

We also explore how fertilizer tax influences farmers’ fertilizer amount decisions and 

report the results for the reduced-form panel data analysis equation (2) in Table 3. This model is 

estimated separately for each crop and fertilization frequency choice. The mean estimated 

elasticity of P fertilizer demand is derived from the coefficient for p_price _norm, which is the 

estimated 𝛾𝑃𝑙0̂ in equation (2), while holding all other variables constant at means. On average, 

the estimated elasticity of P fertilizer demand ranges from -0.264 to -0.488. For example, there is 

a 2.64% reduction in P fertilizer rate given a 10% fertilizer price increase for corn fields with 

single-year fertilization. These estimates are similar to previous estimates of elasticity of 

fertilizer demand (Griliches 1958; Pitt 1983), which ranges from -0.20 to -0.95. A comparison of 

the elasticity across different fertilization frequency choices reveals that fields with multi-year 

fertilization application have a significantly higher elasticity of P demand than fields with single-

year application. This makes sense because farmers are more likely to use greater application 

rates with multi-year applications and could make flexible changes facing input price shocks. To 

evaluate the stability of our elasticity estimate, panel (II) only uses responses from these two 

hypothetical fertilizer application rate questions and assesses the effects of potential 

“hypothetical bias” on the estimated coefficient in P fertilizer prices. The implied elasticities are 
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very similar to the main specification, except for corn with multi-year applications, which is also 

within the range of previous estimates from the literature. 

 

[Insert Table 3 Here: Estimated elasticity of phosphorus fertilizer demand from reduced-form 

panel regressions] 

 

4.2 P loadings under different policy scenarios through Linkage with SWAT Model 

To link the predicted adoption rate under each policy scenario with SWAT, we randomly 

allocate the adoption rate within each county across 24,256 HRUs while maintaining the 

predicted adoption rate at the targeted level for each sub-basin. HRUs are the smallest spatial 

units at which hydrologists can identify nutrient flow in the SWAT model. Simulations generate 

monthly TP and DRP runoff from 2005 to 2015 (with 2000 to 2004 as the validation period) and 

we calculate the yearly spring (March to July) load to match the 2012 GLWQA target. Figure 2 

shows the average spring load change under each policy.  

In Figure 3a we show the percentage reduction in spring TP and DRP loadings under 

uniform or targeted cost-share payments for subsurface placement. Within uniform payments, a 

gain in adoption rate for subsurface placement from 46% to 65% results in load reductions of 8% 

in TP and 13% in DRP. The same level of total cost-share payment budget can achieve a much 

higher P reduction when targeting the runoff hotspots counties. Figure 3b shows the same 

payments but for cover crops where we see negligible P reductions of less than 1%. A number of 

factors could be responsible for the negligible impact of cover crops on phosphorus reductions 

including model parametrization and the timing between removing cover crops and planting the 

next crop in rotation within the model. In the SWAT model, the time between the removal of 
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cover crops and the planting of corn was 22 days. During this time the soil is bare and without 

cover, which could lead to more nutrient discharge than if the soil was covered (Zhang et al., 

2011). Although cover crops did not have an appreciable impact on phosphorus reductions, 

previous literature has revealed a range of impact from negligible to large effects on reducing 

phosphorus losses from increased cover crop adoption (Duncan et al., 2019; Singh et al., 2018; 

Iowa Nutrient Reduction Strategy 2017; Heathwaite et al., 2000; Sharpley and Smith, 1991).
vi

  

In Figures 3c and 3d we show respectively the percentage reduction for various levels of 

a fertilizer tax and the revenue-neutral hybrid policy in which the revenues from the fertilizer tax 

are used as BMP payments. The results clearly demonstrate that the hybrid policy is more 

effective than either a standalone fertilizer tax or cost-share policy. For example, at a 200% 

(400%) tax rate, we find that the reduction in TP and DRP is 22.5% (40%) and 29% (51%) 

respectively for the tax-only scenarios and 40.5% (54%) and 53% (69%) respectively. By 

comparison, if we spent the same amount of funds on cost-share payments for subsurface 

placement as is generated by a 200% fertilizer tax, then the estimated adoption rates would 

increase from 46% to 72% and result in load reductions of 18% in TP and 24% in DRP. 

 

[Insert Figure 3 Here: Reduction in total and DRP loadings under different nutrient management 

policy scenarios] 

 

4.3 Tradeoff frontier analysis of different nutrient management policies 

We establish the policy tradeoff frontier by contrasting the predicted DRP and TP reduction rate 

with the cost of each policy incurred by governments to evaluate the cost-effectiveness of each 

policy (Figure 4). As explained in section 3.2.5, we calculate only the direct government outlays 
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as the policy costs. Therefore the total cost-share payments are the policy costs for the voluntary 

BMP adoption programs. We assume that the policy costs for the fertilizer tax and hybrid 

tax/cost-share policies are 10% of the tax revenue. Figure 4 clearly demonstrates that the 

revenue-neutral combination policy of allocating tax revenue as payment for subsurface 

placement is the most cost-effective policy. Not surprisingly, because this is a revenue-neutral 

policy, it dominates any cost share payment program that imposes the policy cost on taxpayers. 

Because it not only raises the cost of pollution, but also increases BMP adoption by providing 

cost-share payments, the hybrid policy generates additional water quality gains relative to the 

fertilizer tax scenarios in which revenues are not redistributed in this way.  

 

[Insert Figure 4 Here: Tradeoff frontier of DRP loading reductions versus policy costs under 

different nutrient management policies]  

 

5. Conclusions 

HABs and hypoxia in freshwater and marine ecosystems are a growing global concern. In the 

United States, HABs in Lake Erie have worsened since the 1990s—the five worst blooms on 

record all occurred since 2011 (Wilson et al. 2019). The size of the hypoxic zone in the Gulf of 

Mexico is not smaller despite decades of nutrient reduction efforts. Previous research has 

decidedly linked agricultural nutrient runoffs with these downstream water quality problems. Our 

article focuses on the cost-effectiveness of various nutrient management policies in reducing 

nutrient runoff by developing a spatially integrated economic-hydrological model of the western 

Lake Erie basin. Our integrated model combines economic analysis of micro-level farmer 

adoption behavior of three key BMPs—subsurface placement, cover crops, and reduced P 
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fertilizer applications—with the SWAT model, which allows us to quantify changes in individual 

BMP adoptions and watershed-scale P loadings. Our results show that subsurface placements 

and P application rate reductions are more cost-effective than cover crops, and that a hybrid 

revenue-neutral policy, which applies fertilizer tax revenue as a cost-share payment for 

subsurface placement, is a far more cost-effective approach in achieving the desired 

improvements in water quality. We also find that, despite substantial increases in the adoption of 

single BMPs with increases in cost-share payments, the reductions in P are far below the 40% 

reduction goal. In contrast, the tax or hybrid policies can achieve the policy target and in a much 

more cost effective manner. For example, a 400% fertilizer tax could lead to 39.5% reduction in 

TP, while a hybrid policy in which a 200% fertilizer tax is applied and recycled for cost-share 

payments for subsurface placement can lead to 40.5% reduction in TP.  

Our findings have important implications for the design of nutrient management policies 

and integrated assessment models of nutrient runoff and water quality. In particular, our results 

show that by ignoring biophysical complexities, such as legacy P in the soils captured through 

biophysical process models such as SWAT, economic adoption models alone could significantly 

overestimate the effectiveness of these policies in reducing nutrient runoffs. We also demonstrate 

the importance of broadening the policy toolbox and moving beyond the prevalent cost-share 

payments to consider more cost-effective policy instruments such as a hybrid fertilizer tax/cost-

share payments program. This revenue-neutral combination policy not only induces fertilizer rate 

reductions, but also could help generate revenues that could be used for cost-share payment 

programs. Despite still being second best,
vii

 this makes it more cost-effective compared to the 

cost-share payment programs. Even the spatially targeted zonal policies, while more cost-

effective than uniform payments, are far less cost-effective than the hybrid policies.   
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Our article represents a step toward better understanding the complex coupled human-

natural systems of agricultural pollution and water quality and ecosystem services; however, it 

has several key limitations. First, we do not conduct a full-blown cost-benefit analysis, which 

would account for additional private and public benefits and costs, including potential foregone 

profits from reduced fertilizer applications that may result in lower yields and the corresponding 

increases in ecosystem service benefits from water quality improvements in Lake Erie. Future 

research is needed to incorporate benefits, such as Lake Erie recreational anglers’ willingness to 

pay (Zhang and Sohngen 2018), by combining them with lake ecological models and non-market 

valuation. Such studies could fully examine the tradeoff between fertilizer reduction and 

reduction in cost-share payments when tax is sufficiently high. Second, in terms of spatially 

targeted policies, we only explore the zonal policies that target runoff hotspot counties, but not at 

an individual field level, which would be necessary to establish the first-best policy benchmark. 

Third, future research needs to evaluate how to mitigate the bias and uncertainty resulting from 

the spatial and temporal mismatch when the predicted annual adoption behaviors are aggregated 

to the county level and the biophysical models generate daily or monthly water quality 

simulations at a much finer scale.  
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Tables 

Table 1. Variable Descriptions and Summary Statistics 

Variable Description # Obs. Mean Std. Dev. Min  Max  

Farmer choice 

Adopt_place The attitude of adopting subsurface 

placement (0 “will never adopt,” 1 

“unlikely to adopt,” 2 “likely to adopt,” 3 

“will definitely adopt,” and to 4 “have 

already adopted”) 

2134 2.65 1.25 0  4 

Adopt_cover The attitude of adopting cover crops (0 

“will never adopt,” 1 “unlikely to adopt,” 

2 “likely to adopt,” 3 “will definitely 

adopt,” and 4 “have already adopted”) 

2142 1.96 1.13 0  4 

P_rate P fertilizer rate (lbs/acre of P2O5 applied in 

2013)  

1488 100.07 252.84 0 300 

P_price_actual Actual P fertilizer price ($/ton) 1489 576.20 107.24 375 800 

P_price_hypothetical Hypothetical P fertilizer price ($/ton) 1489 367.60 157.17 200 950 

  

Socio-psychological characteristics 

Efficacy_placement                       Perceived effectiveness of adopting subsur

face placement at reducing nutrients (0 “n

ot at all” to 4 “to a great extent”) 

2189 2.59 0.97 0  4 

Efficacy_cover Perceived effectiveness of adopting cover 

crops at reducing nutrients (0 “not at all” t

o 4 “to a great extent”) 

2197 2.56 1.01 0  4 

Perception_control                                Farmers’ perception of  

control over the farm (0 “no control” to 6 

“complete control”) 

2189 3.49 1.02 0  6  

Risk_mean Risk attitude in general (0 “not willing to t 2198 5.17 2.09 0  10 
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ake risks” to 10 “very willing to take risk

s”)  

Farmer_identity       Farmer identity (ranges from -4 “greatest   

identity as productionist” to 4 “greatest ide

ntity as conservationist”)  

2185 1.29 0.84 -1.26  4 

  

Socio-economic characteristics 

Age                     Age (years) 2227 58.16 11.87 17   85 

Farm_income  annual gross farm 

income (2013 dollars) (1 “<$50,000,” 2 

“$50,000–99,999,” 3 “100,000–$249,99

9,” 4 “250,000–499,999,” 5 “>500,000”) 

2039 3.05 1.33 1 5  

  

Field-level characteristics 

field_acre                       Acreage of the field 2227 51.65 49.13 5 650 

Soil_quality                         Soil quality of the field (1 “low,” 2 “mediu

m,” 3 “high”) 

2227 2.02 .82 1  3  

Slope Slope of the field (1 “0%–2%,” 2 “2%–

5%,” 3 “5%–10%,” 4 “>10%,” 5 “not sur

e”) 

2197 2.13 1.43 1  5  

field_rent     Binary, =1 if field is rented 2204 .36 .48 0  1  
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Table 2. Ordered Logit Model Estimates of Subsurface Placement and Cover Crops Adoptions  

Variables Adopt subsurface placement Adopt cover crops 

Psychological-demographic characteristics 

Perceived_efficacy_of_subsurface_placement      0.7103***  

 (0.061)  

Perceived_efficacy_of_cover_crops  0.8700*** 

  (0.057) 

Perception_control 0.0536 0.0552 

 (0.056) (0.051) 

Risk_mean 0.0168 0.0294 

 (0.027) (0.025) 

Farmer_identiy -0.0182 0.1631*** 

 (0.066) (0.062) 

Socio-economic characteristics 

Age 0.0001* -0.0110** 

 (0.003) (0.003) 

Farm_income -0.0832*** 0.1064*** 

 (0.045) (0.041) 

Field-level spatial characteristics 

Subsurface_placement_cost -0.2416***  

 (0.015)  

Cover_crops_cost  -0.2835*** 

  (0.021) 

Field_acre 0.0031*** 0.0021** 

 (0.001) (0.001) 

Soil_quality 0.0907 0.0282 

 (0.067) (0.060) 

Slope -0.0407 -0.0260 

 (0.039) (0.036) 

Field_rent 0.0718 0.0069 

 (0.117) (0.108) 

   

Fixed effect  County level County level 

Observations 1,796 1,801 

Average baseline adoption rate – Maumee 51.1% 19.7% 

Average baseline adoption rate – IN 46.1% 14.0% 

Average baseline adoption rate – MI 52.2% 24.7% 

Average baseline adoption rate – OH  52.6% 20.9% 
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Table 3. Estimated Elasticity of Phosphorus (P) Fertilizer Demand from Reduced-Form Panel 

Regressions  

  

  
corn  

single 

corn  

multi 

soybean 

single 

soybean 

multi 
  

Linear panel fixed effects model 

Actual and hypothetical  -0.4376* -0.5634*** -0.4104*** -0.8462*** 

P price (0.2259) (0.1689) (0.1111) (0.2325) 

Intercept 115.89*** 112.47*** 109.52*** 148.71*** 

 (12.77) (9.43) (6.186) (13.39) 

Number of observations 1752 1097 603 405 

Implied mean elasticity -0.2714* -0.388*** -0.2638*** -0.4876*** 

     

Linear panel fixed effects model – Hypothetical questions only 

Hypothetical -0.4682*** -0.3616*** -0.3561*** -0.8307*** 

P price (0.1554) (0.1063) (0.1012) (0.2620) 

Intercept 124.65*** 100.82*** 112.63*** 155.93 

 (8.71) (5.84) (5.559) (14.990) 

Number of observations 1168 731 402 270 

Implied mean elasticity -0.2665*** -0.2456*** -0.2101*** -0.4383*** 

     

Average actual P application rate 

(lbs/ac) 

106.22 123.95 109.35 112.03 
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Figure Titles 

Figure 1. Map of the Maumee River watershed highlighting the per-acre phosphorus loading 

across subbasins.  

Figure 2. Increases in BMP adoptions under different nutrient management policy scenarios. 

Figure 3. Reduction in total and DRP loadings under different nutrient management policy 

scenarios. 

Figure 4. Tradeoff frontier of TP and DRP loading reductions versus policy costs under different 

nutrient management policies. 
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Grouped Endnotes 

                                                 
i Based on results from previous literature, we assume that policy costs are a function of program 

size. Specifically the costs of implementing the fertilizer tax are set at 7% of the total tax 

revenues generated ($14 million in the case of a 400% tax) and 10% for implementing the hybrid 

policy ($17 million in the case of a 200% tax). The latter is due to the added coordination that is 

necessary for redistributing the cost-share payments.  

ii While this may suggest that our sample is not statistically representative of all 18,116 farms in 

the Maumee River watershed, the 2012 Census of Agriculture data also shows that over 80% of 

all cropland in Ohio and Indiana are located on farms with at least 180 acres and over half of the 

acreage is on farms with at least 500 acres (U.S. Department of Agriculture 2014). As larger 

farms manage a greater relative proportion of cultivated lands in the Corn Belt, they also have a 

disproportionate potential to impact environmental quality through adoption or non-adoption of 

conservation practices. In fact, in the western Lake Erie basin, almost 65% of the cropland is 

managed by farmers with operations of at least 500 acres, while those with operations under 50 

acres manage less than 3% of the total acreage (U.S. Department of Agriculture 2014). Since the 

focus of our article is farmers’ water-quality-related management choices, it seems appropriate to 

focus on the larger farms, or the farmers who manage proportionally more acreage in the 

watershed, which is more important from both a behavioral and a water quality control 

perspective (Zhang et al. 2016). 

iii Adams (IN), De Kalb (IN), Fulton (OH), Henry (OH), Hillsdale (MI), Paulding (OH), Putnam 

(OH), Van Wert (OH), and Williams (OH). 
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iv Please see Zhang (2015) for an example for a more comprehensive analysis of the policy costs 

for uniform and spatially targeted fertilizer tax policies, including changes in farmers’ 

profitability.  

v
 Policy baselines are different from the survey baselines because of uncertainties in future 

adoption decisions. 

vi Although not a focus of this paper, the SWAT model showed cover crops had a greater impact 

on nitrogen losses (3% as adoption rate increased from 20% to 63%) than phosphorus losses 

(<1%). However, these losses are below levels found in other studies (Ruffatti et al., 2019; 

Thapa et al., 2018).The factors described above could also contribute to the muted effectiveness 

of cover crops on nitrogen loss reductions in this SWAT model. 

vii Although first-best policies can be efficient in theory, in reality they can be prohibitively 

expensive to implement (Lankoski et al. 2010) and most policies are second-best because of their 

uniform payments, transaction costs, information rent, or uncoordinated correction of policies 

(Claassen and Horan 2000; Larson, Helfand, and House 1996; Peterson et al. 2014; Weinberg 

and Kling 1996). 
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Figure A.1. Baseline adoption rate of subsurface placement. 
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Appendix B. Sample questions from the farmer survey regarding management costs 

 What plant population did you plant on this field for this most recent crop? 

Quantity: _______________ seeds/acre 

Price: _________ $/10,000 seeds 

 

 Did you apply manure on this field for this most recent crop? 

 No 

 Yes →source of manure (check all that apply) 

     Dairy    Swine    Poultry 

Quantity: ________ lbs/acre 

Price: ________ $/lb 

 

 Considering all fertilizers on this field for this most recent crop, how much phosphorus and 

nitrogen was applied and what was the price you paid? (Please write ‘0’ if none was applied) 

       Phosphorus       Nitrogen 

Rate (lbs/acre):      ________       ________ 

Price ($/ton):        ________       ________ 

Form (P):    MAP     DAP     APP          

Form (N):    Urea      UAN     NH3 

 

 How much in total did you spend on herbicide, insecticide, and fungicide for this field last 

year? Please select the costs per acre that best approximate your situation with this field. 

        $10   $15  $20   $30   

  $40   $50  $60   $80 

 

 Is this field covered by any Federal Crop Insurance program? 

       No  Yes  

 

 Do you rent this field? 

 No 

 Yes→ Who is primarily responsible for nutrient management decisions? (Check one) 

  Me alone 

 Primarily me, with landlord input 

 Equally me and my landlord 

 Primarily my landlord, with my input 

 My landlord alone 

 Other_____________________ 

          →What is your rental agreement with your landlord? (Check all that apply) 

 Rent for cash  
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 Rent for a share of crop 

 

 Tell us more about the machinery and equipment you used on this field last year: 

Horsepower of your largest tractor_______ 

 Horsepower of combine harvester _______ 

        Number of rows in planter ________ 

 

For more details, please refer to the descriptive report about the survey on this project website: 

http://ohioseagrant.osu.edu/archive/maumeebay/project/resources/ (Burnett et al. 2015).  

 

 

 

 

 

 

 

 

 

  

http://ohioseagrant.osu.edu/archive/maumeebay/project/resources/
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Appendix C. Construction and prediction of field-level BMP adoption costs 

C.1 Construction of Field-level Production Cost 

We calculate the total costs of managing the farm for each respondent based on their specific 

responses in the survey. In particular, each farmer was asked to allocate all their fields into high-, 

medium-, and low-productivity categories based on corn and soybean yield ranges and pick one 

field from a randomly selected quality class (e.g., pick one field among all high-productivity 

fields that they operate). For each chosen field, the farmer provided various field-specific 

expenditures that we used to construct the field-level production cost (see Appendix A for 

sample questions on these expenditures). These responses include field-specific seeding rate and 

seeding cost, manure quantity, type, and unit price, fertilizer application quantity, type, and unit 

price, per-acre expenditures on herbicide and federal crop insurance program, as well as whether 

the fields are cash rented from other farmers. The respondents also provided agricultural 

production details on corn drying, machinery usage and repairs, fuel usage, and labor and 

management conditions, which were converted into dollar-based expenditures using the 

statewide custom rates and standard production costs based on the 2012 Ohio State University 

Production Cost and Custom Rate Survey (Ward 2012).  

 

C.2 Predicting Field-level Adoption Cost of Conversation Practice 

Field-level adoption cost of specific conservation practices is one unique explanatory variable. 

For each practice—fertilizer subsurface placement or cover crops—we run a separate OLS 

regression of the field-level total production cost on field-level physical characteristics (e.g., 

field size, soil quality, rent status), management practice decisions (e.g., BMP adoption), and 
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field operator’s demographic characteristics (e.g., age). This regression allows us to separate the 

adoption cost for each conservation practice from its total production cost at the field level and 

allow for heterogeneity in this cost across fields and operators. We include two interaction terms 

between this adoption dummy—one operator demographic characteristic (age) and one field-

level characteristic—proxied by field size. Previous literature has demonstrated that adoption 

cost will vary by both operator and field characteristics (Traoré, Landry, and Amara 1998; 

Prokopy et al. 2008). We use the age of the operator and field size as two proxies for this 

heterogeneity. We represent the field size in both acreage and acreage bins and find robust 

results.
i
 In particular, we estimate two regressions for phosphorus fertilizer subsurface placement 

and cover crop adoption separately:  

𝐹𝑖𝑒𝑙𝑑 𝑙𝑒𝑣𝑒𝑙 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

= 𝛼 ∗ Xfield +  β ∗ Xoperator + 𝛾1 ∗ already adopted subsurface placement +  𝛾2

∗ already adopted subsurface placement ∗ age + 𝛾3 ∗ already adopted subsurface placement

∗ acreage + 𝛾4 ∗ adopted any BMP other than subsurface placement

+ ε                                      Eq. [C1] 

𝐹𝑖𝑒𝑙𝑑 𝑙𝑒𝑣𝑒𝑙 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

= 𝜁 ∗ Xfield +  η ∗ Xoperator + 𝜃1 ∗ already adopted cover crops +  𝜃2

∗ already adopted cover crops ∗ age + 𝜃3 ∗ already adopted covercrops ∗ acreage + 𝜃4

∗ adopted any BMP other than cover crops + ε                                            Eq. [C2] 

where Xfield includes field size, soil quality, whether the field is rented (0/1), and whether the 

field has adopted any BMP other than subsurface placement (0/1); and, Xoperator includes the age 

of the farmer. In particular, as explained earlier, we included a binary variable “already adopted,” 

which equals one when the farmer has already adopted the BMP of interest on this specific field. 
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We also control for the adoption of BMPs other than the one of interest including grid soil 

sampling with variable rate, delaying broadcasting when the forecast predicts a 50% or more 

chance of at least one inch of total rainfall in the next 12 hours, managing field water levels with 

drainage management systems, avoiding winter or frozen ground surface application of 

phosphorus, avoiding fall application of phosphorus, determining rates based on regular soil 

testing once within the rotation (or every three years), following soil test trends to maintain the 

agronomic range for phosphorus in the soil (15 to 30 ppm), and requiring a 4R certification 

program for private applicators. 

               In practice, the adoption dummy variable and these two interaction variables allow us 

to derive field-specific adoption costs after estimating these two aforementioned regressions: 

Field level predicted adoption cost for field i for subsurface placement =

γ
1

̂
∗  already adopted subsurface placement +  γ

2

̂
∗  already adopted subsurface placement ∗

 age_i +γ
3

̂
∗  already adopted subsurface placement ∗

 field size_i                                                      Eq. [C3]                                                                                                                

 

Field level predicted adoption cost for field i for cover crops =

 θ
1

̂
∗  already adopted cover crops +  θ

2

̂
∗  already adopted cover crops ∗  agei +θ

3

̂
∗

 already adopted cover crops ∗  field sizei                                                                                       Eq. [C4]          

where 𝛾0̂, 𝛾1̂, 𝛾2̂, 𝛾3̂, 𝜃0̂, 𝜃1̂,  𝜃2̂, 𝑎𝑛𝑑 𝜃3̂ are coefficients estimated from Eq. [C1] and Eq. [C2]. 

                These regressions naturally suggest that in our study, the adoption costs for BMPs vary 

not only by the intrinsic features of BMP adoption (𝛾0̂, 𝛾1̂, 𝜃0̂, and 𝜃1̂ ), but also vary across 

different fields and farmers due to heterogeneous age/experience and spatially-varying field 
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characteristics. We expect 𝛾1̂𝑎𝑛𝑑 𝜃1̂ to be postitive, representing an increase in production cost 

in general due to BMP adoption, but 𝛾2̂ and 𝜃2̂ to be negative meaning that more experienced 

operators could adopt these practices in a marginally more cost-effective manner. 𝛾3̂ and 𝜃3̂ can 

be positive or negative depending on the particular BMP because some larger fields have lower 

per acre costs due to economies of scale, while some other larger fields require different 

technology or crops that potentially increase per acre costs.   

 

C.3 Predicting Field-level Adoption Cost of Conversation Practice 

We estimate Eq. [C1] to predict field-level adoption costs of subsurface placement. Table B.1 

shows that on average the cost of adopting any BMP other than subsurface placement is $24 per 

acre. Larger farms and better soil quality induce higher production cost, which may be 

interpreted as higher investment on the farm. Rented land also incurs higher associated costs. 

Our approach allows us to dissect the farm-specific adoption cost of BMP based on farmer 

demographic characteristics (represented by farmer’s age) and farm-level physical characteristics 

(represented by field size). As predicted, we find 𝛾1̂ to be positive, showing there is additional 

cost of adopting subsurface placement. 𝛾2̂ 𝑎𝑛𝑑 𝛾3̂ are both negative, indicating that farmer 

experience and economy of scale reduces the per acre adoption cost. For those who adopted 

subsurface placement, the adoption cost decreases by $1 per acre (𝛾2̂) with a one-year increase in 

farmer’s age; and, a one-acre increase in field size decreases the adoption costs by about $.28 

(𝛾3̂). Based on these estimates, we uncover the field- and farmer-specific subsurface placement 

adoption cost following Eq. [C3]: 
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𝑠𝑢𝑏𝑠𝑢𝑓𝑎𝑐𝑒 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

= 102.3464 − 1.0503 ∗ 𝑎𝑔𝑒 − 0.2828 ∗ 𝑓𝑖𝑒𝑙𝑑 𝑎𝑐𝑟𝑒𝑎𝑔𝑒                       𝐸𝑞. [𝐶5]       

            We set the lower bound of adoption cost at zero and replace those below zero with zero 

because it is unrealistic to assume a negative adoption cost, which accounts for less than the 

lowest 5% tail of the distribution. The average estimated per acre subsurface placement adoption 

cost is $24.32 based on average farmer characteristics and field-level characteristics, which is in 

line with BMP adoption cost, and different federal or state cost-share programs. Generally, 

subsurface placement is $12–$15 more per acre than broadcast phosphorus application, where 

broadcasting costs $4.10–$15.20 per acre depending on the fertilizer type. For non-adopters, we 

assume their costs are higher and use the 75th percentile ($100.07/acre) of the adoption cost 

distribution as the proxy.  

Table C.1. Subsurface Placement Adoption Cost Estimates 

Variable                   Total cost 

Field acreage Field acreage bins 

Other_BMP 23.7767*** 25.6974*** 

 (7.228) (7.253) 

Field_acre   0.2821***  

 (0.058)  

Field_size_bin_dummy  32.3665** 

  (12.677) 

Age -0.2244 -0.2329 

 (0.212) (0.213) 

Soil_quality 27.6678*** 28.4730*** 

 (3.446) (3.460) 

Field_rent 14.1109** 14.4501** 

 (6.013) (6.039) 

Already_placement(𝛾0̂) 102.3464*** 127.7725*** 

 (26.584) (33.620) 

Already_placement*age (𝛾1̂) -1.0503** -1.0638** 

 (0.440) (0.442) 

Already_placement*field acreage(𝛾2̂) -0.2828***  
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 (0.058)  

Already_placement* Field_size_bin_dummy (𝛾2̂)  -37.0227* 

  (20.424) 

Constant 242.5131*** 218.3774*** 

 (62.212) (64.200) 

Fixed effect County level County level 

Observations 2,324 2,324 

 

           The results for cover crops resemble that for subsurface placement (Table B.2), and 

similarly, wee uncover the field- and farmer-specific cover crop adoption cost following Eq. 

[C4]: 

𝑐𝑜𝑣𝑒𝑟 𝑐𝑟𝑜𝑝 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = 38.8825 − 1.0555 ∗ 𝑎𝑔𝑒 + 0.2957 ∗ 𝑓𝑖𝑒𝑙𝑑 𝑎𝑐𝑟𝑒𝑎𝑔𝑒         𝐸𝑞. [𝐶6]        

           As expected, we find 𝜃1̂ to be positive, showing the additional cost of adopting cover 

crops. We find 𝜃2̂ to be negative, indicating one year of experience reduces the adoption costs by 

about $1. Here we find adoption cost increases with field size, which could be explained by the 

different types of cover crops or different technology chosen due to the field size. Using these 

proxies, we find that the average per acre adoption cost for cover crops is $31.70, which is in the 

range of USDA-NRCS payments ($28.71/acre to $34.76/acre).
ii
 Again, for non-adopters, we 

assume their costs are higher and use the 75th percentile ($36.60/acre) as a proxy for their 

adoption costs.  

Table C.2. Cover Crops Adoption Cost Estimates 

Variable                   Total cost 

Farm acreage Farm acreage bins 

Other_BMP 38.3383*** 38.4771*** 

 () (6.87) 
Field_acre   -0.0007  

 (.002)  

Field_size_bin_dummy  21.3790* 

  -11.072 

Age -0.3167 -0.3396* 
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 (0.198) (0.198) 
Soil_quality 27.5982*** 27.9594*** 

 (3.488) (3.486) 
Field_rent 13.6962** 13.7392** 

 (6.077) (6.083) 

Already_cover_crop(𝜃0̂) 38.8825 73.2262 

 (36.938) (44.877) 

Already_cover_crop*age (𝜃1̂) -1.0555* -1.1383* 

 -0.614 -0.613 

Already_cover_crop*acreage(𝜃2̂) 0.2957**  

 -0.13  

Already_cover_crop* Field_size_bin_dummy -14.4433 

  -44.877 

Constant 272.0461*** 246.7916*** 

 -61.978 -63.363 

Fixed effect County level County level 

Observations 2,324 2,324 
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Appendix D. Combinations of tax and cost-share payments 

Table D. Combinations of tax and cost-share payments 

Tax (%) 

Total revenue 

(million dollars) 

Matching payment for 

subsurface placement 

($/acre) 

20 22.30 10 

40 43.42 20 

60 63.35 30 

80 82.10 40 

100 99.66 45 

200 173.57 170 

300 218.00 200 

400 234.21 210 

 

For each level of tax revenue, we find the most efficient way of using it as cost-share payment, 

i.e. the level that leads to highest adoption rate. For example, the 20% fertilizer tax will collect 

$22.3 million dollars, if used for payment for subsurface placement, it can pay $10/acre which 

leads to 50.25% of adoption. Note that this adoption rate is lower than current adoption rate 

without policy intervention, which is because we use the Lewis and Plantinga (2007) method 

take into account of the uncertainty in future adoption, even for current adopters. Similarly, if 

budget is used for cover crops payment, it can pay $25/acre which leads to about 30.65% of 

adoption. Note that the current adoption rate is lower for cover crops, which requires higher 

payment to increase.  

In Figure D, we plot the percent changes in loadings as a function of the fertilizer tax 

across a wide range of tax rates to investigate the tax rate that minimizes loadings in both the tax-

only and hybrid policy cases, according to Equation [4] and as described in section 3.2.3, which 

forces us to consider unrealistic levels of a fertilizer tax. We find that total tax revenues are 
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maximized at about an 800% tax, and that the tax rate at which loadings are minimized in both 

the tax-only and hybrid tax scenarios is closer to 1000% percent. At a 1000% tax, the model 

predicts that the average fertilizer application is driven to 0, which makes this tax a “choke price.” 

The result is a corner solution: the effectiveness of reduced fertilizer application in reducing 

loadings dominates the effectiveness of either BMP in reducing loadings, and therefore the most 

effective approach to reducing loadings is simply to reduce fertilizer application.  

Clearly these are highly unrealistic scenarios, and we include them only for illustrative 

purposes to examine the relative differences in the policies and the potential trade-off in loading 

reductions from the hybrid policy. As explained in section 3.2.3, this approach omits a broader 

consideration of cost and benefits, included the foregone profits from massive increases in 

fertilizer costs that drive application rates to zero. The optimal tax would account for these 

forgone profits while also considering the social benefits of reduced loadings in terms of 

improved ecosystem services. Both effects are likely to be substantial, and thus a full analysis of 

the optimal tax policy is important, but beyond the scope of this paper.  

 

Figure D. Comparison of TP and DRP reduction of tax policies    
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Appendix E. Adoption rate for cost-share payment scenarios 

Table E Adoption rate for cost-share payment scenarios 

Cost-share 

payment 

($/acre)_ 

Subsurface 

placement 

adoption acreage 

Subsurface 

placement 

adoption rate 

Cover crops 

adoption acreage 

Cover crops 

adoption rate 

Baseline 661023.4 45.78% 182123.4 19.84% 

20 711772.1 49.29% 246991.2 26.91% 

40 780481.3 54.05% 339932.0 37.04% 

60 846717.3 58.64% 469360.2 51.14% 

80 933650.1 64.66% 572887.8 62.42% 
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Appendix F.  
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Figure F. Policy costs and tax burden for: (a) $40/acre uniform payment, (b) $80/acre spatially 

targeted payment, (c) 200% tax+payment hybrid policy.   
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Grouped Endnotes 

                                                 
i
 150 acres each bin 

ii
 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1082778.pdf  

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1082778.pdf
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