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Abstract

1. Floral resources are a key driver of pollinator abundance and diversity, yet their

quantification in the field and laboratory is laborious and requires specialist skills.

2. Using a dataset of 25,000 labelled tags of fieldwork-realistic quality, a convolutional

neural network (Faster R-CNN) was trained to detect the nectar-producing floral

units of 25 taxa in surveyors’ quadrat images of native, weed-rich grassland in the

United Kingdom.

3. Floral unit detection on a test set of 50 model-unseen images of comparable vege-

tation returned a precision of 90%, recall of 86% and F1 score (the harmonic mean

of precision and recall) of 88%.Model performancewas consistent across the range

of floral abundance in this habitat.

4. Comparison of the nectar sugarmass estimatesmade by theCNNand three human

surveyors returned similar means and standard deviations. Over half of the nectar

sugar mass estimates made by the model fell within the absolute range of those of

the human surveyors.

5. The optimal number of quadrat image samples was determined to be the same for

theCNNas for the averagehuman surveyor. For a standardquadrat samplingproto-

col of 10–15 replicates, this application of deep learning could cut pollinator-plant

survey time per stand of vegetation from hours tominutes.

6. The CNN is restricted to a single view of a quadrat, with no scope for manual exam-

ination or specimen collection, though in contrast to human surveyors its object

detection is deterministic and its floral unit definition is standardized.

7. As agri-environment schemes move from prescriptive to results-based, this

approach provides an independent barometer of grassland management which is

usable by both landowner and scheme administrator. The model can be adapted

to visual estimations of other ecological resources such as winter bird food, flo-

ral pollen volume, insect infestation and tree flowering/fruiting, and by adjust-

ment of classification thresholdmay show acceptable taxonomic differentiation for

presence–absence surveys.
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1 INTRODUCTION

Reduction of floral resources, primarily through habitat loss and

changes in land use, is indicated as a major cause of insect pollinator

decline (Dicks et al., 2015; Jones et al., 2021). Intervention strategies

focus on enhancing pollinator food resources bymeasures such as crop

diversification, relaxed mowing (e.g. Phillips et al., 2020), sown flower

meadows (Ouvrard et al., 2018) and cropmargins (Carvell et al., 2004).

Nectar and pollen-rich habitat are key drivers of pollinator abun-

dance and diversity (Baldock et al., 2015; Timberlake et al. 2021), yet

their analysis in the field and laboratory is laborious and requires spe-

cialist skills (Breeze et al., 2020). The standard field survey method to

monitor and quantify pollinator food plants (comprising: species iden-

tification, flower counts in replicated quadrats/transects, then conver-

sion to pollinator resource) requires a prohibitively large amount of

person-power to obtain a robust sample; for example Baldock et al.

(2019) employed a teamof 12 people to count twomillion flowers over

2 years. Field images of quadrats are usually taken for confirmatory

purposes only, by necessity recording a general overview rather than

focused portraits of the individual plant species present.

The aim of this work was to determine the potential for automated

estimation of the daily nectar sugar mass produced by stands of flow-

ering vegetation.

1.1 Computer vision

Automated classification has been successfully applied to identify sin-

gle instancesof taxa in images (e.g. Tabaket al., 2019;Valanet al., 2019).

Our challengewas todetectmultiple instances of floral units per image,

of a range of taxa in vegetation quadrats. This requires (i) generating

multiple bounding boxes (‘tags’) surrounding candidate objects (floral

units) in a given image, (ii) labelling each object as belonging to a spe-

cific class (here, 25 plant taxa) and (iii) assigning a confidence score to

each object classification.

The raw data are digital colour images, typically consisting of three

matrices (the ‘channels’ red, green, and blue) each with a total number

of pixels equalling image height × image width. The individual pixel val-

ues range from 0 to 255, so each colour in the image is one of (2563 )

16.8million possibilities.

1.2 Deep learning

The term ‘deep‘ defines a subfield of machine learning characterized

by hierarchical representations (Bengio, 2012), which has recently

achieved historic breakthroughs in image classification, speech recog-

nition, text-to-speech conversion and board games, by using neural

networks to learn features in data. Such models often use hundreds

of successive layers of representations learned automatically from

training datasets, the retained representations becoming increasingly

abstract from the original data and increasingly informative about the

target. The learning in such a network therefore is an optimization pro-

cess in which each layer is adjusted for optimal performance on the

training data via a feedback signal (the loss function).

Deep learning is within reach of ecologists thanks to powerful

open-source software and the availability of graphical processing units

(GPUs) as hardware or virtual machines. For labour-intensive ecolog-

ical surveys, Torney et al. (2019) concluded that their deep learning

network of Wildebeest abundance could reduce 18 person-weeks

of analysis to 1 day, to within 1% of the estimates of expert human

surveyors.

1.3 Convolutional neural networks

Convolutional neural networks (CNN) are currently one of the most

promising deep learning methods for ecological studies. CNNs are

designed to learn feature hierarchies and local patterns in a stochastic

way, typically learning these in small two-dimensional frames of input

images. The building blocks of a CNNare data-processingmodules (the

convolutional layers), which by matrix arithmetic act as filters, extract-

ing representations from the data to produce a trained network. The

numerical arrays of pixel values in the training dataset are inputted to

the CNN, then its predictions are iteratively compared to the labelled

validation data by backpropagation (see below). As the CNN has not

been exposed to the validation data, its performance on this dataset

indicates whether the model is underfitting or overfitting, that is how

well it is generalizing to unseen instances.

The loss function guides an iterative search for weight values to

map inputs to outputs (in this case, floral units) by successively adjust-

ing the value of the weights in a direction that lowers the loss score,

then repeating over many training-loops (epochs). Each labelled box

in the training image set and labelled box proposed by the model are

thus evaluated to estimate accuracy. As the matrix operations of the

CNN are differentiable, the gradient of the loss can be computed and

weights moved in the opposite direction from the gradient, so to mini-

mize the loss function and yield outputs which are as close as possible

to inputs. Backpropagation applies the chain rule of calculus to com-

pute the effect that each parameter had in the validation loss, and the

updated parameters are used to start the next epoch. A multiplicative

factor specified by the modeller (the learning rate) is applied to the

gradient for the parameter update. An epoch is complete when every

bounding box has already been used for computing the loss.
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In earlywork, Chen et al. (2014) usedCNNs for animal identification

to a detection accuracy of 0.38 using a dataset (20,000 images and 20

classes) of a similar scale to our floral units. For comparative purposes

in this paper, we use the metrics of precision, recall and F1 score (see

Section 3.2), and the terms F1 and detection accuracy interchangeably.

Later Xia et al. (2018) obtained a detection accuracy of 0.76 for

their CNN of sea cucumber species on model-unseen internet images,

and that of Tresson et al. (2019) detected and identified individu-

als and castes of 23 ant species to a detection accuracy of 0.88.

Ditria et al. (2020) developed a CNN to estimate fish abundance that

reached a detection accuracy of 0.92 in single image datasets, 7.1%

better than achieved by human experts. Likewise that of Duporge

et al. (2020) to estimate African elephant abundance in heterogeneous

areas (weighted detection accuracy = 0.78) exceeded expert human

performance by 1%.

1.4 Faster R-CNN

Faster R-CNN (Ren et al. 2015) uses a region proposal network

to rapidly find object-like regions, which are fed to a Fast R-CNN

detector (Girshick, 2015) in a single model design, which has outper-

formed other algorithms in comparative studies on ecological data (e.g.

Duporge et al., 2020; Schneider et al., 2018).

A deployed Faster R-CNNmodel generates region proposals by slid-

ing a network over a test image, of tens-of-thousands of windows at

differing scales and aspect ratios, assigning a binary class label (is / is

not an object) at each window location. A softmax estimator of k + 1

classes (k= 25 taxa in our case, plus a ‘background‘ class) defines a dis-

crete probability distribution for each proposed region, and fine-tunes

by regression to a final bounding box. Computation is completed in sec-

onds, making this approach attractive for challenging fieldwork.

In this study, we use 25,000 labelled tags in almost 2000 fieldwork-

realistic images to train and validate a Faster R-CNN to detect, iden-

tify and quantify the nectar-producing floral units of 25 flowering plant

taxa in images of grassland in the United Kingdom. We compare the

time and performance of the CNN to expert human surveyors and

explore potential future applications of our approach.

2 MATERIALS AND METHODS

2.1 Habitat

We selected native, weed-rich grassland for automated estimation

of pollinator resources due to its widespread importance in ‘relaxed

mowing’ of urban green spaces by city councils (e.g. Scottish Govern-

ment, 2019), agricultural payment-by-results schemes (Chaplin et al.,

2019) and pollination research on road verges and unmown meadows

(e.g. Phillips et al. 2020). Indeed Jones et al. (2021) concluded that

management changes on improved grassland have the greatest poten-

tial to increase floral resource availability across the United Kingdom.

An approximate altitudinal limit of 500 m asl was imposed to sepa-

rate this habitat type fromupland vegetation assemblages.We focused

on nectar, although the same approach could be applied to detection of

other drivers such as pollen, larval foodplants or structural features.

2.2 Training dataset

All images were taken from vertical or near-vertical, encompassing

approximately 1 m2 of untrampled ground area, with no extraneous

objects (e.g. quadrat frame, litter), of a maximum vegetation height of

1 m, of minimum size 2 MB and in reasonable focus. A Canon Power-

shot G10 (14.7Megapixels) was used to compile these training data.

To cover peak annual nectar production, a total of 1997 images

were generated in the United Kingdom from May to August inclusive

in 2019. Plants were identified using Stace (2019), though maintaining

the synonym of Jacobaea vulgaris (Senecio jacobaea) for continuity with

the UK Pollinator Monitoring Scheme (https://www.growwilduk.com/

blog/help-count-pollinators-science).

We estimated that training for each taxon would require around

1000 labelled image tags, and that available time and resources

allowed 25 taxa. We examined floral nectar production in this habitat

(Baude et al., 2016) to refine targetting to the most common and high-

est nectar-producing taxa. For each taxon, we identified a floral unit

definition that was practicable for image detection (Figure 1) and esti-

mation of nectar sugar mass (Section 2.3).

2.3 Tags and nectar values

Manual drawingandclassificationofboundingboxes (‘tags‘) around flo-

ral units in the images was conducted using VoTT (Barlow, 2020), for

which accurate taxonomic identification is pivotal.

To include sufficient pixels in tags, for some small-flowered taxa (e.g.

Stachys sylvatica, Prunella vulgaris), our floral unit definitions comprised

larger structures than were used in the original nectar assays (Baude

et al., 2016; Hicks et al., 2016). For those the assay’s nectar sugar mass

per floral unit wasmultiplied accordingly.

Taxa with a similar appearance from the vertical (e.g. Ranunculus

repens andR. acris; Leontodon spp. andHypochaeris radicata) were aggre-

gated if their nectar sugar values were not markedly divergent. The

species and nectar value derivations for these aggregate taxa (Lotus

spp., Ranunculus spp., yellow composites) are detailed in Table 1 and

illustrated in Figure 1.

The Pascal VOC format .jpg images and .kml tag labelswere checked

for errors and divided into taxonomically-balanced training and valida-

tion subsets, of 1595 (20,106 tags) and402 (5246 tags) images, respec-

tively.

https://www.growwilduk.com/blog/help-count-pollinators-science
https://www.growwilduk.com/blog/help-count-pollinators-science
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F IGURE 1 Sample tags of the 25 classes used for the CNN. In each case, the black frame in the image represents a single floral unit trained in
themodel. From top-left to bottom-right: Achillea millefolium; Angelica sylvestris; Bellis perennis; Centaurea nigra; Cirsium arvense; C. vulgare;
Heracleum sphondylium; Knautia arvensis; Lathyrus pratensis; Leucanthemum vulgare; Lotus spp. (L. corniculatus); Lotus spp. (L. pedunculatus); Prunella
vulgaris; Ranunculus spp. (R. acris); Ranunculus spp. (R. repens); Rhinanthus minor; Rubus fruticosus agg.; Senecio jacobaea; Silene dioica/latifolia (S.
dioica); Silene dioica/latifolia (S. latifolia); Stachys sylvatica; Symphytum officinale; Taraxacum agg.; Trifolium pratense; T. repens; Vicia cracca; V. sepium;
yellow composite (Hypochaeris radicata); yellow composite (Leontodon hispidus); yellow composite (Scorzoneroides autumnalis)

2.4 Class balance

Flowers of some taxa (e.g. Lathyrus pratensis, Taraxacum agg.) were

represented by fewer tags in the training dataset than the best rep-

resented (e.g. Leucanthemum vulgare, Ranunculus spp.), due largely to

population densities in the wild. To minimize the training influence of

imbalanced classes, and because we also apply image augmentations

downstream (see section 2.5), we oversampled (e.g. Ferreira et al.,

2019) 104 of the original images once. This increased the training

dataset to 1699 images (21.934 tags. Figure S.1 in the Supporting

Information).

2.5 Model training

To train the CNN, we used the PyTorch deep learning framework

(Paszke et al., 2016) based on the Torch library developed by Facebook

AI Research. Training and validation files were uploaded to aMicrosoft

AzureData ScienceVirtualMachinewith theNC seriesCUDA-enabled

GPUs available in theWestern Europe region. On this virtual machine,

we set up anAnaconda3 virtual environmentwith Python.3.8.5 (2020),

PyTorch (Paszke et al., 2016), torchvision (Marcel & Rodriguez, 2010),

NumPy (Harris et al., 2020), detecto (Bi, 2019) and pandas (McKinney,

2010).

To prime the Faster R-CNN, we employed transfer learning (Pan

& Yang, 2010) by using available weights as initialization parameters,

in this case, a ResNet-50 Feature Pyramid Network (He et al., 2015)

whichwas thewinning architecture of the 2016 ImageNet competition

(He et al., 2016). The training and prediction scripts were written in

Python IDLE.3.8 (Reedy, 2020) including several manipulatable param-

eters, batch sizes and random augmentation of images on the train-

ing data only (horizontal flips, saturation, brightness, contrast and hue

effects) to increase diversity and therefore generalization to model-

unseen images. In addition, we used L2-regularization which penalizes

large weights, thereby enforcing the network to use small weights to

minimize model overfitting. Finally to tackle multiple overlapping pro-

posal boxes, we applied soft non-maximum suppression (NMS; Bodla

et al., 2017). This recursively sorts all detection boxes on the basis of

their scores, given a user-defined proportion of intersection over union

(IoU = area of overlap of boxes / area of union of boxes), eliminating

those competing boxes with the lowest scores.

Trial models were run with a range of virtual machine specifications

and PyTorch parameters, optimizing the latter to minimize the loss

function on the validation set as a measure of generalization to unseen

records (Figure S.2 in the Supporting Information). This is a multi-task

loss function on each labelled proposal, combining the losses of classi-

fication and bounding-box regression. For those models that stabilized

at a low validation loss, a range of different stopping times ( = num-

ber of epochs) were trialled and the behaviour of those models on the

training images was assessed visually. No lower confidence level was

enforced on classifications, and an IoU value of 0.1 (10% overlap) was

chosen to generalize to the majority of the taxa. The latter is aimed
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TABLE 1 Species and aggregate classes in the training dataset, with derivation of nectar sugar mass per CNN floral unit (far right column).
Where the floral unit definitions used in the CNN are the same as those of the original assays, nectar values are equal in the assay andmodel
columns.Where the CNN used larger floral units the nectar values were scaled up. The CNN floral units are illustrated in Figure 1

Original nectar assays

Conversion of nectar assays to CNN

model

Taxon

Derivation of nectar sugarmass

assay value

Floral unit definition

of original nectar

assay

Nectar sugar

mass assay value

(µg/day)

Number of nectar

assay floral units

in eachmodel tag

Nectar sugarmass

value of eachmodel

tag (µg/day)

Achillea millefolium,
yarrow

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Capitulum 36.72 6 220.32

Angelica sylvestris, wild
Angelica

Value of Baude et al. (2016) Single flower 15.66 12 187.92

Bellis perennis, daisy Mean value of Baude et al. (2016)

andHicks et al. (2016)

Capitulum 65.43 1 65.43

Centaurea nigra, black
knapweed

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Capitulum 6089.74 1 6089.74

Cirsium arvense,
creeping thistle

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Capitulum 4574.31 1 4574.31

Cirsium vulgare, spear
thistle

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Capitulum 8628.74 1 8628.74

Heracleum sphondylium,
Hogweed

Value of Baude et al. (2016) Single flower 98.17 15 1472.55

Knautia arvensis, field
scabious

Value of Baude et al. (2016) Inflorescence 9861.29 1 9861.29

Lathyrus pratensis,
meadow vetchling

Value of Baude et al. (2016) Single flower 952.69 2 1905.38

Leucanthemum vulgare,
oxeye daisy

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Capitulum 1326.36 2 2652.73

Lotus spp., birdsfoot
trefoil aggregate

Mean value of L. pedunculatus and L.
corniculatus, fromBaude et al.

(2016) andHicks et al. (2016)

Single flower 53.88 4 215.52

Prunella vulgaris,
selfheal

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Single flower 192.77 3 578.32

Ranunculus spp.,
buttercup aggregate

Mean value of R. acris and R. repens,
fromBaude et al. (2016) and

Hicks et al. (2016)

Single flower 141.18 1 141.18

Rhinanthus minor,
yellow rattle

Value of Baude et al. (2016) Single flower 108.90 4 435.60

Rubus fruticosus,
blackberry

Value of Baude et al. (2016) Single flower 1892.83 1 1892.83

Senecio jacobaea,
common ragwort

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Capitulum 1736.44 1.5 2604.66

Silene dioica/latifolia,
red/white campion

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Single flower 297.82 2 595.64

Stachys sylvatica, hedge
woundwort

Value of Baude et al. (2016) Single flower 311.11 2 622.22

Symphytum officinale,
common comfrey

Value of Baude et al. (2016) Single flower 1969.46 2.5 4923.65

Taraxacum agg.,

dandelion

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Capitulum 3397.82 1 3397.82

Trifolium pratense, red
clover

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Single flower 82.61 24 1982.71

Trifolium repens, white
clover

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Single flower 30.55 16 488.84

(Continues)
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TABLE 1 (Continued)

Original nectar assays

Conversion of nectar assays to CNN

model

Taxon

Derivation of nectar sugarmass

assay value

Floral unit definition

of original nectar

assay

Nectar sugar

mass assay value

(µg/day)

Number of nectar

assay floral units

in eachmodel tag

Nectar sugarmass

value of eachmodel

tag (µg/day)

Vicia cracca, tufted
vetch

Mean value of Baude et al. (2016)

andHicks et al. (2016)

Single flower 297.31 3 891.93

Vicia sepium, bush vetch Value of Baude et al. (2016) Single flower 117.07 3 351.21

Yellow composite

aggregate

Mean value ofHypochaeris radicata,
Scorzoneroides autumnalis and
Leontodon hispidus, fromBaude

et al. (2016) andHicks et al.

(2016)

Capitulum 1001.11 1 1001.11

F IGURE 2 Workflow from field origin to workingmodel

to encompass the range of floral unit presentations between crowded

(e.g. Figures S.3.2 and S.3.7 in the Supporting Information) and sparse

(e.g. Figures S.3.4 and S.3.12 in the Supporting Information) and is less

critical to resource estimation than it would be for object enumeration.

2.6 External validation

A test set of 50 independent imageswas compiled, whichwere as close

as possible to the image specifications set out in Section 2.2. These

were taken by different photographers and cameras, at different loca-

tions and countries (Table S.5 in the Supporting Information), spanning

a range of 2–1346 floral units per image (Figure 3, lower panel). Note

that a real survey should standardize the field of view of their quadrat

images (or crop all to a marked area in the image) in order to calcu-

late a constant nectar sugar mass per unit area. Three experienced

pollination-plant surveyors were asked to count the open flowers of

taxa in the images as they would in the field (minus the ability tomanu-

ally interact with the plants), identify to single species or aggregates as

they deemed appropriate, and to use their preferred concept of floral

units (andmean nectar sugar mass values thereof) with no conferring.

2.7 Data and analyses

Plots were produced in R.4.0.3 and RStudio.1.3.959. The raw image

data, labelled tags, final object detection model and all scripts are

archived in theDryadDigital Repository. (See Figure 2 for an indicative

project workflow.)

3 RESULTS

3.1 Model selection

The final model (Figure S.2 in the Supporting Information: model n)

trained using a batch size of 1699, learning rate 0.008, saturation aug-

mentations 0.2, horizontal flip augmentations 0.4, and 50 epochs, NMS

overlap (= IoU) threshold of 0.1, and took 20 h to run on a NC24 vir-

tual machine (comprising 24 GPUs and 224 GiB RAM). The choice of a

single IoU value is inevitably a compromise for 25 taxa, and for nectar

sugar mass estimation we view a reduction in true positives as worse

than an increase in false positives. The final model specifications were

run twice to confirm stability of the algorithm‘s output with respect to

its stochastic training.

The model outputs visual displays of its proposal regions and

taxon classifications (Figure S.3 in the Supporting Information), and

a spreadsheet of counts of detected taxa converted to nectar sugar

mass using the floral unit concept of themodel (Table 1). On a standard

outdated laptop (i5-4200MCPU, 4GiBRAM), this takes approximately

5.5 s.
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3.2 Performance

For performance assessmentwe define (i) true positives as those boxes

with correct detection and classification of floral units by the model;

(ii) false positives as those model-detected floral units where there are

either none in the image or where a floral unit of a different taxon

is present; (iii) false negatives as floral units in the image which are

not detected by the model; and (iv) true negatives as an incalculable

high number. A confusion matrix was constructed from the 50 test

images (Figure S.4 in the Supporting Information)which illustrates per-

formance per taxon on this dataset. Key performance metrics for the

final model are as follows:

Precision of floral units = True Positive∕(True Positive+False Positive)

= 926∕ (926 + 101)

= 0.90

Recall of floral units = True Positive∕ (True Positive + False Negative)

= 926∕ (926 + 152)

= 0.86

Mean F1 score = 2 × (Precision × Recall)∕ (Precision + Recall)

= 2 × (0.90166 × 0.85900)∕ (0.90166 + 0.85900)

= 0.88

These scores indicate that the model makes floral unit detection

errors at an average rate of 1–2 in 10. Single taxon F1 scores in this

limited test set range from 0.61 (Achillea millefolium) to 0.95 (Leucan-

themum vulgare).

3.3 Comparison to human surveyors: Single
quadrats

The CNN estimates of nectar sugar mass on the 50 model-unseen

images are plotted against those of the three human surveyors in Fig-

ure 3 (upper panel), wherein 27 of the 50 CNN estimates are within

the absolute range of the human estimates. The OLS regression line

has intercept near zero, gradient near identity, and its proportion of

variance explained approaches 95% (see Figure 3 legend for parameter

values and Table S.5 for raw data in the Supporting Information). Mean

estimation time per imagewas 5.5 s by CNN and 3.2min by human.

The same exercise for total floral units returned an inferior fit (Fig-

ure 3 lower panel). The average within-image standard deviation for

these three surveyors for total nectar sugarmass was 5.43mg/day and

for total floral units was 34.

3.4 Comparison to human surveyors: Replicated
quadrats

For sampling vegetation, surveyors generally take themean value of an

optimized number of quadrats per site. One way to identify an optimal

protocol is to determine the number of quadrats (in our case, images)

to achieve a stable estimate for the parameter of interest (in our case,

nectar sugar mass per image). For this weed-rich grassland vegetation,

we generated 30 randomized orderings (without replacement) of the

whole set of 50 images, in each case generating the cumulative mean

nectar sugar mass for each additional increments of one image. While

our test setwasnot a formal ecological pilot, thenectar sugarmass esti-

mates are of similar field of view (1–3m2) in each case. The expectation

is that estimation variability across random sequences demonstrates a

sample size above which estimates remain stable.

On the human nectar sugar mass estimates (Figure 4, upper panel),

there appears to be a cost–benefit ‘elbow‘ at around 15 and 20 sam-

ples,where themean is convergingonapproximately27mgperday, the

absolute range of variability of the randomized estimates at approxi-

mately 35, and the width of two standard deviations between 10 and

20.

A similar pattern,mean and variability on the y-axis are apparent for

theCNNnectar sugarmass estimates (Figure4, lower panel). Both esti-

mators thus indicate the same sampling protocol.

As the total possible sample combinations of this method (given by

C(n,r)= n!/(r!(n− r)!), where n= 50 and r= image number) at 15 and 20

samples are 2.3 × 1012 and 4.7 × 1013, respectively, a stable standard

deviation is considered to be robust to field reality.

4 DISCUSSION

We constructed a CNN model to assess daily nectar sugar mass per

quadrat image in UK native weed-rich grassland across a wide range of

floral abundance, which identifies and counts floral units in this habitat

35 timesmore rapidly than an expert human surveyor.

The model makes floral unit detection errors at a rate of 1–2 in

10, and we would not recommend this method for identification. For

total nectar sugar mass of single images, most of themodel’s estimates

fall within the absolute range of those obtained by human surveyors.

The full benefit of the model becomes apparent when estimating

vegetation properties from multiple quadrat images, for which the

model‘s mean and variation closely match those of human surveyors.

Furthermore, the estimate of the model is deterministic and therefore

has known subjectivity, contrasting to intra- and inter-human survey

variability.

This has particular applicability to the grading of agri-environment

schemes, as these move from conventional management prescriptions

to a scaled link between payment and results (Chaplin et al., 2019) in

Europe and the United Kingdom. We focused on grassland due to this

habitat‘s high-scoring natural capital (Dicks et al., 2015) and potential
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F IGURE 3 External validation of CNN against a test set of 50 images, of total nectar sugar mass per day (upper panel: y= 1.07x+ 0.43; r2 =
0.95) and total floral units (lower panel: y= 1.25x+ 3.66; r2 = 0.78) by three independent pollinator-plant surveyors. OLS lines marked blue.
Identity x= y lines marked grey
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F IGURE 4 Thirty randomization runs of mean (n= 3) human-estimated (upper panel) and CNN-estimated (lower panel) total nectar sugar
mass per image to inform sample number, up to a 46-sample protocol. Red dots mark the limits of one standard deviation either side of the sample
means

for improvement of its ecosystem service (Baude et al., 2016), but

would envisage the same strategy for any terrestrial or aquatic habitat

that can be photographed.

Though the time taken to generate training data for the model is

considerable (Table S.6 in the Supporting Information), this method

could cut floral survey time per stand from hours to minutes. The

same could be adapted to other image-based vegetation resources,

such as winter bird food, pollen resources, insect infestation and

tree flower/fruit abundance, and would require minimal additional

coding to adapt to live video input from a phone, Raspberry Pi or

drone, in order to survey the entire stand rather than a sample of

quadrats.

4.1 Object detection of floral units

Object detection is imperfect, and there are several drivers of errors,

underlining the importance of exposing the model to external data.

Xia et al. (2018) found that discrimination of sea cucumber species

declined from 0.98 for their training set to 0.76 for model-unseen
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internet images; Xu andMatzner (2018) concluded that their local fish

species model could not reliably recognize fish in real-world applica-

tions.

NMS can reject valid object proposals if set too high – a more likely

scenario when floral units are densely packed in an image – or falsely

include overlapping object proposals if set too low. For nectar sugar

mass estimation, we took the view that a reduction in true positives is

a worse outcome than an increase in false positives, particularly given

that NMS rejects low-confidence proposals which are not singletons in

uninterrupted horizontal space. We set no lower confidence limit on

the model’s classifications, though it would be straightforward to do

so by thresholding the output, and for surveyors who are solely inter-

ested in presence–absence of taxa this may be a profitable route to

explore. Such an approach could experimentally determine an optimal

confidence threshold by finding that which maximizes the F1 score, in

themanner of Kawazoe et al. (2018).

4.2 Taxonomic and structural definitions

Aggregation of taxa (e.g. Ranunculus spp., Lotus spp.; Table 1) suffices

when the nectar values for the species in each aggregate taxon do

not differ widely. This was designed in to our image tagging, yet there

remain cases of species which aremorphologically similar from a verti-

cal view but produce significantly divergent masses of nectar sugar. Of

our 25 taxa the most difficult to differentiate are yellow Asteraceae.

Of these, dandelions (Taraxacum agg.) provide 3.4 times asmuch nectar

sugar as our species aggregate ‘yellow composite’, yet Taraxacum agg.

can be incorrectly classified as yellow composite (Figure S.3.4 in the

Supporting Information). In our test set, this error occurred at a rate

of 50%, while the converse error (yellow composite incorrectly classi-

fied as Taraxacum agg.) was not encountered. This is a general problem

when taxa are phenotypically similar, and its solution could be chal-

lenging for an object detection model of quadrat images. In another

pollination-related study, the CNN of Hansen et al. (2020) on flower-

visiting insects experienced a drop in recall (the proportion of actual

positives identified correctly) from 0.75 at aggregate (genus) level to

0.53 at species level, even withmuseum specimen images.

For some species, there is the opposite problem, of failing to cor-

rectly identify variable instances of it as a single taxon. Species such as

S. dioica, Stachys sylvatica and Vicia spp. have variably oriented pedicels

that (in contrast to vertically oriented flowers such as the Aster-

aceae considered above) present a heterogeneous view from different

aspects (e.g. Figures S.3.8 and S.3.9 in the Supporting Information). For

such taxa, a comprehensive training set is likely to be critical. We con-

sidered the deep learning approach to be the most powerful available

for determining common features from such highly variable training

class images.

Floral unit definition matters for nectar sugar mass estimation,

and considerable intraspecific variation in floral resource production

necessitates average values (Dicks et al., 2015) for the pollinator-

visited plants in any given survey. Experienced surveyors aggregate

spatial patterns differently (Figure 3, lower panel), and a standardiza-

tion of floral units such as that imposed by a CNN may guard against

them being variably defined by different studies.

For a single quadrat, resource estimation would be simpler if open

flower number per floral unit differed less among plants, soils and sea-

sons (e.g.Trifolium spp. (Figures S.3.1 andS.3.12 in the Supporting Infor-

mation) and Heracleum sphondylium (Figure S.3.3. in the Supporting

Information)). This variation is captured somewhat by using mean nec-

tar sugar mass values from multiple individuals sampled (in 16 of our

taxa; Table 1) in at least two studies and populations. These challenges

are general when allocating average reward estimates to flowers, not

restricted to automated detection, but it is likely that a CNN will tend

to require larger floral units and therefore more assumptions, at least

with field images of a practical resolution.

By necessity, the floral units of diminutive plants (e.g. Bellis peren-

nis, Trifolium repens, Prunella vulgaris) have small bounding boxes com-

prising less pixel information, so for these taxa the surveyor‘s photo-

graphic focus is particularly important. Low imagequalitywill confound

both object detection and identification, just as it does for humans.

While our image specifications are aimed to be strict, floral units may

beobscured in vertically stratifiedvegetation, andachieving crisp focus

and zero washout for all flowers in the three-dimensional space of a

quadrat may be challenging.

4.3 Target taxa

Theobvious practical limitation to anobject detectionmodel is that it is

trained on a limited set of taxa, and that the inclusion of an object class

‘other‘ (meaning detected floral units not allocated to model-defined

taxa) is in many habitats intractable. For the intended purpose of nec-

tar sugar estimation therefore, a surveyorwouldwant to be reasonably

confident that their habitat does not include non-target taxa in abun-

dance at the scale of square metres. For model training, we aimed to

include all high nectar-producing taxa that appear in this habitat and

have not tested how well the model would perform where floral units

of non-target taxa are present. As those floral units would likely be

detected and classified as one that the model knows, their nectar con-

tribution to quadrat estimateswould be based on incorrect species val-

ues. If such non-target species are rare in a quadrat, and/or produce

nectar per floral unit similar to target taxa, the impact of these errors

is likely to be small and quadrat level estimates of nectar sugar mass

would be little affected. Given the time taken on the image-labelling

step, we estimate that every taxon adds around three person-weeks to

project time (Table S.6 in the Supporting Information), although there

are promising signs from other work (e.g. Arazo et al., 2019) that an

unsupervised model could be used at labelling stage so to accelerate

this.

Detection performance varies by taxon, in part due to the require-

ment to optimize a single confidence threshold for 25 taxa, whose

test recall values range from 0.50 (Achillea millefolium) to 0.95 (Leucan-

themum vulgare). This variation parallels that of Hansen et al. (2020),

whose CNN reported recall values of between 0.20 and 1 for 80 beetle

genera. Ideally, we would want to set a different threshold per taxon,
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being higher for those morphologically-variable floral units (e.g. Lath-

yrus pratensis, Silene dioica) for which the model’s concept can be over-

inclusive, and lower for those morphologically uniform floral units (e.g.

Ranunculus spp., Trifolium pratense) which tend to be more precisely

detected.We do not advise using themodel as an object detection tool

alone for thewhole set of 25 taxa, but for a subset of these (e.g. Leucan-

themum vulgare, Trifolium repens, Trifolium pratense, yellow composite)

or a low diversity habitat (e.g. road verges, city parks) its performance

maybe sufficient. For such a smaller set of classes, the user could adjust

both the confidence threshold andNMS value to those target taxa.

4.4 Further directions

Someadditionalmodelling exercisesmight achieve small gains in object

detection performance. Ensembling of models has been successful

elsewhere (e.g. Nobashi et al., 2020; Priyadarshini & Puri, 2021), and

actually would be fairer in our model tests which effectively pitted

a single CNN against an ensemble of human surveyors. Some experi-

mentation with different modelling architectures and other CNN algo-

rithms may reveal one that performs better in this case, and training

two models simultaneously on this dataset as generative adversarial

networks (Goodfellow et al., 2014) would be an informative test of our

choice of deep learningmodel.
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