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Abstract

1. Conventional distance sampling approaches rely on the design assumption (i.e. uni-

form distribution of individuals in relation to transects) to ensure unbiased infer-

ence to the population of interest. However, randomized design recommendations

are not always followed or may be impractical to implement for some survey types,

particularly in cases where transects must be placed perpendicular to the habitat

gradient. Full-likelihood spatial distance sampling models provide a potential solu-

tion to violations of the design assumption by jointly modelling the detection and

occurrence processes using spatially indexed habitat covariates.

2. Through simulation and an applied example based on a survey for Dall’s sheep in

Alaska, USA,weused a full-likelihooddistance sampling approach to investigate the

potential for bias in cases where transects placed perpendicular to the habitat gra-

dient (e.g. elevational contours) are non-randomly sampled. We also assessed the

utility of spatial approaches in cases where transects are placed along linear fea-

tures, such as roads or ridgelines, where habitat may be unrepresentative of the

overall study area.

3. Our results showed that the full-likelihood approach was generally unbiased, even

in extreme scenarios where habitat was inversely related to distance from the

transect. For the Dall’s sheep example, our results showed that more efficient

designs with reduced sampling effort in low-quality habitats are a practical solu-

tion for reducing logistical costs when the data are analysed in a spatial modelling

framework.

4. Together, our findings confirm and extend existing work suggesting that spatial dis-

tance sampling can be a useful solution when non-random designs are employed.

Given the high cost of survey implementation in many cases, the development

of valid alternatives to design-based inference will aid in the amount of infor-

mation available for a variety of species. The results of our work will be use-

ful for practitioners in assessing alternative designs relative to particular survey

applications.
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1 INTRODUCTION

Much of the wildlife population estimation literature has been dedi-

cated to addressing the problem of imperfect detection of individu-

als to produce unbiased estimators of population parameters (Williams

et al., 2002). Although there are a variety of survey and analytical tools

available, conventional distance sampling (CDS) methods are widely

used for estimating population abundance or density when the prob-

ability of detecting individuals is <1.0. CDS methods rely on four

key assumptions (Buckland et al., 2001, 2015; Thomas et al., 2010):

(1) animals are distributed independently of transect lines or points

(i.e. the design assumption); (2) animals on the line are detected with

certainty; (3) distance measurements are exact; and (4) animals are

detected at their initial location. There are numerous extensions to

basic distance sampling theory that address failures of the latter three

assumptions, while proper survey design is generally required to meet

the design assumption. However, there are circumstances where the

design assumption is violated and transect layout cannot be assumed

to be randomwith respect to animal distribution.

The problemof non-randomdistribution of animalswithin the study

area is typically addressed through random or systematic (with a ran-

dom start) line placement (Buckland et al., 2001). In cases where

transects are not located independently of animal locations, animal

density and detection probability are confounded and cannot be esti-

mated fromdistance data alone under the basicCDS framework (Buck-

land et al., 2004). For this reason, survey designs employing transects

along roads, trails or other linear features, where animal density may

not be representative, limit inference. Although less serious, place-

ment of transects parallel to habitat features (e.g. coastlines, eleva-

tion contours) and perpendicular to the density gradient is a related

case that can lead to similar problems because animal distribution

may be non-random relative to the habitat, and therefore density,

gradient.

The general recommendation in a design-based framework is to ori-

ent transects parallel to density gradientswhenever possible to reduce

variation in occurrenceprobability among transects (figure1.3 inBuck-

land et al., 2001), but this may not be feasible in some circumstances

due to logistical limitations. For example cetaceansmay occur at higher

densities at certain distances from the coast, so transects oriented per-

pendicular to the coast (i.e. parallel to the density gradient) would bet-

ter represent the entire population of interest andminimize bias. How-

ever, out of necessity some designs rely on habitat features whereby

transects are generated perpendicular to the habitat and, presumably,

density gradients. These designs represent a special case of the prob-

lem of linear features than can be appropriately addressed by incorpo-

rating additional sources of information (e.g. Marques et al., 2013) or

through further modifications to survey design to insure inference to

the population of interest (e.g. Becker & Quang, 2009; Obbard et al.,

2015; Schmidt et al., 2012; Stapleton et al., 2016).

In contrast to a typical design where randomization is assumed

in relation to the study area, when transects follow habitat features,

designs instead rely on random distribution relative to the habitat gra-

dient (e.g. elevation, distance from coast) to insure that on average

the transects are distributed randomly with respect to individuals (e.g.

Becker & Quang, 2009; Schmidt et al., 2012). This is a subtle shift from

random (or systematic) distribution of transects that are not tied to

habitat features and requires the assumptionof randomness in relation

to the particular habitat gradient. For example if cetaceans tend to be

located near to shore, a transect located far from shore would likely

record most observations at large distances. Conversely, those near

to shore would record higher numbers primarily at short distances. If

transects are placed uniformlywith respect to distance from shore, the

estimator should be unbiased, but if sampling is non-uniform then the

detection function is impacted. In a more typical design where tran-

sects run parallel to the habitat/density gradient (e.g. from low to high

density), random placement throughout the study area means tran-

sects can be added or removed more simply as long as the process is

random.When transects are placed perpendicular to the density gradi-

ent, the designmust ensure that any changes to sampling effort are uni-

formly distributed across the gradient. These requirements can lead to

inefficient designs that require many transects to be surveyed in what

may be low-quality habitatwhere fewdetectionswill occur. This can be

a significant factor for survey feasibilitywhen theexpenseof the survey

platform is high (e.g. ship, aircraft). In some cases, stratification may be

a simple solution, although sample sizes must then be divided among

strata and it may not be possible to acquire sufficient data with which

to estimate both the detection function and density within each strata.

However, note that multiple-covariate distance sampling (MCDS;

Marques et al., 2007) can be used to mitigate against limited sample

sizes in individual strata.

Ongoing development of spatial distance sampling methods offers

an alternative solution that may be used to relax some of the require-

ments of design-based estimators and provide more detailed ecologi-

cal inference (Hedley & Buckland, 2004;Miller et al., 2013; Royle et al.,

2004; Sillett et al., 2012). The most common implementation uses a

two-stage approach where the probability of detection is first esti-

mated, and thena spatialmodel is used todescribe theobserved counts

using the estimate of detection probability as an offset (Buckland et al.,

2015; Hedley & Buckland, 2004). Although this approach is useful in

many situations, when transects lie perpendicular to the density gra-

dient, the estimate of the detection function is confounded with the

distribution of objects. A full-likelihood approach provides an elegant

solution to the problem by simultaneously estimating both detection

and occurrence (Buckland et al., 2016; Johnson et al., 2010;Mizel et al.,
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2018; Oedekoven et al., 2013, 2014; Yuan et al., 2017). By estimating

both the detection process and the occurrence processes concurrently,

confounding is resolved. Therefore, a full-likelihood spatial modelling

approachmayprovidea reasonablepath forward formoreefficient and

effective designs employing non-random transect placement.

Our exploration of the full-likelihood spatial distance sampling

approach as a means to address violations of the design assumption

was motivated by our desire to address the relative inefficiency of

Dall’s sheep (Ovis dalli) surveys in Alaska, USA, as currently imple-

mented (Rattenbury et al., 2018; Schmidt &Rattenbury, 2013; Schmidt

et al., 2012). In these surveys, transects are systematically placed along

elevational contours (i.e. perpendicular to the gradient) throughout the

study area, resulting in a designwhere a sizable subset of transectsmay

be unlikely to contain sheep. Given the cost of aerial surveys, a valid

alternative facilitating increased effort in higher density areas would

have obvious advantages.

To explore the utility of the full-likelihood spatial distance sam-

pling approach in addressing violations of the design assumption and

facilitating survey efficiency, we recast the group-based hierarchical

distance sampling model of Schmidt et al. (2012) using a pixel-based

framework (Kery & Royle, 2021; Mizel et al., 2018). Doing so allowed

the incorporation of habitat covariates and other spatial predictors at

a fine spatial grain. We used a simulation study and an applied exam-

ple from a Dall’s sheep survey in Wrangell-St. Elias National Park and

Preserve to explore howa spatial full-likelihoodmodel-based approach

might be used to relax the design assumption for CDS surveys in cases

where transects are placed perpendicular to expected density gradi-

ents, along linear features, or other non-random designs. Although our

work wasmotivated by the desire to increase the efficiency of ongoing

distance sampling surveys forDall’s sheep, our findingswill be of use to

practitioners in a variety of situations where the design assumption is

not met.

2 MATERIALS AND METHODS

2.1 Model structure

We recast the group-based hierarchical distance sampling model of

Schmidt et al. (2012) in a pixel-based framework (Kery & Royle, 2016,

2021; Mizel et al., 2018). Under the pixel-based formulation, the study

area is overlain with a grid of pixels and instead of modelling the dis-

tance to individual groups, one models the distance to individual pix-

els, a subset of which contains detected groups. The advantage of this

formulation is that fine-scale spatial patterns in animal distribution can

be incorporated by assigning habitat values to each individual pixel and

used to predict group occurrence.We simplified the pixel-basedmodel

(Kery & Royle, 2016, 2021; Mizel et al., 2018) to reflect the probabil-

ity of a group occurring in a given pixel, rather than counts within pix-

els. This simplification becomes possible when pixel size is small rela-

tive to the density of groups on the landscape. The resulting model is

a version of a thinned point process model whereby the probability of

groupoccurrence at the pixel level is a function of habitat and observed

occurrences are thinned by the detection process (Kery & Royle, 2021,

pp. 674–675).

In the pixel-based formulation, the observations, y, in each pixel, i,

are modelled as

yi ∼ Bernoulli (𝜇i) ,

where

𝜇i = pi Ψi.

Detection probability, pi, is represented by the half-normal detec-

tion function pi = exp

(
−

x2
i

2𝜎2
i

)
, where xi is the distance from the tran-

sect to each group, and 𝜎i is the scale parameter which is modeled as

log (𝜎i) = Y′i 𝜶 ,

whereY′i is a vector of known covariate values and𝜶 are the associated

coefficients. Note that other functions, such as the hazard-rate, may be

substituted for the half-normal as appropriate. Groupoccurrence,Ψi , is

modeled as

Ψi ∼ Bernoulli (𝜆i) ,

where

𝜆i = Areai × (1∕(1 + exp(−(X′i 𝜷))))

and Areai is the proportion of the area of each pixel that waswithin the

surveyed strip, X′i is a vector of known covariate values and 𝜷 are the

associated coefficients. When individuals occur in groups, group size,

si, can bemodeled as

log(ŝi) = Z′i 𝜹 ,

where Z′i is a vector of known covariate values and 𝜹 are the associated

coefficients.

The pixel-based model may be cast in a spatial context when spa-

tially indexed covariates are included in X′i . We fit spatial and non-

spatial versions of the pixel-based model to data simulated under sev-

eral scenarios (see next sub-section) to assess bias given each design.

For simplicity, we did not consider models with covariates other than

habitat. As our main concern was bias related to the design assump-

tion, we did not investigate other factors expected to primarily impact

precision and coverage (e.g. sampling intensity, sample size, strip-

width, etc.).

2.2 Simulations

We considered three common survey scenarios that are at risk of

violating the design assumption, potentially resulting in bias. For

each sampling scenario, we compared the abilities of the spatial and
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F IGURE 1 Panel a depicts a single iteration of a scenario where transects (black line) are randomly placed perpendicular to the habitat
gradient and 11 individuals (red dots) are distributed based on the habitat values of each cell. Each transect for each iteration was generated at a
random y-value to cover the entire habitat gradient uniformly. The histograms represent the frequency of estimated abundance (N̂) based on 100
datasets of 100 transects each analysed under the following conditions: spatial model with the full dataset (b), the spatial model with 50% reduced
effort in low-quality habitats (c), the non-spatial model with the full dataset (d) and the non-spatial model with 50% reduced effort in low-quality
habitats (e). Vertical dashed lines indicate the true population size

non-spatial approaches to recover the true population size in cases

where transects are oriented perpendicular to the habitat gradient. For

each replicate under each scenario, we generated 11 individuals that

were distributed using occurrence probabilities based on the pixel-

level habitat values within a 20× 25 grid, restricting the distribution to

allow only a single individual to occur in each grid cell. We then placed

a single transect within the sample unit and simulated a detection pro-

cess bywhich someproportion of the 11 individualswas thendetected.

The generation of a sample unit, individuals within the unit and the

sampled line transect was then repeated 100 times to produce a hypo-

thetical dataset consisting of 100 sample units sampledbyone transect

each, for a true population size of 1100 individuals. We then fit both

spatial and non-spatial versions of the pixel-basedmodel to the data to

estimate abundance and replicated the whole process 100 times (i.e.

100 datasets) for each scenario.

The first scenario was directly related to applications which use

transects placed perpendicular to a habitat gradient (Figure 1a), as

is the case for distance sampling surveys for Dall’s sheep (Schmidt

& Rattenbury, 2013; Schmidt et al., 2012) and bears (Ursus spp.;

Becker&Quang, 2009).We simulated ahabitat gradient that increased
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linearly (with some random noise) across each sampled unit so that

lower quality habitat occurred at one end and higher quality habitat

occurred at the other. We placed each transect randomly in the sam-

ple unit but aligned perpendicular to the habitat gradient. We con-

sidered two options under this scenario: random distribution of tran-

sects, and random distribution of transects with 50% of those tran-

sects that occurred in the lowest quality habitats excluded from sam-

pling (i.e. y-values < 3; see Figure 1a). The first option reflects the typ-

ical design for surveys employing contour transects (Becker & Quang,

2009; Schmidt et al., 2012) whereby the uniformity assumption is met

by sampling all habitats equally across the gradient. In theory, both the

spatial and non-spatial estimators should be unbiased given a random

distribution of transects relative to the gradient. The reduced effort

option reflected a violation of the design assumption by undersampling

in low-quality areas where few detections are expected. Theoretically,

the non-spatial estimator should be biased when poor-quality habitats

are undersampled, but we expected that the full-likelihood spatial esti-

mator would be unbiased under both scenarios. Although stratifica-

tion andMCDS can be useful in addressing unequal sampling of certain

habitat types (Marques et al., 2007), for generality, we assumed strati-

fication was not conducted.

The remaining scenarios we considered explored another common

violation of the uniformity assumption that results when linear fea-

tures such as roads, trails, ridgelines or other non-random linear fea-

tures are used as transects (Figures 2a and 2b). Sampling along a

feature such as a road or trail can be problematic, for example because

the road surface itself may form a corridor of low- or high-quality habi-

tat near the transect line where few or no individuals occur. To rep-

resent this hypothetical road or trail corridor effect, we generated

simulations using a scenario with a random habitat grid and a cor-

ridor of low-quality habitat through the middle of the sample unit.

For each iteration, the transect was placed along the centre of the

‘road corridor’, with the expectation the non-spatial estimator would

be biased because few detections would occur near the line. In con-

trast, we expected the spatial estimator would be relatively unbiased

after accounting for habitat quality, assuming that the strip half-width

extended beyond the road corridor by a reasonable distance. We also

considered another more complex scenario that could occur if tran-

sects were located along features such as ridgelines where habitat

quality changes with elevation (Figure 2b). This type of design cre-

ates obvious pathological problems for estimation because distance

and occurrence probability are directly confounded, potentially mak-

ing it very difficult to separate the detection and occurrence processes

(Johnson et al., 2010).

We constructed each set of simulations in R 3.6.1 (R Core Team,

2019) using theAHMbookpackage (Kery et al., 2020).Wemodified the

simDSM function to accommodate designs with multiple linear tran-

sects reflecting each simulation scenario described above. Specifically,

wemodified the habitat distribution for the three scenarios as follows:

(1) a habitat gradient [values = −2 to 2 + N(0,0.25)] increasing from

y = 4.5; (2) random habitat distribution [values = −3 to 3] with a band

of habitat=−3 between y= 1.5 and 2.5; and (3) a habitat gradient [val-

ues = −1,1 + N(0,0.15)] increasing from y > 2 and y < 2. For simplic-

ity, we assumed that all Areai = 1. We conducted model fitting using

OpenBUGS 3.2.3 (Thomas et al., 2006). For the analysis of each simu-

lated dataset under each scenario, we ran a single chain for 1000 iter-

ations with the first 250 discarded as burn-in, retaining the remain-

der for inference. Exploratory analysis suggested this was sufficient to

reach model convergence (results not shown). We then compared the

distribution of the estimates of abundance from each scenariowith the

true population size to assess bias.

2.3 Dall’s sheep application

We used Dall’s sheep survey data collected using a systematic con-

tour transect design in Wrangell-St. Elias National Park and Preserve

in 2020 as a worked example. Our sampling design was based on a sys-

tematic 7.5-km grid of points generated across the 3303 km2 study

area with each point (n = 63) representing a transect centre-point. At

each centre-point, we generated a ≤15-km transect following the ele-

vational contour (i.e. contour transect) at that location (Figure 3a). The

contour transect design resulted in a randomly distributed collection

of transects that were oriented perpendicular to the habitat gradient

(i.e. elevation). When a full-length transect could not be generated due

to a lack of habitat (i.e. mountain top), another transect was generated

nearby at the sameelevation (outside the study areaboundary if neces-

sary). A pilot-observer team surveyed each transect from a fixed-wing

aircraft flown at ∼90 m above-ground level, recording the perpendic-

ular distance from the transect line to each detected group, as well as

the number of individuals in each group. We left-truncated the result-

ing data at 22 m to account for the partially observable strip beneath

the aircraft and right-truncated the data at 685m, resulting in a 663m

strip-width. Additional details regarding survey design and sampling

protocol are presented by Schmidt et al. (2012) and Schmidt and Rat-

tenbury (2013).

Prior to analysis, we generated a grid of 100 × 100 m pixels across

the study area and extracted the mean elevation and elevation2 val-

ues for each pixel using a digital elevation model. We chose the pixel

size given that a group was defined as a collection of individuals

within <100 m (Schmidt et al., 2012), thereby ensuring that only one

group could occur within each pixel. We then calculated Areai and the

distance from the transect to each pixel centroid for all pixels that fell

within the sampled strip of each transect.We attributed each detected

group to the appropriate pixel based on the observed group location.

We then fit the pixel-based model to the data under the spatial and

non-spatial formulations, replacing the half-normal detection model

with the hazard-rate function (Schmidt et al., 2012):

pi = 1 − exp

(
−
xi
𝜎i

)−b

,

which contains the additional shape parameter, b. Given that group

sizes were overdispersed, we included a random effect at the pixel

level in the group size submodel.We included elevation and elevation2

as habitat covariates predicting 𝜆i in the spatial model based on our
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F IGURE 2 The first two panels represent a single iteration for each of two scenarios: transects placed along a linear feature with a corridor of
poor-quality habitat at close distances (e.g. a road corridor; a), and transects placed along a linear feature aligned perpendicular to a habitat
gradient (e.g. a ridgeline; b). All transects were generated at y= 2 to represent sampling along the linear feature. Each example depicts one
iteration containing a single transect (black line) and 11 individuals (red dots) that are distributed based on the habitat values of each cell. The
histograms represent the frequency of estimated abundance (N̂) based on 100 datasets of 100 transects each analysed under the following
conditions: transects placed along a road corridor (spatial model; c), transects placed along a linear feature where habitat quality increases with
distance (spatial model; d) and transects placed along a road corridor (non-spatial model; e). Vertical dashed lines indicate the true population size

observation that sheep tend to occur less frequently at either end of

the elevational distribution.We did not consider any additional covari-

ates in any of the submodels. For completeness, we also fit the equiva-

lent non-spatial group-basedmodel of Schmidt et al. (2012) to the data

to demonstrate the equivalence between the group-based and pixel-

basedmodel structures.

In addition to the above analyses, we also considered the ‘reduced

effort’ case where we omitted data from 50% of the transects occur-

ring at high elevations (i.e. >1 SD above mean elevation) where sheep

were least likely to occur. Doing so represented an ∼11% reduction in

total survey effort and is comparable to the first simulation scenario

with reduced effort. The reduced effort case addresses the question of

whether under-sampling in low-quality habitats can be used to reduce

survey cost and increase logistical efficiency in future surveys.We refit

both the spatial and non-spatial versions of the pixel-based model for

comparison with the results from the full dataset. Due to a relatively

low number of group detections (n = 73, full dataset; n = 72, reduced

dataset), we used informed priors for the shape and scale parameters

of the detection function: σ∼N(0.7, 0.044) and b∼N(2, 0.11), based on

prior work (Rattenbury et al., 2018; Schmidt & Rattenbury, 2013).

For each model fit to the Dall’s sheep data, we ran two independent

chains of 10,000 iterations each in OpenBUGS, discarding the initial
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F IGURE 3 Panel a shows the contour transects surveyed (black
lines) for Dall’s sheep inWrangell-St. Elias National Park and Preserve,
Alaska, USA in 2020 in relation to the distribution of elevation (m).
Portions of some surveyed transects were located outside the study
area to facillitate uniform sampling across the distribution of
elevations. Panel b depicts predicted probability of Dall’s sheep group
occurrence in 2020 in a portion ofWrangell-St. Elias National Park
and Preserve based on the full-likelihood spatial model including a
curvilinear relationship between elevation and group occurrence. The
x and y axes represent spatial coordinates in meters

5000 iterations as burn-in and retaining the remainder for inference.

For the non-spatialmodels, estimates of abundancewithin the sampled

areawere extrapolated directly to the entire study area. For the spatial

models, we predicted pixel-level abundance using the posteriors of the

predictors and then summed the predictions across all pixels to esti-

mate total abundance and 95% credible intervals.

3 RESULTS

3.1 Simulations

The spatial model was relatively unbiased under the habitat gradient

scenario under both the full and reduced sampling options (Figures 1b

and 1c), indicating the spatial approach adequately addressed the vio-

lation of the design assumption caused by targeted undersampling of

somehabitats. As expected, thenon-spatial estimator showed little evi-

dence of bias when transects were distributed randomly with respect

to the habitat gradient (Figure 1d). However, when the lowest qual-

ity habitats were undersampled by 50%, abundance estimates tended

to be biased high (Figure 1e), following our expectation of the conse-

quences of violating the design assumption. The variability in abun-

dance estimates from the spatial model was also lower as compared to

the equivalent non-spatial results (Figure 1).

When transects were placed along a hypothetical road corridor,

results based on the spatial model were relatively unbiased, suggest-

ing that themodel was largely able to compensate for a substantial vio-

lation of the design assumption by modelling the spatial distribution

of habitat (Figure 2c). Somewhat surprisingly, results were also gen-

erally unbiased even when habitat quality and distance from the line

were directly confounded (Figure 2d), although the distribution of esti-

mates suggested some instability. In contrast, the non-spatial model

performed poorly in the road-corridor scenario (Figure 2e). This result

waspredictable given that fewdetectionswere expectednear the tran-

sect line. Overall, the simulation results confirm that the non-spatial

estimator was unbiased when the design assumption was met but was

biased when the design assumption was violated. In contrast, the full-

likelihood spatial modelling approach was generally unbiased under

either scenario, suggesting that the incorporation of habitat as a pre-

dictor of group occurrence largely mediated violations of the design

assumption.

3.2 Dall’s sheep application

The results from the group-based model were comparable to those

from the non-spatial pixel-based model, reflecting the equivalence of

the two formulations (Table 1). The pixel-based formulation was ∼19%

more precise, presumably due to the finer spatial grain of the anal-

ysis (i.e. 100 × 100 m pixels vs. total area surveyed per transect),

and the spatial approach incorporating a curvilinear elevation effect

TABLE 1 Comparisons of estimated Dall’s sheep abundance (N̂) in
theWrangell-St. Elias National Park and Preserve study area under
the group-based and pixel-basedmodel formulations.We also include
the 95%Bayesian credible intervals (95%CrI) and the coefficient of
variation (CV) for each case. Results with andwithout the curvilinear
effect of elevation on group occurrence, as well as the impact of
undersampling by 50% at elevations>1 SD above themean (reduced),
are also shown

Model N̂ 95%CrI CV

Group-based (full, without elevation) 3762 2716–5057 16%

Pixel-based (full, without elevation) 3776 2882–4876 13%

Pixel-based (full, with elevation) 3715 2809–4720 16%

Pixel-based (reduced, without elevation) 4096 3111–5307 13%

Pixel-based (reduced, with elevation) 3744 2804–4795 16%
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produced comparable estimates. As was the case for the simulations,

the reduction of sampling in low-quality habitats (i.e. high elevation)

had little impact on the spatial estimator when elevation was included

as a covariate, but there was positive apparent bias in the non-spatial

estimator (Table 1). The estimated relationship between elevation and

Dall’s sheep occurrence based on the results of the spatial model was

curvilinear, indicating that sheep tended to occur more frequently at

mid-elevations (Figure 3b), in agreement with our expectation.

4 DISCUSSION

Here, we have demonstrated how a spatial distance sampling frame-

work can be used to mitigate against common violations of the design

assumption in distance sampling applications and lead to practical

modifications of inefficient survey designs. The idea that a spatial

approach could be used to compensate for non-random and oppor-

tunistic designs is not new (Johnson et al., 2010); however, a direct

assessment of some of the more common applications that risk vio-

lating the design assumption will help practitioners understand how

these approaches may be employed in commonly encountered sit-

uations. Many applications use linear features as transects or must

place transects perpendicular to the habitat gradient, and ourworkwill

serve as a valuable resource for researchers designing projects that

do not adhere to the design assumption. Overall, we expect that our

work will prove useful for practitioners desiring to apply model-based

approaches to distance sampling in complex sampling scenarios.

The design assumption is a fundamental component of most CDS

applications (Buckland et al., 2001) because estimator bias is directly

proportional to the degree to which the sample is unrepresentative of

the area of interest. Herein lies the difficulty with using non-random

designs (i.e. convenience sampling, roads as transects), without knowl-

edge of the spatial distribution of individuals, the degree to which

the estimator will be biased is typically unknowable. Spatial modelling

approaches can account for non-representative sampling by explic-

itly modeling the distribution of groups relative to spatial processes

(Buckland et al., 2015; Johnson et al., 2010), but inference is condi-

tioned on the sample. This is a critical point to consider. If certain por-

tions of the population of interest are excluded from sampling (e.g. cer-

tain habitat types), model predictions are likely to be inaccurate. As an

extreme example, consider a survey that only samples forested habi-

tats within a study area. Under such a design, predicting abundance

in open meadow habitats would likely be nonsensical, regardless of

the framework employed. The issue is similar for scenarios using road

corridors or ridgelines as transects. If the strip-width is narrow rela-

tive to the width of the habitat gradient along the linear feature, the

model-based estimator will be biased because some habitat types will

be excluded from sampling. The design considerations necessary to

ensure unbiased inferencewill vary depending on the particular survey

situation, but regardless, the practitioner must ensure that the sample

is representative of the population of interest.

Spatial distance sampling approaches have been shown to be use-

ful in a variety of applications, including those with non-random sur-

vey designs (e.g. Hedley & Buckland, 2004; Johnson et al., 2010; Miller

et al., 2013; Mizel et al., 2018). Here, we have expanded on this body

of work to further investigate the utility of spatial approaches, specifi-

cally in cases where transects are oriented perpendicular to the habi-

tat gradient, in direct contrast to recommended practice (Buckland

et al., 2001, p. 239). Given our goal of broadly determining the role

of spatial approaches in mitigating bias for a particular suite of non-

random designs, we limited our exploration to a broad assessment of

bias for a few plausible scenarios. Our results were consistent with

past work indicating that spatial modelling approaches can indeedmit-

igate against bias, even in the somewhat extreme scenarios we consid-

ered. However, we acknowledge that our exploration was limited and

that there are many factors that would determine the effectiveness of

a given design (e.g. effective strip-width, habitat gradient, object den-

sity, sample sizes). We recommend that researchers treat our findings

as a starting point and encourage practitioners to carefully consider

the details of a proposed application when assessing whether a spatial

approach is indeed likely to avoid bias for a particular survey design.

Indeed, the simDSM function (Kery et al., 2020) provides a convenient

framework for practitioners to assess whether a spatial approach is

appropriate for their specific sampling problem.

Our reframing of the group-based distance sampling model of

Schmidt et al. (2012) in the pixel-based framework of Kery and

Royle (2021) provides a natural link between existing applications and

ongoing development of full-likelihood spatial modelling approaches.

Although spatial structure could be incorporated in the group-based

model of Schmidt et al. (2012), doing so requires the assumption that

within-transect distribution of individuals is uniform, as was done in a

point transect context (Royle et al., 2004). The coarseness of the spa-

tial grain (i.e. ∼1000-fold larger in the Dall’s sheep application) of the

spatial group-based model may not be particularly useful in many situ-

ations. Recasting the group-basedmodel in the pixel-based framework

allowed the direct incorporation of spatial information at a more rel-

evant (i.e. finer) spatial grain. The Dall’s sheep application indicated

that inference was effectively identical under the non-spatial version

of both formulations, although the non-spatial pixel-based version was

more precise, presumably due to reduced variation among pixels as

compared to variation among transects in the group-based model.

Indeed, increased estimator precision is one of the expected benefits

of the spatial modelling approach (Mizel et al., 2018).

The work we presented focused on the use of habitat variables as

predictors of pixel-level occurrence to create a density surface across

the study area. Absent a strong relationship between density and habi-

tat, or in cases where important habitat covariates are not available,

the spatial structure in thedata canbemodelled directly using a variety

of strategies (e.g. Banerjee et al., 2004; Ver Hoef et al., 2018), although

generalized additive models (Wood, 2006) tend to be most commonly

employed in spatial distance sampling applications (e.g. Hedley&Buck-

land, 2004; Johnson et al., 2010; Kery & Royle, 2021; Sigourney et al.,

2020). The modelling of spatial structure directly can also be used

in combination with covariate modelling to help account for residual

structure that is not explained by the available habitat variables. Mod-

elling the spatial structure directly is a useful alternative in situations
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σ σ σ

Survey 1 Survey 2 Survey 3

U(0,1)

N(0.5,0.2)

N(0.5,0.2)

N(0.6,0.1)

N(0.6,0.1)

F IGURE 4 Diagrammatic example of how information on the
detection process can be incorporated through time or among surveys
using informed priors on the scale parameter, σ. The prior distribution
for each survey is specified under each survey heading and the
resulting posterior distribution (i.e. prior+ data) placed above the
connecting arrows. In this example, the posterior from survey 1 is used
as the prior for survey 2 and so on

where sufficient habitat covariate values are not available or when

inference to ecological relationships is not of interest.

Although we considered several related survey design scenar-

ios, the motivation for our work was to improve the accuracy and

cost-effectiveness of the ongoing Dall’s sheep monitoring program in

Alaska. We confirmed that a systematic sampling design is indeed

unbiased when analysed in a non-spatial framework. However, our

findings suggest that surveys could be made more cost-effective by

prioritizing sampling in areas where sheep are more likely to occur,

thereby increasing the number of detections for a given level of survey

effort and providing more data with which to estimate complex habi-

tat associations. Full coverage of the elevational gradient would still be

required, but equivalent allocationof effort across the available habitat

gradient is not necessary. For long-term monitoring programs, a logi-

cal path forward would be to consider sharing information over time

to better estimate habitat associations in a particular area, as has been

done for the parameters of the detection process (Schmidt & Ratten-

bury, 2013; Figure4).Doing sowould leveragedata frommultiple years

to inform better spatial allocation of sampling effort and improve esti-

mation of habitat associations. When long-term data are not available,

it may be possible to leverage information collected from other areas

or for similar species, either through joint analysis (e.g. Schmidt et al.,

2014) or through the creationof informedpriors (McCarthy&Masters,

2005).

The use of spatial distance sampling for group-dwelling species such

as Dall’s sheep can be complex, particularly for monitoring projects

conducted through time (e.g. Schmidt & Rattenbury, 2018) or in a spa-

tial context because variation in both group occurrence and group size

must be considered. A natural extension to the model we used would

be the inclusion of spatial covariates related to both group occurrence

and group size (Hedley & Buckland, 2004), reflecting different spa-

tial processes governing where groups occur versus the size of each

group. For example the occurrence of groups in general may be related

to one particular habitat feature (e.g. elevation), but the size of indi-

vidual groups may be related to another (e.g. vegetation quality). The

interplay between group occurrence and the aggregation of individu-

als within groups has potentially important ecological implications that

may be lost if the spatial process is only considered at one level. Sim-

ilarly, more complex structures may be useful in addressing changes

in spatial distribution in both space and time (e.g. Barnett et al., 2020;

Camp et al., 2020).

Spatial distance sampling approaches are powerful tools that, when

used appropriately, can leverage information collected under a vari-

ety of sample designs. Although spatial approaches cannot completely

ignore sampling design, the added flexibility for field implementation

can be very useful. We anticipate that ongoing development of spatial

approaches will ultimately enable researchers to address increasingly

interesting and complex ecological questions in a variety of settings.
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