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Abstract

1. Optimizing the design of marine protected area (MPA) networks for the conserva-

tion of migratory marine species and their habitats involves a suite of important con-

siderations, such as appropriate scale requirements and the distribution of anthro-

pogenic impacts. Often, a fundamental component of the conservation planning pro-

cess is delineating areas of high use or high biodiversity within a region of interest.

2. However, basing conservation strategies off merely the number of individuals in an

ecosystem is outdated and potentially subject to arbitrary thresholds. To be effective

at protectingmarinemegafauna,MPAswould ideally encompass habitats used by focal

species. Through satellite-tracking studies, evidence of whether species actually use

protected areas is emerging.

3. Here, we present a multispecies perspective on habitat selection within existing

MPAs throughout the Floridian ecoregion, which encompasses coastal Florida and the

Gulf of Mexico. Using an 11-year satellite-tracking dataset on 235 marine turtles, we

used integrated step selection analysis to quantify the effects of sea turtle behavioural

state (identified by a switching state-space model), protected area status, chlorophyll

and bathymetry on habitat selection.

4. Our results show that sea turtles do select for existing protected areas, specifically

multi-use zones, while controlling for the effects of depth and primary productivity.

However, our analysis revealed that turtles showed no selection for the no-take zones

withinMPAs, during either transiting or foraging.

5. These findings contribute to theexisting literaturebaseofMPAuse forhighlymobile,

imperilled species and could inform management of existing MPAs or changes to zon-

ing, specifically multi-use to no-take. Our use of a robust spatial modelling framework

to evaluate habitat selection relative toMPAs could be incorporated into conservation

planning to buildMPA networks designed to accommodatemigratory species.
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1 INTRODUCTION

Marine environments have been subjected to an increasingly diverse

set of human impacts (i.e. commercial and recreational fishing, infras-

tructure development, pollution, shipping and mining explorations)

that have contributed to a steady decline in ocean ecosystem health

(Halpern, Selkoe, Micheli, & Kappel, 2007; Klein et al., 2015). In

response to these impacts, marine protected areas (MPAs) have

become a widespread conservation strategy employed to protect and

managemarine biodiversity aswell as support sustainable use of ocean

resources (Roberts, Valkan, & Cook, 2018). Internationally recognized

conservation targets, such as the Convention on Biological Diversity

(CBD) Aichi Target 11 and the Sustainable Development Goal 14.5,

illustrate the importance of MPAs on a global scale (Campbell & Gray,

2019). Furthermore, these targets emphasize a focus beyond simple

area-based metrics to ensure MPAs are designed to be ecologically

connected, representative of vulnerable habitats and ecosystems, and

effectively managed (Roberts, Duffy, & Cook, 2019; Secretariat of the

CBD, 2011).

MPAs can be evaluated based on numerous indicators of perfor-

mance relative to either management, economic or biological objec-

tives. Methods of assessingMPA effectiveness for biodiversity conser-

vation include evaluating coverage of representative habitats (Roberts

et al., 2019), consistent monitoring of species richness or abundance

(Strain et al., 2019), quantifying the benefit to fisheries due to a

spillover effect (Di Lorenzo, Claudet, & Guidetti, 2016) or defining

hotspotswithin or surrounding current boundaries to focus future con-

servation efforts (Worm, Lotze, & Myers, 2003). As MPAs are estab-

lished under a broad range of contexts, results and recommendations

from MPA evaluation studies are highly variable. To ensure effective

design and placement of future MPAs as well as favourable outcomes

for vulnerable biodiversity, it is important to understand the latest

advances in impact evaluationmethodologies (Ahmadia et al., 2015).

The successful management and conservation of endangered

species relies on an accurate understanding of their distribution,

movement patterns and interactions with their environment (Jef-

fers & Godley, 2016). Advances in satellite tracking of individuals in

both marine and terrestrial environments have paved the way for

improved ecosystem-based management approaches, capable of inte-

grating food web interactions, life history processes and environmen-

tal parameters into conservation planning (Hays et al., 2019; Trathan

et al., 2018). Telemetry data can reveal important habitats for key

species across wide regions, as many marine species undertake long

distance migrations throughout their life spans (Schofield et al., 2013).

In order to effectively study this movement behaviour, models have

been designed to account formultiple levels of biological and statistical

complexities, such as irregular time intervals and location error, often

associated with satellite telemetry data (Auger-Methe et al., 2016;

Hoover et al., 2019; Jonsen, Flemming, &Myers, 2005).

Often, satellite tracking efforts can reveal high-use areas for for-

aging or breeding which can be summarized for changes in conserva-

tion policy (Hays et al., 2019; Lea, Humphries, Brandis, Clarke, & Sims,

2016). Delineating areas of high use or high biodiversity, commonly

referred to as hotspot analysis, has become a fundamental component

of conservation planning due to its feasibility and cost-effectiveness,

as protecting the full range of biodiversity is never a realistic target

(Marchese, 2015; Sussman et al., 2019). While typically designated

on a case-by-case basis, hotspots are broadly defined as geographic

areas with persistent high levels of either species abundance, rich-

ness or endemism (Possingham & Wilson, 2005). The spatial scale of

hotspots, both in terms of geographic extent and resolution, can vary

substantially depending on the samplingmethodology and the technol-

ogy being utilized (Hazen et al., 2013; Possingham&Wilson, 2005).

Hotspots in marine systems can be defined using qualitative or

quantitative criteria. Qualitative approaches, such as mapping abun-

dance and comparing densities visually, are easy to adapt regardless of

species or ecosystem but are limited because often they do not reflect

temporal change (Marchese, 2015). Additionally, qualitatively defined

hotspots can be subjective and based on arbitrary thresholds that do

not accurately reflect long-termdata or actual use of the specified area

by target species (Piacenza et al., 2015). Quantitative approaches to

detect hotspots, such as kernel density estimation and the Getis-Ord

Gi* statistic, are spatially explicit and generally provide more consis-

tency to inform long-term conservation agendas (Harvey, Nelson, Fox,

& Paquet, 2017). However, significant variation can exist among statis-

ticalmethodswhich can lead tomisidentifying some areas or vastly dif-

ferent results across models, depending on the input parameters.

The hotspot approach is frequently implemented globally in man-

agement or conservation regimes as a result of telemetry studies

(Ceballos & Ehrlich, 2006). The dynamic nature of the marine environ-

ment, due to complex physical processes, means that boundaries and

features are constantly shifting. As a result, the effectiveness of con-

servation strategies reinforced by telemetry-based marine hotspots is

often the subject of debate (Marchese, 2015). Here, we propose an

alternative, spatially explicitmethod to thehotspot approach, designed

to evaluate the use of MPAs by three species of endangered sea tur-

tle: loggerhead (Caretta caretta), green (Chelonia mydas), and hawks-

bill (Eretmochelys imbricata). We used integrated step selection analy-

sis (iSSA) to measure habitat selection, with protected status as one

of the habitat covariates. Integrated SSA jointly estimates the relative

probability of selection of different habitat covariates as well as the

selection-free movement properties of the animal’s trajectory (Avgar,

Potts, Lewis, & Boyce, 2016). SSA is a special case of resource selection

analysis (RSA), which use a use versus availability design to estimate

the strength of habitat selection. While the step selection framework

has previously been utilized in terrestrial studies (Abrahms et al., 2016;

Signer, Fieberg, &Avgar, 2019; Thurfjell, Ciuti, & Boyce, 2014), it is rare

that this tool is applied inmarine research.

Using an 11-year satellite tracking dataset, our objectives were to

determine (i) if sea turtles select for MPAs in greater proportion to

their availability, (ii) if behavioural state influenced this selection and

(iii) how habitat selection and behavioural state varieswith select envi-

ronmental covariates. In addition to providing the first analysis of how

sea turtle behavioural state impacts habitat selection, we demonstrate

the utility of thismodel for evaluating the effectiveness ofMPAbound-

aries and zoning arrangements for charismatic marine megafauna in
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F IGURE 1 Map of the Floridian ecoregion andMPAs by zone type included in the analysis

other study systems. Our research highlights the importance of inte-

grating telemetry data into conservation planning efforts through a

robust spatial modelling framework.

2 MATERIALS AND METHODS

2.1 Study area

We constrained our analysis to the Floridian ecoregion, defined by

Spalding et al. (2007) as one of the ‘Marine Ecoregions of the World’,

due to the high concentration and overlaps of satellite-tracking points

in this area. All MPAs within the ecoregion were included in the model

with the exception of those that fall under fisheries jurisdiction, which

are declared specifically for fisheries management (Figure 1). Fish-

eries closures, which are typically not zoned and only restrict a cer-

tain type of fishing, are difficult to evaluate in terms of effectiveness as

they often straddle jurisdiction boundaries or are temporary (Wright,

Ardron, Gjerde, Currie, & Rochette, 2017). As such, these areas were

removed from analyses tomaintain consistency inMPA classification.

The bulk of the protected area included in the Floridian ecoregion is

the Florida Keys National Marine Sanctuary (FKNMS). Designated in

1990, it is one of the 14 MPAs that encompass the National Marine

Sanctuary System of the United States. The sanctuary covers 2900

square nautical miles of waters surrounding the Florida Keys, from

south of Miami westward to the Dry Tortugas, and protects the third

largest coral barrier reef ecosystem in theworld (NOAAONMS, 2019).

The second largest MPA by area within the Floridian ecoregion is the

EvergladesNational Park.Anadditional 150MPAsunder state and fed-

eral jurisdiction were included in the analysis, equalling approximately

13,550 km2 of area protected within the Floridan ecoregion.

Marine protection can vary significantly across MPAs, ranging from

strict protection for biodiversity where no exploitation is permitted

(‘no-take MPAs’) to MPAs that allow for a range of extractive uses,

such as recreational or commercial fishing (‘multi-useMPAs’; Day et al.,

2012). Restrictions on recreational or commercial activities can be

specified either byMPA type or by the zones within an individualMPA,

which are subject to change depending on the jurisdiction. All MPAs

included in this analysis were divided into two categories, no-take and

multi-use, based on the specifications outlined in the zoning scheme

or management plans. MPAs not defined by any zoning scheme were

classified as multi-use in our analysis, unless specifically designated

entirely as no-take.

2.2 Data collection

Throughout the 11-year tracking effort, sea turtles were tagged after

capture either in-water or after a nesting event in the Dry Tortugas

National Park (Florida), Everglades National Park (Florida), Broward

County (Florida), or Gulf Shores (Alabama) (Supporting Information,

Figure SA1). Individuals were captured and tagged following identical
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methods to those outlined in previous research (Hart, Lamont, Fujisaki,

Tucker, & Carthy, 2012). Platform transmitter terminals were adhered

to the turtle carapace using slow-curing epoxy (two-part Superbond

epoxy). These tags were programmed to collect location data 24 hr per

day and transmit once a day through the Argos satellite system when

the turtle breached the surface of the water. Beginning in 2011, tags

on nesting loggerheads were programmed to transmit every third day

fromNovember 1 throughApril 1 in order to preserve battery life. Raw

location data were downloaded from theWildlife Computers portal.

2.3 Data analysis

Wildlife movement data collected via marine satellite tags typically

have two properties that make them difficult to analyse: (1) the loca-

tions are captured at irregular time intervals and (2) the location errors

are strongly non-Gaussian and canbevery large.Weuseda state-space

modelling (SSM) approach to estimate the true locations at regular

time intervals in the face of Argos positional uncertainty. Specifically,

we used a Bayesian hierarchical movement model with behavioural-

state switching implemented in the R package ‘bsam’ (Jonsen, 2016;

Jonsen et al., 2005). We fit the model using the function ‘fit_ssm()’,

using the ‘hDCRWS’ model specification and a time step of 1 day to

ensure model was informed by raw data as much as possible. We set

the Markov Chain Monte Carlo (MCMC) parameters following Hart

et al. (2012), using adaptive sampling for 7000 draws, taking 10,000

samples from the posterior distribution, and then thinning by five to

reduce MCMC autocorrelation, resulting in 2000 posterior samples

fromwhich to make inference. The SSM pooled all turtles without sep-

arating by species, sex or age class in order to ensure most accurate

assignment of behavioural state.

TheSSMfills gaps in the existing data by estimating a correlated ran-

domwalk based on observed locations.When gaps of many days occur

in the raw data, the resulting track becomes less informed by data and

thus less reliable the longer the gap is. Thus, we split individual tracks

with gaps longer than 25 days, and we passed these tracks to the SSM

as if they were separate individuals. After fitting the SSM, we recom-

bined the modelled daily locations for each turtle. The SSM catego-

rized each step into one of two behavioural categories: one which was

characterized by relatively shorter step lengths and sharper turning

angles, and another which was characterized by relatively longer step

lengths and straighter turning angles. We interpreted the behaviour

corresponding to the former as ‘area-restricted search’ (ARS) and the

latter as ‘transiting’. The SSM output was then used as the input for the

iSSA.

For the iSSA, observed steps are compared to available steps which

are randomly sampled from proposed theoretical distributions of step

lengths and turning angles (Avgar et al., 2016).Wechose to sample step

lengths from a gamma distribution and the turning angles from a von

Mises distribution. Because the available locations are considered at

the step scale, the iSSA framework is ideal for estimating selection of

MPAs in the face of tagging bias (i.e. when animals are tagged within

or near theMPA that we wish to evaluate). Specifically, animals tagged

within theMPAwill likely have a high proportion of their used locations

within thatMPA, simply due to autocorrelation. Any analysis that com-

pares use to availability (e.g. traditional habitat selection analysis)with-

out controlling for this dependency would conclude the animal selects

for the MPA. But in the iSSA framework, availability is defined at the

step level (rather than the study area or home range). Those animals

tagged within the MPA will also have a high proportion of available

locations within that MPA, thus eliminating any bias in the estimation

of habitat selection. Because iSSA can take themovement process into

account, it also has the capacity to account for autocorrelation in the

data and results in habitat selection inference unbiased by the move-

ment process (Avgar et al., 2016).

Wegenerated15 randomsteps for eachobserved step and analysed

the resulting dataset of used and available steps using case-control

logistic regression (also called conditional logistic regression), where

each observed step is matched with its corresponding random steps

(Duchesne, Fortin, & Courbin, 2010; Fortin et al., 2005). We fit one

model for all the ARS steps and one model for all the transiting steps,

thus parameterizing two integrated step selection functions (iSSFs).

We ran the iSSA using the function ‘fit_issf()’ from the R package ‘amt’

(Signer et al., 2019). Each iSSF included the same six covariates: (1) pro-

tected status, which was a categorical variable with categories ‘unpro-

tected’ (outside of any protected area, captured by the model inter-

cept), ‘multi-use’, or ‘no-take’; (2) sea floor depth, inmeters,with deeper

depths being expressed asmore negative numbers (1-min gridded spa-

tial resolution); (3) chlorophyll concentration (mg/m3); and the param-

eters for the movement process, which were (4) the step length (in

meters), (5) the natural logarithm of the step length, and (6) cosine of

the turning angle. Including parameters for the movement process not

only improved the strength of our inference, but also allowedus to esti-

mate the selection-free movement properties during each of the two

behavioural states (Avgar et al., 2016; Forester, Im, & Rathouz, 2009;

Warton &Aarts, 2013).

We assigned the covariates to each step based on their value at

the endpoint of the step. We assigned protected status to each step

using a shapefile from the National Marine Protected Areas Center

(https://marineprotectedareas.noaa.gov/). We assigned depth by using

the R package ‘marmap’ to query the data from NOAA and attach

it based on location (Pante & Simon-Bouhet, 2013). We assigned

chlorophyll by downloading processed chlorophyll rasters from the

MODIS-Aqua satellite through NASA’s OceanColor data repository

(NASA Goddard Space Flight Center, Ocean Biology Processing Group

2014). We downloaded monthly chlorophyll data for the duration of

the study with a 4-km resolution and assigned values to our steps by

month and year, thus accounting for spatial and temporal variation in

this covariate.

Like with RSA, SSA estimates the relative selection of one resource

over another. The lack of an absolute measure thus makes post hoc

comparisons within and between studies difficult. To account for this,

we used relative selection strength (RSS) to express the magnitude

of selection (Avgar, Lele, Keim, & Boyce, 2017). This metric is simply

the ratio of the estimated relative selection for one location (call it

x1) versus another location (call it x2). For example, an RSS of two

https://marineprotectedareas.noaa.gov/
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indicates than an animal is twice as likely to select x1 over x2, given

equal availability. Because the iSSA is linear on the log scale (i.e. it is

a generalized linear model (GLM) with a log link function), we pre-

sented the natural logarithm of RSS, hereafter log-RSS. Of particular

interest for evaluatingMPAs, the log-RSS for multi-use/no-take versus

unprotected gives us a quantitative measure of how much more likely

a turtle is to use each type of MPA, given that it is equally available,

while controlling for depth and chlorophyll concentration. We used

the function ‘log_rss()’ from the R package ‘amt’ for the calculation, and

the function also estimated 95% confidence intervals (CIs) for each

parameter using standard errors. We calculated log-RSS for protected

status in both behavioural states, relative to unprotected waters. We

also calculated log-RSS separately for depth and chlorophyll in both

behavioural states, with the reference location (x2) being fixed to

the mean of that covariate. For example, we calculated the log-RSS

for depth by allowing x1 to vary from −80 m to 0 m and fixing x2

at −18.1 m (the mean depth in the study area; Figure 3). A positive

log-RSS valuemeans the animal selects for x1 relative to x2, a negative

log-RSS value means the animal selects x2 relative to x1 and a log-RSS

of 0means it does not select either over the other.

Finally, we generated predicted relative selection maps in ArcMap

to visualize the utilization distribution where selection is conditional

relative to fixed covariates (Supporting Information, Figure SA2). We

designated selection to be relative to unprotected waters in average

(18 m) water depth. Additionally, as it was difficult to account for tem-

poral variability at this scale, chlorophyll was held constant at its mean.

3 RESULTS

3.1 Data collection summary

Our 11-year tracking dataset incorporated data from 235 sea turtles

tagged in four locations in Florida and theGulf ofMexico.Of these 235,

47 were tagged in Gulf Shores, Alabama; 21 were tagged in Broward

County, Florida; 146 were tagged in the Dry Tortugas National Park,

Florida; and 21 were tagged in Everglades National Park, Florida. Of

these 235 turtles, only 25 were subadults based on the straight cara-

pace length measurements (< 90 cm). Our raw dataset had a total

of 304,969 raw Argos locations. The Argos locations spanned over a

decade fromMay 2008 toMarch 2019.

3.2 State space modelling

After filtering extreme outlier locations, we were left with 303,200

Argos locations. We split 36 individual tracks at gaps of greater than

25 days, and some tracks were split more than once due to multiple

large gaps. One individual (tag ID 175681), tagged in the Dry Tortugas,

was hindering the fit of the SSM and was removed from further analy-

sis. The final number of tracks used as separate IDs in the SSMwas275.

After fitting the SSM, we were left with a total of 44,329 daily loca-

tions. Individual turtles had a mean of 161 daily locations (SD = 135,

range = 11–1170; Supporting Information, Figure SA3). The majority

of locations (95.6%) were assigned to the behavioural state ‘ARS’.

3.3 Step selection analysis

We converted the locations from the SSM to steps, generated the ran-

dom steps, assigned the covariates to all steps, removed any steps with

amissing covariate and clipped the steps to theFloridianMarineEcore-

gion.ARS iSSAhada total of 401,420steps,with25,311observed steps

and 376,109 random steps. The resulting dataset for the transiting

iSSA had a total of 18,945 steps, with 1157 observed steps and 17,788

random steps. Average depth for each iSSA was approximately 18 m,

ranging from 0 to 3,300 m, while average chlorophyll was 1.2 mg/m3,

ranging from 0.04 to 84.7mg/m3.

The parameter estimates from the iSSA (Table 1) showed that

turtles selected for multi-use protected areas during both ARS and

transiting behaviours, yet they showed no selection for unprotected

areas or no-take zones in either behavioural state (Figure 2). During

ARS, the log-RSS for multi-use versus unprotected was 0.19 (95%

CI = [0.09, 0.30]). This indicates that turtles are 1.21 times more likely

to use a multi-use area than an unprotected area during ARS [i.e.

exp(0.19) = 1.21]. During transiting, the log-RSS for multi-use ver-

sus unprotected was 0.64 (95% CI = [0.01, 1.27]). This indicates that

turtles are 1.90 timesmore likely to use amulti-use area than anunpro-

tected area during transiting behaviours [i.e. exp(0.64) = 1.90]. Turtles

selected for shallower depths during ARS but ignored depth while

transiting (Figure 3a). They avoided areas of the highest chlorophyll

concentrations while in ARS but showed no selection for chlorophyll

while transiting (Figure 3b). A detailed summary of step selection

coefficients is provided in Supporting Information (Table SA1).

We used the movement parameters from the iSSA to derive a

selection-free movement kernel for turtles in each behavioural state.

As expected, turtles in the ARS state exhibited short step lengths

and uniform turning angles, while turtles in the transit state exhib-

ited longer step lengths and turning angles more concentrated around

0 (Figure 4). ARS steps (in meters) were gamma distributed with

shape = 1.05 and scale = 2728.42, and transiting steps (in meters)

were distributed gammawith shape= 2.94 and scale= 10,080.28 (Fig-

ure4a). Following fromthesedistributions, expected step lengthduring

ARS was 2.9 km (SD= 2.8 km), and expected step length during transit

was 29.6 km (SD = 17.3 km). ARS turning angles were von Mises dis-

tributedwithmean= 0 (fixed) and concentration= 0.01, and transiting

turning angles were von Mises distributed with mean = 0 (fixed) and

concentration= 3.72 (Figure 4b).

4 DISCUSSION

While MPAs have consistently been shown to conserve ecosystem

function and help promote sustainable fisheries (Roberts et al., 2018),

gauging their effectiveness for migratory species is challenging. MPA

networks that are designed to incorporate essential habitats used by
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TABLE 1 Summary of parameter estimates included in themodel and number of total locations per model incorporated in the analysis. Boxes
with a (+) highlighted in dark grey indicate positive selection and therefore preference relative to unprotected waters. Boxes with a (−) highlighted
in light grey indicate avoidance relative to unprotected waters. Boxes with a 0 indicate no selection/preference

Behaviour Unprotected Multi-use No-take Depth Chlorophyll

Area-restricted research 0 + 0 + –

Number of locations 67,960 187,783 101

Transiting 0 + 0 0 0

Number of locations 8,195 4,590 3

F IGURE 2 Estimates of log-RSS forMPAs. RSS indicates how
muchmore likely a step is to end in protected waters (multi-use or
no-take) versus unprotected waters. The natural logarithm of RSS is
the scale estimated by the iSSA, with a log-RSS of 0 (dashed black line)
indicating no preference versus unprotected zones. Bars show 95%
CIs for the log-RSS estimate. Turtles showed positive selection for
multi-use zones in both behavioural states, whereas they showed no
selection for no-take zones during either state (confidence intervals
overlap 0)

mobile species, such as spawning, nursing or foraging grounds, could

fill a crucial role in maintaining population persistence. Therefore,

MPAs targeting such protection should be systematically evaluated

to quantify how migratory species interact with these boundaries.

Step selection analysis is a flexible statistical tool that can expand our

understanding of animal movement and behaviour at fine spatial and

temporal scales. Our application of iSSA to protected area evaluation

provides a unique perspective on whether conservation strategies are

sufficient for a highly mobile species. Results from the iSSA show that

sea turtles do select for existing protected areas, specifically multi-use

zones, while controlling for the effects of depth and primary produc-

tivity (Figure 2). This finding is important for sea turtle conservation

and management because it shows that protected areas are used by

turtles. Our results also contribute to the existing literature base of

MPAuse for highlymobile imperilled species, and our framework could

informmanagement of existingMPAs or changes to zoning patterns.

Animal movement and foraging behaviour are impacted by a wide

range of environmental factors. Our modelling approach controls for

the behavioural response of sea turtles to two of these variables that

are known to affect species distribution: bathymetry and chlorophyll

(McCarthy, Heppell, Royer, Freitas, & Dellinger, 2010). While sea tur-

tles are known to forage in shallower waters (Wildermann, Sasso,

Stokes, Snodgrass, & Fuentes, 2019), their response to chlorophyll con-

centrations is largely unknown. Our finding that foraging turtles dis-

played negative responses to high chlorophyll areas is inconsistent

with previous research in this area. Positive responses to elevated lev-

els of chlorophyll have been observed in loggerhead turtles satellite

tracked in the North Atlantic (McCarthy et al., 2010) and the North

Pacific (Kobayashi et al., 2008), suggesting these animals often seek

out productive habitats while foraging. One possible explanation for

the reverse outcome from our model could be due to the high degree

of uncertainty associated with interpreting chlorophyll as a model

parameter across large spatial or temporal scales (Brewin et al., 2017).

Monthly chlorophyll composites can contain a high percentageof cloud

cover, large gaps or inflated values in nearshore environments due to

bottom contamination (Blakey et al., 2016). Our study area is predomi-

nantly shallow (median depth∼14m) so it is likely that high chlorophyll

signals are mixed with seagrass, algae or other substances in the water

column. Furthermore, our data are biased towards loggerheads (68%),

who forage primarily on invertebrates and could therefore avoid dense

areas of seagrass or potentially high chlorophyll areas.

Designing MPAs will naturally involve compromise among compet-

ing objectives, specifically where no-take areas are concerned. If an

objective is to partially or completely encompass the migratory corri-

dors and/or foraging grounds of marine megafauna, precise placement

of no-take areas is key. Our results did not show that turtles select for

no-take areas, and there may be several explanations as to why. First,

no-take areas in our study region are rare compared tomulti-use zones,

so our iSSA has a small sample size for both used and available loca-

tions falling within no-take zones, and the resulting parameter esti-

mates thus have a large amount of uncertainty. Second, there may be

an issue of location resolution. No-take areas in our study region are

also relatively small, and Argos telemetry data are known to have low

spatial precision. While the SSM largely accounts for this, there is still

uncertainty in each location and the resulting steps, potentiallymaking



ROBERTS ET AL. 7 of 10

F IGURE 3 Estimates of log-RSS for depth (a) and chlorophyll (b) for turtles in each behavioural state (ARS)= blue, transit= orange). RSS
indicates howmany timesmore likely a step is to end in the given depth (along the x-axis) versus themean for that covariate (mean depth= -18m;
mean chlorophyll= 1.2mg/m3). The natural logarithm of RSS is the scale estimated by the iSSA, with a log-RSS of 0 (dashed black line) indicating no
preference versus themean. Coloured dashed lines show 95% confidence envelope for log-RSS estimates. Turtles showed positive selection for
shallower depths during ARS, but no selection for depth during transit (a). Turtles showed avoidance of the highest chlorophyll concentrations
during ARS, but no selection for chlorophyll during transit (b)

F IGURE 4 Selection-freemovement kernels estimated by the iSSA by behavioural state. During ARS, turtles exhibited relatively short step
lengths (a) and uniform turning angles (b). During transitingmovements, turtles exhibited relatively long step lengths (a) and very directed
movements (b; i.e. relative turns concentrated around 0)

it difficult to detect selection for small sites (Fortin et al., 2005). Third,

sea turtles may truly not select no-take areas, suggesting these zones

may be poorly designed for these species. For example, sea turtles may

not be able to recognize the boundaries of these protected areas since

there can still be boat traffic, substantial human presence, bait fishing

and, occasionally, catch-and-release trolling (U.S. Department of Com-

merce, 1996). Nevertheless, results of this analysis could be integrated

into future rezoning considerations for sea turtles and other marine

megafauna.

Our analysis does not allow us to address how or why turtles select

for protected areas. The finding that sea turtles select multi-use areas

during ARS and transiting implies that they can somehow perceive

them, but this could be interpreted several ways. The protections in

these areas might improve the overall health of the ecosystem and

quality of the habitat within them, and turtles are simply selecting the

highest quality habitat. Alternatively, turtles might be avoiding the

disturbance outside of the MPAs, so our findings could be interpreted

instead as an avoidance of unprotected habitat. Further investigation
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into these behaviours at a finer spatial and temporal scales – for

example using passive acoustic receivers and/or GPS tags –would help

to shed light on some of these important questions.

Previous efforts to inform resourcemanagement with animal track-

ing data have ensured that the developed models can account for sig-

nificant variation at numerous scales (temporal, individual, etc.) and are

accessible to managers, stakeholders and policy makers (Hays et al.,

2019). While planning for effective MPAs requires the consideration

of many unique components, satellite tracking studies have often had

a significant influence on MPA design and placement (Lea et al., 2016;

Schofield et al., 2013). Given the recent proposed changes to the

FKNMS, this research is very timely. Specifically, an extensive array

of boundary expansions, zone and regulatory changes are currently

being reviewed by FKNMS staff in an effort to increase the resilience

of critical ecosystems throughout the Keys and address the signifi-

cant increase in anthropogenic and climate-related stressors (NOAA

ONMS, 2019). The application of iSSA presented here for quantify-

ing endangered species utilization of MPA boundaries could provide a

practical baseline for current and future work in marine spatial plan-

ning, particularly for study systems like the Florida Keys with large-

scale objectives.

5 CONCLUSION

To design the most effective MPAs and conservation strategies for

threatened and endangered marine species, a comprehensive under-

standing of animal movement patterns and habitat selection is nec-

essary. Previous research has identified various techniques, including

hotspot analyses and kernel density estimation, that could reveal areas

of ‘high use’ within a migratory species’ home range; this information

can be used to better focus management efforts to target protections

for the most vulnerable species (Lascelles, Langham, Ronconi, & Reid,

2012). However, the use of these more traditional methods often only

provide static summaries of habitat-use patterns or limit/exclude envi-

ronmental covariates that are critical to discerning species distribu-

tion and behaviour. It is now possible, althoughmore complex, to incor-

porate behavioural data into spatial models for conservation planning

purposes (Ashe, Noren, &Williams, 2010). Our spatially explicit model

is an alternative method to evaluating MPA boundaries and zoning

arrangements for migratory species. Our approach eliminates tagging

site bias and provides behavioural context with movement patterns.

Thismethodmay be adapted to any specieswith satellite-tracking data

and inclusive of a wider range of covariates. Our results emphasize

the improvement inmodel predictionswhen satellite-tracking data are

integrated into the design andmanagement ofMPAs.
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