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Abstract

1. We need reliable information about the spatial and temporal distribution of mobile

species to effectively manage anthropogenic impacts to which they are exposed.

Yet, we often cannot sustain dedicated annual surveys and data obtained fromplat-

formsof opportunityoffer analternative avenue tounderstandwhere these species

spend time.

2. Four odontocete species that occur in the four-island region of Maui, Hawai’i, USA,

are vulnerable to a range of human activities, but there is a lack of information

regarding their distribution. We therefore do not know the extent of the risk these

activities present for the conservation of these species (bottlenose dolphins, spin-

ner dolphins, Pantropical spotted dolphins and false killer whales).

3. We used a cross-validated maximum entropy (MaxEnt) occupancy model to esti-

mate the distribution of these four species in an area extensively observed from

platforms of opportunity (PoP). We then determined in a similar fashion whether

the calves of those species were more likely to be observed in particular areas and

whether distribution changedwith season.

4. Maxent models relying on local environmental variables described dolphin obser-

vations well (AUC > 0.7). Their distribution differed for all species when calves

were present, indicating that different environmental variables describe area use

for schools with calves present.

5. The number of sighting events of all species varied significantly with season. Bot-

tlenose dolphins and false killer whales were more prevalent in winter, while spot-

ted and spinner dolphins weremore prevalent in summer.

6. We show that an overlap in the distribution of dolphin schools with calves and

vessel traffic in the region could result in collision and chronic stress risks. This

suggests a need for specific regulations for mitigating anthropogenic influences,

such as acoustic disturbance or chronic energetic disturbance from vessel traffic.
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the original work is properly cited.
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This elevated risk associated with vessel traffic is likely of conservation concern

in this region for the endangered population of false killer whales and for spinner

dolphins.
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1 INTRODUCTION

The extent to which anthropogenic impacts can cause conservation

risks for highly mobile species depends on the degree of overlap in the

distribution of human activities and those species (Pirotta et al., 2018).

We therefore need reliable information about the species spatiotem-

poral distribution to manage these risks. The conservation of popu-

lations that are not exposed to direct takes, but instead face chronic

exposure to non-lethal disturbances, can be affected by reduced repro-

ductive success (Béchet et al., 2004; Beissinger & Peery, 2007; Crooks,

2002; Manlik, 2019; Manlik et al., 2016; Pirotta et al., 2018; Raithel

et al., 2007). Habitat selection may facilitate reproductive success by

offering better prey availability, protection from predators or reduc-

tion of energy expenditure by providing a more sheltered environ-

ment (zu Ermgassen et al., 2016). For species facing chronic exposure

to anthropogenic impacts, it is important to understand not only the

extent of the overlap between their range and these human activities,

but particularly whether there is an overlap with areas where moth-

ers and calves are more likely to be present. Areas known to have

high occurrences of juveniles or that function as nursery areas are high

priority for conservation efforts and protections (CBD, 2008; IUCN

MarineMammal Protected Areas Task Force, 2018).

The Hawaiian Islands are a marine ecoregion of global importance

(Olson & Dinerstein, 2002). Eighteen odontocete species have been

documented in this region, all of which are vulnerable to anthro-

pogenic activities that have the potential to negatively impact pop-

ulation trends. These include fisheries interactions, collision and dis-

turbance risks associated with commercial or recreational vessel traf-

fic (Baird et al., 2013). While many of these 18 species move through

the Maui four-island region, there is evidence that three of the dol-

phins in Hawai‘i have island-associated populations, with little docu-

mented mixing with other island populations (Carretta et al., 2020). In

the Maui four-island region, the most commonly sighted dolphins are

(i) the pantropical spotted dolphin, Stenella attenuata (NOAA, 2017c),

(ii) the spinner dolphin, Stenella longirostris longirostris (NOAA, 2018),

(iii) the bottlenose dolphin, Tursiops truncatus (NOAA, 2017a), and

(iv) the false killer whale, Pseudorca crassidens (NOAA, 2013). For all

four species, we currently lack detailed information about distribution

necessary to manage their conservation threats (Baird et al., 2013;

Carretta et al., 2020).

While this region is considered data deficient for some species, it is

rich in commercial and recreational vessels that can be used to collect

opportunistic data about the location of marine wildlife (Currie et al.,

2018). These ‘platforms of opportunity’ (PoP) can provide an alterna-

tive way of obtaining data when costly dedicated survey effort is not

feasible (Currie et al., 2018; Kiszka et al., 2007; Moura et al., 2012 ;

Williams et al., 2018).

Advances in modelling approaches that can help infer species occu-

pancy using presence-only observations (Elith et al., 2006; Oppel et al.,

2012; Phillips, 2009), means that PoP data (Williams, Hedley, & Ham-

mond, 2018), and indeed other community science data (Currie, Stack,

&Kaufman, 2018), can successfully beused todescribe thedistribution

of wildlife (van Strien et al., 2013).

Here we used environmental variables to describe opportunistic

observations of the four dolphin species commonly found within Maui

four -island region. This was conducted using data obtained from tour

operating vessels in the Maui four-island region and analysis con-

ducted using maximum entropy models to estimate their distribu-

tion in this area. Given that the identified conservation threats varied

between age classes (Carrillo & Ritter, 2010; Pirotta et al., 2018), we

assessed whether schools observed with calves differed in their distri-

bution from schools without calves.We then assessed the spatial asso-

ciation between dolphin distribution and vessel traffic to determine

whether there is significant overlap which could cause conservation

concerns.

2 MATERIALS AND METHODS

2.1 Study area

The islands of Maui County; Maui, Lana’i, Moloka’i and Kaho’olawe,

hereafter referred to as ‘the Maui four-island region’ lie within the

Hawaiian Islands Humpback Whale National Marine Sanctuary (HIH-

WNMS). The study area was determined by the extent of the spatial

data available and covers an area of 1890 km2 of the contingent shelf

region between the four islands (Figure 1). The deepest region of the

study area is the southern section of the ‘Alalākeiki channel, which

reaches 325m,while themean depth of the study area is 54m. Anthro-

pogenic activity in the region is high, with a large quantity of vessel
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F IGURE 1 Location of the study area within the four-island region ofMaui, Hawai’i, USAwithmean vessel AIS fixes per hour per grid cell, data
for all vessels equippedwith AIS (seeMethods section) using the study area from 2013 to 2017 (BOEM&NOAA, 2019)

traffic facilitating a variety of marine tourism and recreational activi-

ties, along with local fisheries and shipping (Figure 1) (Department of

Business Economic Development & Tourism, 2015).

2.2 Cetacean observations

Sightings data were collected aboard tour boats using the community

science application Whale and Dolphin Tracker (WDT), developed by

Pacific Whale Foundation (PWF) (Currie et al., 2018). While WDT is

open to the public, in this instance we restricted analyses to sightings

recordedbynaturalistswhohave completeda60h trainingprogramme

focused on species and behaviour identification. The fleet of seven ves-

sels and each naturalist had a user account forWDT, and only this sub-

set was used to ensure species identification accuracy. Only presence-

only sighting locations were available, and sample bias in the form of

numbers of sightings per grid cell was included in subsequent Max-

Ent analyses to compensate for the uneven effort associated with PoP

(Pearce & Boyce, 2006).

Dolphin sighting data were collected frommultiple whale-watching

and snorkel trips departing from both Ma‘alaea and Lahaina Harbors

daily between 1 January 2013 and 31 March 2017. Vessel speeds

ranged from 5–20 knots, and followed a non-systematic track, usually

determined by weather and trip itinerary (e.g. snorkel site). Only sight-

ings where the dolphin schools were approached and subsequently

watched were used in analysis to ensure accuracy of species identifi-

cation and calf presence. Encounter location (latitude and longitude)

was recorded using WDT when the vessel was ≤150 m from the focal

school.

2.3 Data processing

The initial dataset consistedof 2852 sightings.Whichwerequality con-

trolled to ensure accurate location of sightings. Where coordinates

were identified as erroneous (such as outside of Maui or on land), we

used the vessel’s built-in GPS data to correct the coordinates by iden-

tifying the correct location of the vessel along the GPS track at the

time of the sighting. For records where corrections of erroneous coor-

dinates were not possible, the sightings were excluded from analyses.

2.4 Environmental data

Environmental data were gridded (50 × 50 m) using the R package

resample (Hesterberg, 2015) and associated with sightings.

We introduced four spatial variables in maximum entropy (max-

ent) models: bathymetry (50 m resolution) (Hawai’i Mapping Research

Group, 2017), the presence/absence of coral reefs (Andréfouët et al.,

2005), the proximity to the coast (meters) for each sighting (Natural

Earth, 2017) and benthic roughness. Benthic roughness was estimated

as the ratio of surface area to planimetric area to act as a proxy for ben-

thic habitat type (Jenness, 2004). We also used a variable that could

be associated with levels of anthropogenic activities: the proximity to

urbanized coastal areas (meters) using information on urban cluster

locations fromcensusdata as aproxy for coastal anthropogenic activity

(State of Hawai‘i Office of Planning, 2017). We also included oceano-

graphic variables: tidal height (feet) originated from the NOAA station

1615680 at Kahului Harbour (NOAA, 2017b), sea surface tempera-

ture (SST) in degrees Celsius recorded every 30 min was sourced from
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F IGURE 2 Number of sightings by species per grid cell in the study region

the NOAA data buoy at station 51203 in Kaumalapau, Lana’i (NOAA,

2017b) and satellite-derivedocean surface current dynamics, including

zonal currents velocity (m/s), zonal maximum mask (m/s), meridional

current velocity (m/s) andmeridional currentmaximummask (m/s) at a

spatial resolutionof 0.33deg (latitude)×0.33deg (longitude) at a5-day

temporal resolutionwere obtained from the Jet Propulsion Laboratory

‘Physical Oceanography Distributed Active Archive Data Centre’ (JPL

PO.DAAC, 2017).

Finally, we included temporal variables: year, to account for inter-

annual variability and any influence by the El Niño–Southern Oscilla-

tion cycle, and season. As the oceanographic seasons in Hawai‘i are

not highly variable, we used the variance in SST (Figure 2) to define a

‘Winter’ season fromOctober–April and a ‘Summer’ season fromMay–

September.

2.5 Distribution model development

We categorized sightings by species and whether calves were present

or absent in the school. We modelled each sighting response variable

separately using ‘maxent’ in the R package dismo using a regulariza-

tion factor of 1 (Hijmans et al., 2017). We preferred to carefully select

explanatory variables and rely on model validation rather than engage

in a selection of penalization magnitude (Royle et al., 2012). The mod-

els were trained on a k-folded subset of 70% of the data, created using

thepackagecvTools (Alfons, 2015). To compensate for potential effort

bias, an effort proxy distribution grid was established from the ker-

nel density of sightings for all species; estimating the kernel utiliza-

tion distribution assuming a bivariate normal kernel function using the

R package adehabitatHR (Calenge, 2006). We selected 10,000 spa-

tial background points using this bias pattern, and further subsampled

1050 background points from those across temporal environmental

variables. We used those in the maxent models to assess the range of

environmental conditions available so that the spatial distribution of

the background points was equivalent to that of the presence records

(Phillips, 2009; Syfert et al., 2013).

The maxent models were tested by adding and removing variables

until an AUC > 0.5 was achieved indicating model performance was

better than random, and the model with the highest AUC selected

as the best fitting model for that species (Duque-Lazo et al, 2016 ;

Franklin &Miller, 2010). AUC does not cover all aspects of model rele-

vance (Lobo et al, 2008), we therefore complemented thismodel selec-

tion step with estimates of model goodness-of-fit and accuracy. We

evaluated the models by assessing their ability to predict the sight-

ings in the remaining test subset of 30% of the sighting records. We

used four evaluation statistics to evaluate model fit and predictive

performance: (i) the area under the receiver-operating characteristic

curve calculated with a Mann–Whitney U statistic (AUC), to indicate
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discrimination performance with how much variation was captured

by the model; (ii) the percentage correctly classified (PCC), which

described predictive performance in how many of the test sightings

were correctly predicted by the model, generated using the package

PresenceAbsence (Freeman & Moisen, 2015). We also used: (iii) the

point biserial correlation coefficient between observed and predicted

values (COR), which described the degree to which predictions were

linearly related to the established probability of presence, taking into

account how far predictions vary from the test values; and finally (iv)

the intercept of regression of observed versus predicted values (Bias),

which indicated if the predicted values from a model are over- or

underestimates compared to true values, generated using the custom

function ‘ecalp’ (Oppel et al., 2012; Phillips & Elith, 2010). Each eval-

uation statistic provided information on a different aspect of model

fit and performance and was examined separately for any evidence

of poor performance and cohesively to come to an overall view of

themodel.

2.6 Distribution patterns

Final models for each sighting category were used to predict relative

occurrence rate (ROR, the relative probability that a cell is contained

in a collection of presence samples) from spatial and temporal vari-

ables for each species and school category (with or without calves). As

it is the case for most presence-only distribution modelling efforts, we

do not have a way to robustly test the assumptions needed to under-

stand the relationship between ROR and probability of individual pres-

ence in a grid cell. However, the search strategy in which the vessels

engage and the search intensity lead to a less effort biased sampling

of the study area (Figure 2) than might be encountered in other com-

munity science project. We also accounted for a proxy of effort (Fig-

ure S1 in the Supporting Information) in the selection of background

points. Therefore, we assumed that ROR was an appropriate estimate

of relative probability of presence (Merow et al., 2013). As we work at

a regional scale, ourmain focuswas to understand the relative variabil-

ity in occurrence rather than delineate species home range. Hence, the

need to define absolute probability of occurrence was not warranted

(Merow et al., 2013; Royle et al., 2012). Finally, this means that we are

not able to compare the absolute ‘distribution’ (probability of presence)

between the four studied species but this does not prevent comparing

general patterns of distribution (e.g. offshore vs. inshore, etc). RORwas

estimated for each grid cell of the study area based on the median val-

ues of contributing variables for that grid cell and iteratively estimated

for each year andeach season. RORvalues for each seasonal conditions

were generated by supplying the 25% quantile of SST for the winter

season and the 75% quantile of SST for the summer season to account

for SST contributions over and above seasonal effects in the models.

Hence, cold predictions represent ROR for cold conditions (25% quan-

tile SST) during winter and warm predictions represent ROR for warm

conditions (75% quantile SST) during summer. Maps of the predicted

RORwere generated using ggplot2 (Wickham et al., 2018).

2.7 Assessing the influence of season on relative
abundance

To assess seasonal variation, we modelled the number of sightings as

a function of season (summer vs. winter) using a Generalised Linear

Model with a Poisson error structure. Observations in this model were

the number of sightings of a given species per calendar month, with a

total of five replicates from each study year . While we did not have an

exactmeasure of effort heterogeneity between seasons, the number of

trips duringwhich sightings of anyof the specieswere recorded inWin-

ter (1521 trips)was roughly twice the number of trips recorded in Sum-

mer (896 trips). To ensure model assumptions had been met, graphi-

cal plots of the residual distributionwere inspected for the presence of

patterns or bias, which was not present.

2.8 Spatial association models

We developed spatial mixed effects models to determine the associ-

ation of ROR of schools with calves with the ROR of schools without

calves and vessel traffic estimates. It is important to note that ROR

represents central tendencies in species occurrence in each grid cells,

and therefore the association models here only capture the overlap

between typical vessel traffic in a grid cell and the likely presence of

the species, discounting potential avoidance tactics the species might

have (e.g. Lusseau, 2005). However, these avoidance tactics can them-

selves have conservation implications and therefore these association

models help to highlight whether vessel traffic, as a constraint on habi-

tat use, may be of concern for particular species. They also discount

uncertainties associated with the fitting of the models to the data, the

model validation seems to point to a lower risk associated with these

errors changing the outcome of analyses on relative trends; which is

why we do not make any inference beyond a description of potential

spatial concordance. Vessel density was estimated each year (2013–

2017) using the average number of automatic identification systems

(AIS) fixes recorded per hour in each grid cell that year using data from

the U.S. Marine Cadastre (BOEM & NOAA, 2019). AIS is required for

all vessel larger than 300T and all passenger vessels regardless of size.

While this represents only a subset of all vessel activities, it captures

a broad representation of vessel traffic in the area. ROR was arcsine-

square root transformed, following investigation of the goodness-of-

fit of the residual distribution with the assumed distributions, and all

models assumed a Gamma distributed error structure with a log link

function. All models included a random effect of ‘year’ and ‘season’ (as

defined in the previous section using both season and SST) as well as

a Matérn spatial correlation structure (Rousset & Ferdy, 2014). The

Matérn variogram function is composed of a gamma and a Bessel func-

tion and describes a generalized Gaussian spatial process with varying

smoothness offering flexibility in its local behaviour.

We challenged the data with five spatial models for each species

to determine the extent with which the ROR of schools with calves

(RORcalf) was associated with the ROR of schools without calves
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(RORadult) and vessel density. In all models, RORcalf was the response

variable. A ‘null model’ only fitted an intercept as fixed effect, ‘adult

model’ fitted RORadult as fixed effect, an ‘AIS model’ fitted AIS as fixed

effect, an ‘adult & AIS model’ fitted a fixed effect of AIS and RORadult

and finally an ‘adult & AIS structured dispersion model’ fitted a fixed

effect ofRORadult and aneffect ofAISon the variancedispersionof that

relationship. The latter model helped to identify whether areas where

RORcalf departs more from RORadult are also areas with greater vessel

density.

We also assessed whether RORadult was associated with vessel

density by fitting two spatial mixed effects models similar to the

ones developed for the RORcalf response variable (null model and AIS

model). Models were selected using marginal AIC. All spatial mixed

effects models were developed and fitted using spaMM in R (Rousset &

Ferdy, 2014).We used this approach, rather than introduce vessel traf-

fic as an explanatory variable in the MaxEnt models as we wanted to

assess whether the predicted ROR might be associated with vulnera-

bility to traffic risk. Finally, if an association between vessel traffic and

distributionwas detectedwe used a qualitative approach to determine

a spatial index to identify vulnerability hotspots. This avoided further

manipulation of the data via regularization or scaling to get all vari-

ables on a similar scale in a tractable manner. For cases, where AIS

was retained as an explanatory variable, we determined the ROR top

quintile cells and the AIS top quintile cells (both on a log scale given

the distributions and assumptions of models fitted).We identified cells

that were in both top quintiles. In cases where the structured disper-

sionmodelwas retained, we estimated the residuals of the relationship

between RORcalf and RORadult and identified the top quintile of these

residuals as a measure of relative risk. To further understand vulner-

ability in those cases, we also identified those cells were the residuals

are in the top quintile, AIS is in the top quintile and RORcalf is in the top

quintile as a measure of risk. This identified locations where not only

schools with calves are more likely to be present that schools without

calves for that species, but they are alsomoreoftenpresent overall.We

engaged in the same process to estimate ‘coldspots’ with bottom quin-

tiles.

3 RESULTS

3.1 Sightings

After quality control, the dataset contained 2757 sightings. The most

frequently sighted species was spinner dolphins, totalling 1286 events.

The highest sighting densities for spinner dolphins were recorded in

shallow coastal waters and the Au’au channel (Figure 2). Bottlenose

dolphins were sighted 1106 times, distributed the most widely of the

four study species (Figure 2). Higher sighting densities of bottlenose

dolphins occurred in the Au’au channel and Ma’alaea harbour. Spot-

ted dolphins were sighted most commonly in the deeper areas of the

Au’au channel and around Lana’i, with 272 sighting recorded in total

(Figure 2). Finally, 93 sightings of false killer whales were distributed

broadly across the study region (Figure 2).

3.2 Distribution model performance and
validation

Themodels for all specieswere able to adequately discriminate species

distribution patterns (AUC > 0.7) (Table 1) (Hosmer & Lemeshow,

1989; Phillips & Elith, 2010). The ability of the models to correctly

predict the test sightings varied. PCC values varied, with the lowest

being for the model of false killer whale schools with calves (58%) and

the highest for spinner dolphin schools without calves (99%) (Table 1).

COR estimates of how far predictions varied from the test values fit

into two broad groups: spinner dolphin schools both with and with-

out calves, along with bottlenose dolphin schools with calves had COR

values above 0.3, whereas all other values were < 0.1 (Table 1). Bias

showed the highest (> 6) underestimation of occurrence for false killer

whales and bottlenose dolphins, while other models had much lower

values (< 0.6) (Table 1).

3.3 Variables describing distribution

The variable contribution was varied across models (Figure 3; Table S1

in the Supporting Information). Year was the most consistent con-

tributing variable, ranked as third or higher for all models. There were

differences in the variable contribution within all species between

schools with and without calves, with spatial variables contributing

more to the distribution of schools with calves than schools without

calves.

3.4 Predicted distribution patterns

The predicted distributions revealed a variety of distribution patterns

for each species. False killer whales and bottlenose dolphins showed

similar distributions, with high ROR for schools without calves asso-

ciated with coastline and urbanized area proximity to each species,

TABLE 1 Statistics evaluating the predictive ability eachmaxent
distributionmodel against test data

Species Calf status AUC COR Bias PCC

False killer whale Present 0.92 −0.06 0.001 0.58

Absent 0.85 −0.009 6.157 0.97

Bottlenose dolphin Present 0.76 0.54 0.008 0.98

Absent 0.94 −0.03 6.157 0.95

Spotted dolphin Present 0.87 0.09 −0.01 0.80

Absent 0.97 −0.01 0.003 0.96

Spinner dolphin Present 0.77 0.33 −0.02 0.63

Absent 0.93 0.32 −0.03 0.99

Abbreviations: AUC, area under the receiver-operating characteristic

curve; Bias, intercept of regression of observed vs. predicted values; COR,

point biserial correlation coefficient between observed and predicted val-

ues; PCC, percentage correctly classified.
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F IGURE 3 Variable contributions for eachmaxent distributionmodel. x: longitude, y: latitude, coast: coastal proximity, urban: urban cluster
proximity, SST: sea surface temperature, season: winter and summer season, zonevelocity: zonal currents velocity, zonemaxmask: zonal maximum
mask, medvelocity: meridonal current velocity, medmaxmask: meridional current maximummask. (SeeMethods for detailed description of each
variable)

respectively. All models exhibited differences within a species depend-

ing onwhether the schools had calves, except for spotted dolphins (Fig-

ures 4; Figures S1–S9 in the Supporting Information).

3.5 Spatial associations of the distribution of
schools with calves

For all species, best models retained a fixed effect of RORadult associ-

ated with RORcalf. However, this effect is negative: schools with calves

did not follow the same distribution as schools without calves in the

study area (Figure 4 and Tables 2 and 3; Figures S1–S9). The best

models also included an effect of AIS on the dispersion of RORcalf for

spinner dolphins and false killer whales. Therefore, the departure of

RORcalf from predictions based on the ‘adult model’ is associated with

vessel density. We plotted the median residuals of the ‘adult model’

(median across year and season for each grid cell) for each species (Fig-

ure 5), and this departure is mainly associated with schools with calves

being present more than expected in areas with high vessel density

(Figure 6).
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TABLE 2 Model selection of spatial associationmixed effects model for each species and for each school category (calf: School with calves,
no-calf: Schools without calves). Values aremarginal AIC (best model in bold), NAwhenmodels were not fitted (see text for details). Model
selected are in bold

Species

School

category

Null model

(intercept only) AISmodel Adult model

Adult and AIS

model

Adult and AIS

structured

dispersion

Bottlenose dolphin RORcalf −80,971.0 −80,969.1 −81,684.5 −81,682.7 −77,830.6

RORadult −28,795.0 −28,796.0 NA NA NA

False killer whale RORcalf −37,887.1 −37,885.8 −37,903.7 −37,902.3 −37,935.6

RORadult −33,254.8 −33,253.2 NA NA NA

Spotted dolphin RORcalf −49,406.8 −49,405.6 −49,469.7 −49,468.2 −48,924.7

RORadult −24,738.7 −24,742.2 NA NA NA

Spinner dolphin RORcalf −43,001.9 −43,009.6 −44,334.5 −44,344.9 −44,429.7

RORadult −42,663.3 −42,661.4 NA NA NA

F IGURE 4 Predicted relative occurrence rate for schools with
calves (RORcalf) and schools without calves (RORadult) for each species
for the year 2015 andwinter season (SST set at 25% quantile of winter
season SST). (See Figures S1–S9 for predictions for other years and
seasons)

3.6 Seasonal variation in sighting numbers

Sighting numbers varied significantly with season: false killer whales

and bottlenose dolphins were sighted more frequently in winter, while

both spotted and spinner dolphins were sighted more frequently in

summer (Figure 7).

4 DISCUSSION

Maximum entropy modelling of presence-only observations provided

meaningful and useful distribution models despite effort bias, com-

plex sets of explanatory variables and limited sample sizes (Tyne et al.,

2015). The ability to produce informative models with limited and

unstructured data makes approaches like MaxEnt ideal for use with

POP data, which has inherently heterogeneous effort distribution

across environmental space, dictated by the vessels primary function.

While POPs, like other community science sources, can introduce bias,

they yield useful observations from which we can infer distribution

information to guide the development of research surveys, conserva-

tion management plans and management decisions (Tyne et al., 2015).

This study confirms thatPoPcanprovide insight about speciesdistribu-

tion at a regional scale from the substantial observations they provide

where dedicated survey results are limited but a large tourism fleet

exists, suchas is the case in the four-island regionofMaui. This informa-

tion can guide the design of efficient monitoring schemes to determine

density, abundance and their trends and inform in the interim adaptive

geographic management plans.

4.1 Variables associated with odontocete
distribution

The maxent models performed well in predicting the distribution of

six of the eight school types modelled, while also demonstrating the

complex interaction of variables that describe odontocete distribution.
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TABLE 3 Summary of models retained for interpretation for each
species. Spatial mixed effects model with a Gamma error structure (log
link function), aMatérn spatial correlation structure and including a
dispersion structuredmodel. Response variable arcsine-square root
transformed

False killer whale RORcalf – Adult and AIS structured dispersion

model (Matérn: ν= 0.756, ρ= 2.746)

Fixed effects

Term
Coefficient
estimate

Conditional
SE t-value

Intercept −1.89 1.640 −1.15

RORadult −0.018 0.005 −3.80

Random effects

Term
Variance
estimate

Intercept
estimate

Conditional
SE

Year 0.0317 −3.452 0.707

Season 0.0266 −3.628 1.411

Long+ Lat 5.379 1.682 0.056

Residual variationmodel

Term
Coefficient
estimate

Conditional
SE

Intercept −7.62 0.020

AIS 2.93 0.584

Spinner dolphin RORcalf - Adult and AIS structured dispersionmodel

(Matérn: ν= 0.908, ρ= 7.464)

Fixed effects

Term
Coefficient
estimate

Conditional
SE t-value

Intercept −0.535 0.915 −0.58

RORadult −0.443 0.011 −39.36

Random effects

Term
Variance
estimate

Intercept
estimate

Conditional
SE

Year 0.1833 −1.70 0.703

Season 0.39 −0.94 1.274

Long+ Lat 2.496 0.91 0.056

Residual variationmodel

Term
Coefficient
estimate

Conditional
SE

Intercept −6.57 0.020

AIS 4.54 0.580

Spotted dolphin RORcalf - Adult model (Matérn: ν= 0.398, ρ= 1.542)

Fixed effects

Term
Coefficient
estimate

Conditional
SE t-value

Intercept −1.414 0.822 −1.72

RORadult −0.019 0.0023 −8.10

(Continues)

TABLE 3 (Continued)

Random effects

Term
Variance
estimate

Year 0.131

Season 0.001

Long+ Lat 1.26

Bottlenose dolphin RORcalf - Adult and AIS structured dispersion

model (Matérn: ν= 0.94, ρ= 5.21)

Fixed effects

Term
Coefficient
estimate

Conditional
SE t-value

Intercept −5.708 2.402 −2.376

RORadult −0.221 0.008 −27.714

Random effects

Term
Variance
estimate

Year 0.026

Season 0.076

Long+ Lat 16.78

The models also highlighted the variability in odontocete distribution

in the four-island marine region, as interannual variability was esti-

mated to be as either the most or second most significant variable for

pods without calves for all species. The variable contributions suggest

that likely habitat preferences for schools containing calves involves

a greater complexity of factors than that for schools without calves.

The retention of urban proximity in the models, a proxy for coastal

activity, highlights the association of the species distribution with per-

manently altered habitat which can expose them to potential anthro-

pogenic risks.

Given the predicted distributions, each species has different ecolog-

ical requirements. False killer whales and bottlenose dolphins had high

ROR in the Kealaikahiki channel. Pantropical spotted dolphins were

distributed throughout the entire survey area. The patterns suggested

by our models are consistent with established preference for deeper

water in both spotted dolphins and false killer whales, with both mod-

els suggesting higher ROR in the deeper region in the ‘Alalākeiki and

‘Au‘au channels (Courbis et al., 2014). The similarity between the dis-

tribution of reef patches and that of the preferred benthic habitat type

for spinner dolphin resting areaswas reflected in their predicted distri-

bution. Spinner dolphins showed a clear pattern of using shallow, shel-

tered areas, which is consistent with what has been previously estab-

lished for their diurnal resting and foraging behaviour (Carretta et al.,

2020). Areaswith thesephysical characteristics arepopularwith recre-

ational vessels offering snorkel or diving experiences. This supports the

need for management of areas wider than that proposed area in south

Maui, in order to successfully provide protection for spinner dolphin

from adverse impacts of disturbance (Stack et al., 2020).
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F IGURE 5 Distribution of median residuals of RORcalf ‘adult models’ for each species. Median taken across years and seasons. A positive
median residual value (red) corresponds to RORcalf being consistently larger than predicted by adult models across years and seasons

The presence of calves in a school seem to change the distribution of

spinner dolphin and false killer whale schools. For all species, the area

with a high ROR for schoolswith calveswas smaller than thosewithout

(Figures 3 and 4).

The seasonal dynamics of relative abundance in the region showed

varying trends. The false killer whales and bottlenose dolphins were

more frequently sighted in winter, while the inverse was true for the

spinner and spotted dolphins. However, the influence of varying POP

routes and vessel behaviour within each season cannot be ruled out;

during the humpbackwhale season, whenwhale watching occurs, POP

movements are more varied across the study region, whereas out of

season vessels movement is more rigid to travelling between desig-

nated locations.

4.2 Vessel traffic overlap with dolphin
distribution

There is a lot of vessel activity in the study area and therefore more

scope for conservation challenges to emerge fromboth lethal collisions

(Tyne et al., 2015) and non-lethal repeated dolphin activity disruption

and stress response elicitation if it overlaps with locations the species

use more regularly (Carretta et al., 2020). It is concerning that the dis-

tribution of school with calves is associated with high traffic areas for

two species (Figure 5). These schools have increased energetic con-

straints and lessened abilities to avoid collisions, which means that

they are more sensitive to the risks posed by vessel traffic (Tyne et al.,

2015). This overlap in distribution is therefore a conservation concern.

The proximity of high ROR areas to the coastline around the south-

west of Maui island and western Lanai also means there is risk asso-

ciated with other anthropogenic activities, such as marine recreation

or sports originating from land (e.g. paddle boarding or snorkelling)

(National Marine Fisheries Service, 2016). These types of activity are

most likely to impact the spinner dolphins due to their use of coastal

resting areas during thedaytime. It isworthnoting that thedata for this

model came from AIS, meaning it reflects shipping vessels, larger fish-

ing vessels and all passenger vessels. There are numerous other smaller

vessels transiting this region daily, and these data represent the mini-

mum exposure to vessel traffic.

4.3 Implications for management and
conservation

Anthropogenic activities can affect the conservation status of marine

species not only through lethal incidents but also by influencing off-

spring survival and by affecting the energetic budget of a mother with

her offspring (Manlik et al., 2016; Pirotta et al., 2018). Managing these



SELF ET AL. 11 of 14

F IGURE 6 Cells identified as hot- and cold-spots of potential interactions between schools with calves and vessel traffic for spinner dolphins
(a and c) and false killer whales (b and d). (a) and (b) present cells that are in the top (red) and bottom (blue) quintiles of both RORcalf residuals (see
Methods) and vessel traffic. (c) and (d) present cells that are in the top (red) and bottom (blue) quintile of RORcalf, RORcalf residuals and vessel
traffic

F IGURE 7 Predicted changes in the number of sightings of each
study species depending on season. Error bars are 95% confidence
intervals

impacts can be particularly challenging in the context of marine pop-

ulations, where both species distribution and anthropogenic activities

vary both spatially and temporally (Van Cise et al., in press). Quan-

tifying either of these can be difficult due to the dynamic nature

of the marine environment, particularly when trying to establish the

drivers of species distribution whilst incorporating individual move-

ment patterns (Thorson et al., 2017). This lends additional complexity

to attempts to assess the degree of spatio-temporal overlap of marine

populations with anthropogenic activity, which is essential to inform

effective management (Stack et al., 2020; Thorson, Jannot, & Somers,

2017). The management of explicit spatial areas can be an effective

tool for reducing the pressures on mobile species (CBD, 2008), such as

the approach used by NOAA in establishing theMain Hawaiian Islands

longline fishing prohibited area and Southern Exclusion Zone in order

to manage the impact of mortality from interaction with the longline

fishery (NOAA, 2012). Another example of spatial management is seen

in northern right whales (Eubalena glacialis) that are at high risk for col-

lision. NOAA has introduced a dynamic reporting system for vessels in

northern right whale’s critical habitat to mitigate the risk of collision

including a speed restriction (Silber et al., 2015).
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Habitat modelling can be used to inform marine spatial planning,

by ensuring preservation is focused on regions where ecosystem ser-

vices are key to productivity and ecological coherence (Sundblad et al.,

2011). Our findings highlight that dolphins use areas that are heavily

used by vessel and recreational traffic. We have identified here par-

ticular location where it would be advantageous to assess the possi-

bility to develop similar warning systems for commercial and recre-

ational boaters. This is of particular importancewhere abundance esti-

mates or habitat use is declining, such as is the case in the bottlenose

dolphin population in the four-island region (Van Cise et al., in press).

These results begin to address some of these questions, although the

distribution of recreational activity, assumed correlated with coastal

urbanization, remains a large, unquantified pressure in the study

region.

This study site is part of the HIHWNMS meaning it has a manage-

ment plan in place, along with no-take regulations associated with the

MarineMammal Protection Act and, for the insular population of false

killer whales, the Endangered Species Act. While some HIHWNMS

policies, such as those restricting the dumping of materials or destruc-

tion of habitat, provide protection for all marine life, other policies,

such as approach limits, only currently apply to humpbackwhales (Car-

retta et al., 2020). There are voluntary programmes in place focusing

on dolphins, such as the PWF’s ‘Be Dolphin Wise’ code of conduct and

NOAA’s ‘Dolphin Smart’ programme, promoting practices attempting

to limit the disturbance caused by dolphin watching vessels. However,

participation in these programmes is voluntary and can also remain

largely unknown for recreational vessel operators. NOAAhas also pro-

posed a rule to prohibit approaching spinner dolphins closer than 50

yards in the four-island region, but this is yet to become final (NOAA,

2016).

Given the endangered status of the insular population of false killer

whales in Hawai‘i (Tyne et al., 2015), this study highlights an area-

based management option to help with its recovery. There are well-

defined coastal areas where false killer whale schools with calves are

more likely to be observed (Figure 5). The key conservation threat for

this population is injuries and death associated with fisheries inter-

actions (Baird et al., 2015), and understanding trends in abundance

is a research priority of the take reduction plan (Baird et al., 2014).

Fishery interaction, specifically with the nearshore yellowfin tuna fish-

ery, poses a conservation concern for spotted dolphins in the main

Hawaiian islands where fishing effort has been documented to target

spotted dolphin schools (Baird & Webster, 2020). We should explore

whether decreasing anthropogenic pressures in areas where calves

are observed more could increase the resilience of the population.

The spatio-temporal variation in exposure to anthropogenic pressure

also needs further exploration, alongside investigations into any varia-

tions in sensitivity to such pressures, as is present in spinner dolphins

during resting periods (Stack et al., 2020). This study also highlights

that resting bays are not the only locations where spinner dolphins

are exposed to anthropogenic pressures (Tyne et al., 2015) and that

the management of non-lethal anthropogenic stressors on this species

should include a more comprehensive spatial management plan (Stack

et al., 2020) which incorporates the spatio-temporal variations in the

overlap of target species with anthropogenic activity (Thorson et al.,

2017).
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