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Abstract

1. Managers must determine which interventions best protect threatened species

when the outcomes of interventions are uncertain. Adaptive management is

a dynamic optimization approach that generates optimal management actions

based on current knowledge while learning to improve future management out-

comes. Although adaptive management theory is well-developed, uptake has been

impeded by its complexity and a tendency to develop bespoke solutions with high

implementation costs for problem-specific returns.

2. To increase uptake of adaptive management and improve threat management for

species recovery, we developed a general adaptive management decision model,

framed as aMixedObservabilityMarkovDecision process.Weembraced principles

of generality, simplicity and interpretability to overcome previous implementation

challenges.We created a general model structure that is applicable to any species–

threat combination, thus avoiding the need to develop customizedmodels for every

species. Simplicity was achieved by minimizing states to reduce the information

requirements for parameterization. To improve interpretability, we implemented

our method as a Shiny application and employed a recent artificial intelligence

approach to simplify the optimal strategy. We applied our approach to a case study

of fox impacts on a threatenedmarsupial.

3. Our case study shows that when one management action is robust to uncer-

tainty, the value of information of optimal adaptivemanagementmay be low. Cases

like these highlight species–threat combinations where investment in adaptive

management is not required.

4. Our tool provides a rapid prototype adaptive management approach with minimal

cost to management agencies. Our simple yet general model structure improves

efficiency for implementing adaptivemanagement for large numbers of threatened

species, improving the effectiveness of conservation investments.
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1 INTRODUCTION

In the face of accelerating global species decline, conservation biolo-

gists must decide how and when to act despite having limited informa-

tion about effectiveness (Williams & Johnson, 2013). This uncertainty

impacts the success of threatmanagement and species recovery (Nicol

et al., 2019), so there is an incentive to apply actions which best

protect species. A solution to this problem is adaptive management

(Chadès et al., 2017; Walters, 1986; Williams, 2011), a dynamic ‘learn-

ing by doing’ approach that learns the most effective actions from

implementation andmonitoring of management outcomes.

Optimal adaptive management solutions find the best sequential

decisionswhere the outcome of actions can be represented probabilis-

tically and the current and/or future system states may be uncertain.

The most common way of solving adaptive management problems

uses stochastic dynamic programming and Bayesian inference (see

Chadès et al., 2017 for a review). Adaptive management has been

developed to manage natural resource management (Johnson et al.,

1997; Memarzadeh et al., 2019; Nicol et al., 2014), species conserva-

tion (Fackler et al., 2014; Rout et al., 2009) and epidemiology (Atkins

et al., 2020; Shea et al., 2014). Although adaptive management is

conceptually embedded in conservation and land management agen-

cies (Williams et al., 2009), the optimal formulation has had limited

uptake beyond theoretical papers (Runge, 2011;Westgate et al., 2013;

but see Williams & Johnson [1995] for one long-running example of

application).

The reasons why conservation studies are not implemented include

poor engagement, failure to embed studies within a broader decision-

making framework, and failure to acknowledge the social dimensions

of conservation actions (Knight et al., 2008). These issues apply to

adaptive management; however, based on the authors’ experience of

more than a decade designing optimal adaptive management stud-

ies, we assert that the ‘Decision-Theoretic’ (Runge, 2011) optimization

approach to adaptive management has additional implementation

challenges that may further explain the low uptake. Specifically:

(i) The complex solutions producedbyoptimal adaptivemanagement

methods can be difficult to interpret.

(ii) Most published studies are customized, standalone cases that

have steep development costs but limited applicability outside

their specific domain.

(iii) Themodelling process is time-consuming and a specialist skill.

(iv) The modelling processes often lack simple user interfaces and

can be difficult to install and run (but see MDPSOLVE [Fackler,

2011], the MDPToolbox [Chadès et al., 2014] and an implementa-

tion of SARSOP in R [Boettiger et al., 2018] for tools that partially

overcome this issue).

In this study, we developed a tool that aims to overcome these bar-

riers to implementation. We collaborated with the Saving our Species

program from the Australian state of New South Wales (NSW) to

develop an adaptive management approach to guide the implementa-

tion of actions for any species–threat combination. Like many other

jurisdictions globally, NSW has a large threatened species list (>1000

listed species and communities) and 39 key threatening processes.

Designing custom adaptive management approaches for all listed

species and threats is not cost-effective or feasible, yet there is a strong

push to document the effectiveness and improve the outcomes of

investments in threatened species management (Brazill-Boast, 2018).

The adaptive management approach that we propose here is cost-

effective for management agencies because it saves on the significant

time and expense involved with designing and implementing cus-

tom adaptive management studies for every listed threatened species

(Stem et al., 2005). Many jurisdictions globally have hundreds or

thousands of listed species, and management uncertainty is ubiqui-

tous across threatened species management. The rapid prototyping

approach thatwepropose allowsmanagers to quickly and cheaply gen-

erate optimal policies for many species, identifying which actions to

implement and which management questions have significant value of

information for further modelling.

We built on previous studies (Chadès et al., 2012; Nicol & Chadès,

2012; Nicol et al., 2015) to propose a simple yet general problem

formulation that can be applied to any species–threat combina-

tion. Previous adaptive management research has shown that sim-

ilar performance can often be achieved with smaller state spaces

(Ferrer-Mestres et al., 2021; Nicol & Chadès, 2012; Pascal et al., 2021),

which have the advantage of being more interpretable and easier

to collect data for. We used a minimal set of categorical states to

reduce the number of model parameters and the information required

for parameterization. Further, we implemented our approach as a

Shiny application in R (available from https://conservation-decisions-

lw.shinyapps.io/SpeciesThreatAM/). These modifications allow users

to experiment and solve optimal adaptive management problems with

minimal input, allowing for rapid experimentation to explore optimal

policies for different threat–species case studies.

2 MATERIALS AND METHODS

2.1 Method overview

Our contribution focuses on developing a general approach for man-

aging a species and its main threat. The goal is to cost-effectively

minimize the probability of extinction of a population of a threatened

https://conservation-decisions-lw.shinyapps.io/SpeciesThreatAM/
https://conservation-decisions-lw.shinyapps.io/SpeciesThreatAM/
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F IGURE 1 Schematic of the threat–species adaptivemanagement problem applied to our case study example of the fox (threat) and potoroo
(species)

species over time by implementing actions to reduce threat intensity

(see Figure 1). However, it is unclear to managers which management

actions are most likely to be effective over time. This type of problem

is common in conservation (Salafsky et al., 2002) and is faced by many

jurisdictions thatmanageportfolios of threatened species using limited

resources.

Our approach tracks two entities, threat and species, which are

modelled using a Markovian state-transition framework. The value of

the species or threat at a point in time is called a state. States are

described using categorical descriptors (e.g. locally extinct, low or high

species state), and transitions describe the probabilities of changing

state after taking an action. The effects of an action may differ with

the state of the system, for example the most effective action for man-

aging a low threat level may differ from the most effective action to

manage a high threat level. Threats can be managed through threat

reduction actions (e.g. active control of invasive predators), and threat

reduction affects the species state. The effectiveness of the action in

reducing the threat and the impact of threat reduction on the species

are both uncertain. We consider all binary combinations of threat

reduction (i.e. actions are effective/ineffective at reducing threats) and

species response (i.e. threat states impact/have no impact on species).

We call each of these combinations ‘models’. Each model is a possible
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hypothesis about how threat reduction and species response interact.

Given any observed state and a set of beliefs in each model (i.e. proba-

bilities that each model is true), the optimization determines the most

effective action given the uncertainty about both threat reduction

effectiveness and species response.

In the following sections, we describe the adaptive management

approach before presenting an illustrative case study.

2.2 Model definition

Our approachmodels the expected outcomes of discrete management

interventions for a species that is impacted by a threat. As in previous

adaptive management studies (Chadès et al., 2012), we model the sys-

tem with a Mixed Observability Markov Decision Process (MOMDP;

Ong et al., 2010). MOMDPs scale up to larger size problems more

efficiently than traditional grid-based belief MDP approaches (Chadès

et al., 2012; Ong et al., 2010).

TheMOMDP is defined by a tuple ⟨A, X, Y, O, Tx, Ty, Z, 𝜃, 𝛾⟩:
∙ A is the set of finite discrete candidate management actions ai ∈

A, i ∈ {1,… |A|}.Weassume that this set includes ado-nothingaction.

∙ The state space X × Y is composed of discrete fully observable (X)

andunobservable components (Y). Fully observable components can

be measured without uncertainty. Unobservable components can-

not be measured, so they must be inferred based on predictions

about the expected observed dynamics.

∙ O = OX × OY is the finite observation space.

∙ Tx and Ty are the transition matrices that describe the dynamics

of the observable and unobservable states, that is they specify the

(Markov) probabilities of transitioning from the current state to any

other state when action ai is taken.

∙ Z describes the probability of observing a state if an action is taken.

∙ 𝜃(x, a) is the reward associated with state x after taking action a.

∙ 𝛾 is a discount factor which determines the convergence rate of the

dynamic optimization algorithm, whichwe solve for the infinite time

horizon (0 < 𝛾 < 1).

For our species–threat adaptive management formulation, we

define theMOMDP tuple as follows:

∙ States X × Y are a combination of fully observable species (s) and

threatening process (p) states1 (x = (s, p) ; s ∈ S, p ∈ P, x ∈ X) and

unobservable ‘models’ of threat reductionand species response (y =

(ys, yp) ; ys ∈ Ys, yp ∈ Yp, y ∈ Y). Specifically,

◦ Species components are defined by three states represent-

ing qualitative measures of abundance: S = {Locally Extinct,

Low, High}. Threatening process states are defined by two states

P = {Low, High}. State definitions should be agreedwith domain

experts on a case-by-case basis. Experts may refer to their expe-

rience or published literature to help them define the state

thresholds.

1 We use the notation x = (s, p) and y = (ys, yp) for simplicity and consistency with previous

MOMDP presentations.

◦ We allow two responses of the threatening process to manage-

ment, which we denote using a binary variable ra. Actions can be

either ineffectiveor effective at reducing the threat, denoted ra ∈

{0,1}, respectively. A threatmodel, yp ∈ Yp; yp = (ra0 , ra1 ,… , ra|A| ),
describes whether the threat will be effectively managed for

each action. If we enumerated all possible models, the number

of threat models would be 2|A|−1 (assuming that the do-nothing

action cannot be effective). Threat models are defined according

to amatrix T(ra|yp), which has dimension |Yp| × |A|. The elements

Pr(ra|yp) ∈ T(ra|yp) are encoded such that effective actions have

value 1 and ineffective actions have value 0. To simplify nota-

tion, the model corresponding to row i of T(ra|yp) is referred to

as Fi.Without loss of generality, but to include the effect of apply-

ing multiple actions, we here solve a special case where |A| = 4,

but assume this consists of a do-nothing action a0, two distinct

actions a1 and a2, and an action a3 that implements both a1 and

a2. By assuming that a3 has this known structure, some combina-

tions of effectiveness are not possible (e.g. if a1 or a2 is effective,

then a3 cannot be ineffective) and the number of models Yp is

reduced to |Yp| = 5. Formally,

T(ra|yp) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 1 0 1

0 0 1 1

0 0 0 1

0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where rows represent the models yp and columns represent the

effectiveness of actions a0,… , a3, respectively.

◦ We allow three models of species response to the threat. The

response of species to a threat state is represented as either

impacting the species or not, denoted using rp ∈ {0,1}, respec-

tively. A species model, ys ∈ Ys; ys = (rp1 , rp2 , rp3 ), describes

whether the species will be impacted given the threat state.

Species can respond (1) negatively to any level of threat presence

(Low or High); (2) negatively to high threat presences (no impact

of low threat); or (3) no response to threat presence (no impact of

either high or low threat). Species response is independent of the

action and depends only on the threat state, that is |Ys| = 3. The

threemodels are defined with a matrix where response to threat

is encoded as 1 and no response is coded as 0. Formally,

T(rp|ys) = ⎡⎢⎢⎢⎣
1 1

0 1

0 0

⎤⎥⎥⎥⎦ ,
where rows represent the models ys and columns represent

effectiveness of threat states rp = {Low, High}, respectively. Ele-

ments of T(rp|ys) are denoted asPr(rp|ys). To simplify notation, the

model corresponding to row i of T(rp|ys) is referred to as Si.
∙ O = OX × OY is the finite observation space. In this problem,O = X,

that is X is observable and themodels Y are unobservable.

∙ Tx(x, y, a, x′) = Pr(x′|x, y, a) is the probability of transitioning to state
x′ from state (x, y), given that action a is implemented. Similarly,
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F IGURE 2 Influence diagram for the species–threat adaptive
management problem showing the conditional dependence of
variables. Arrows show the direction of influence between variables.

Ty(x, y, a, x′, y′) = Pr(y′|x, y, a, x′) is the probability of transitioning

from state y to y′ when action a is implemented and the observed

state changes from x to x′.We assume that the model dynamics are

stationary (i.e. that the reactions of species and threats to manage-

ment actions do not change over timedue to climate change or other

factors), so that Ty(x, y, a, x′, y′) = 1y=y′ and 0 otherwise.

∙ Z (a, x′, y′, o′) = Pr(o′|a, x′, y′) is the probability of observing o′ ∈ O

if the state is (x′, y′) after taking action a. In our problem, Z is simpli-

fied because state components are either perfectly observed (prob-

ability of correct observation = 1) or unobservable (probability of

observation = 0). Formally, since Y is unobservable, Z (a, x′ , y′, o′) =

1x′=o′ (0 otherwise).

∙ 𝜃 (x, a) = 𝜃 (s, a) = v(s) − c(a) +max(c(a)), where v(s) ≥ 0 is the ben-

efit of maintaining the species in state s, and c(a) ≥ 0 is the cost of

action a. The term max(c(a)) is a constant that forces the reward

function to be positive, which is useful for simplifying the MOMDP

policy.

∙ We set the discount factor controlling optimization convergence to

𝛾 = 0.92.

The structure of ourMOMDPcanbe represented using an influence

diagram (Figure 2).

Our problem framing is an example of adaptive management under

model uncertainty (Chadès et al., 2017), whereby a discrete set of

2 The discount factor determines the relative contribution of future utility compared to cur-

rent utility. In most ecological applications, it is set between 0.9 and 1. We used 0.9 in the

results reported in this paper but also tested a discount factor of 0.99. The optimal policy was

unchanged by the increased discount factor.

pre-specified models are evaluated. This approach assumes that the

expert-specified transition probabilities in one of the candidatemodels

are similar to the true system dynamics, but this assumption is diffi-

cult to test. The number of possible models depends on the state and

action spaces, and usually only a subset of plausible models can feasi-

bly be included as candidates to represent the true dynamics.However,

because our formulation uses a small state space, we can evaluate all

possible models that allow for the threat to have negative impacts

on the species. Our model approach can capture the range of threat

responses for any two actions and the interactions between them.

2.3 Parameterization

We simplify the transition matrices to account for independence

between state variables (Figure 2). The full transition matrix is speci-

fied by

T
(
x′, y′|x, y, a) = Tx

(
x, y, a, x′

)
Ty

(
x, y, a, x′ , y′

)
.

Recall that Ty(x, y, a, x′, y′) = 1y=y′ ; 0 otherwise, so parameterization

requires specifying the matrices Tx(x, y, a, x′) that define the proba-

bilities of transitioning between observable states when an action

is implemented. Because the threat is independent of the species

response and the species response is independent of the action, the

elements of T(x′, y′|x, y, a) can be simplified to

Pr
(
x′|x, y, a) = Pr

(
p′|p, a, yp)Pr (s′|s, p, ys) .

We parameterize the models by eliciting the transition matrices

Pr(p′|p, a, yp) for each action.
Threat models yp are defined by specifying which actions are

effective. We assume that ineffective actions follow the transition

probabilities for the do-nothing action. The transition matrix for any

threat model yp can thus be built as a combination of the transition

matrices for each action, that is

Pr
(
p′|p, a, yp) = Pr

(
ra|yp)Pr (p′|p, a, ra)

+
(
1 − Pr

(
ra|yp))Pr (p′|p,do nothing, ra) .

A simpler way to express this is

Pr
(
p′|p, a, yp) = {

Pr
(
p′|p, a) , if a effective under yp;

Pr
(
p′|p,do nothing) , if a ineffective under yp.

Our assumption of binary responses to threat means that

Pr(p′|p, a, yp) depends on |A| matrices of dimension |P| × |P| = 2 × 2.

We need only elicit two probabilities for each action, for example

P( p′ = High|p = High, a) and P( p′ = Low|p = Low, a), with the other

two probabilities inferred since
∑
p′
P (p′|p, a) = 1). Consequently,

we require 2|A| elicitation questions to parameterize the full set of

threat models Yp. The elicitation burden can be further reduced by
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interpolation following the methods outlined in Cain (2001), although

the gains areminimal for small numbers of actions.

Species models ys are defined by specifying whether species are

impacted by threat states. We assume that if species are not affected

by a threat, then the response follows the transition probabilities for

species in the absence of the threat. The transition matrix for any

species model ys can thus be built as a combination of the transition

matrices for each threat level, that is

Pr
(
s′|s, p, ys) = Pr(rp|ys) Pr (s′|s, p, rp)

+
(
1 − Pr

(
rp|ys))Pr (s′|s,Not Present, rp) ,

where the response of the species in the absence of the threat is

denoted using the ‘Not Present’ notation. The previous expression can

bewritten as

Pr
(
s′|s, p, ys) = ⎧⎪⎨⎪⎩

Pr
(
s′|s, p) , if threat level p impacts species under ys;

Pr
(
s′|s, Not Present) ,
if threat level p has no impact on species under ys.

Our assumption that species are impacted by threats in a binary

way means that Pr(s′|s, p, ys) depends only on three species transi-

tion matrices. Matrices containing the values of Pr(s′|s, p) are elicited

to cover the range of possible species responses in ys, that is

one to represent the species response for each threat level p =

{Low, High} and one for when the threat is not present. Elicited

Pr(s′|s, p) matrices are 3× 3matrices; however, one row is known a pri-

ori (P ( s′ = Locally Extinct |s = Locally Extinct, p) = 1; 0 otherwise);

so we need only elicit four probabilities for each matrix; a total of

12 elicitation questions (see data files at https://doi.org/10.6084/m9.

figshare.16386510 for an example elicitation).

2.4 Optimization

Any mapping of states to actions is called a policy. The objective in

adaptive management is to find the policy which yields the highest

discounted expected sum of rewards over time. This optimal policy

depends on the state of the system and a belief b(y), which is a vector of

length |Y|whose elements represent the probability that eachmodel is

correct. As actions are taken, the belief is updated (‘adapted’) to sum-

marize observed outcomes. The optimization finds the best action for

the belief space, that is for any updated belief, we can query the optimal

policy and return the best action.

For our problem, maximizing the reward means selecting man-

agement actions to maximize the return on investment, which is

determined by the balance between the benefit of maintaining the

species in a state (v(s)) and the cost of action c(a).

Details of the optimization procedure for MOMDPs are contained

in Supporting Information S1. We solved the MOMDP using the SAR-

SOP algorithm (Kurniawati et al., 2008). Although SARSOP generates

an optimal policy, the solutions are difficult to represent due to the

complexity of the solution. We implemented a recent approximation

method, alpha-min-fast (Ferrer-Mestres et al., 2021), that allows users

to simplify the solution by specifying a maximum number of alpha

vectors and a desired precision.

2.5 Case study

We demonstrated our approach on a case study which sought to

determine the optimal management actions to control impacts of feral

red fox (Vulpes vulpes) predation on an endangered marsupial, the

long-footed potoroo (Potorous longipes). Red foxes have been impli-

cated in the declines of several ground-dwelling mammals and birds

(Mahon, 2009), including the long-footed potoroo (Dexter & Mur-

ray, 2009). Foxes are controlled using various methods, including

baitingwith sodiummonofluoroacetate.Although studies havedemon-

strated the importance of fox removal for recovering some species

(Dickman, 1996; Kinnear et al., 1998), there are alternative ways to

deliver baits which vary in cost and effectiveness. The duration, fre-

quency and intensity of baiting and whether the baiting is delivered

from the ground or aerially all impact the effectiveness of the con-

trol programme. The consistency with which baiting programmes are

applied is also important, with several studies citing the reinvasion of

foxes after intermittentbaiting as akey factor in failed control attempts

(Gentle et al., 2007; Mahon, 2009). Of particular interest is the effec-

tiveness of aerial baiting compared to ground baiting. Aerial baiting is

perceived to be expensive compared to ground baiting but achieves

broader landscape coverage since ground baiting tends to cluster baits

along existing tracks. We apply our adaptive management framework

to investigate the conditions under which aerial and/or ground baiting

should be applied.

We set thresholds for the states in consultation with experts in

fox control and potoroo monitoring, who referred to previous stud-

ies to aid their estimates. The species (potoroo) states were defined as

(Arthur et al., 2012; Catling & Burt, 1994; Claridge et al., 2010):

∙ Locally Extinct State: Species detected on 0% of sand plot

nights/camera traps.

∙ Low State: Prints detected on 1%–10% of sand plot nights; or

detection on>10% of camera traps.

∙ High State: Prints detected on >10% of sand plot nights; or detec-

tion on>30% of camera traps.

Threat (fox) states were defined as (Diment, 2010):

∙ Low fox density:<0.3 foxes/km2.

∙ High fox density:≥0.3 foxes/km2.

Although several factors can be varied to define candidate actions,

for both modelling purposes and to reflect operational realities, it

is only possible to focus on a subset of fixed action scenarios. We

agreed to focus on the effectiveness of aerial compared to ground

https://doi.org/10.6084/m9.figshare.16386510
https://doi.org/10.6084/m9.figshare.16386510
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baiting. In consultation with experts, we defined scenarios that fixed

the frequency, density and coverage of baiting for each action. Specifi-

cally, we considered four actions: doing nothing, ground baiting, aerial

baiting and combined ground and aerial baiting. Ground baiting was

assumed to take place every 4weeks along tracks,with a bait density of

1 bait/500m. Aerial baiting was assumed to occur three times per year

and achieve a uniformbait density of 4 baits/km2. The candidatemodel

set consists of all combinations of hypotheses about whether ground

and/or aerial fox baiting will effectively recover potoroos (15 possible

models; Figure 1).

Transition probabilities were estimated by species experts. Experts

were academics, land managers and pest controllers with experience

managing foxes and potoroos. Experts were recruited in consultation

with the Saving our Species program. Eleven experts were invited to

participatebyemail, ofwhich6providedestimates. Expertswereasked

questionsof the form: (i) givena fox state andaction, estimate theprob-

ability of remaining in the current fox state in the following year (i.e.

Pr(p′|p, a)), and (ii) given a fox state and a potoroo state, estimate the

probabilities of potoroo states in the following year (i.e. Pr(s′|s, p)). Esti-
mateswere combinedby taking themeanof eachestimatedprobability

over all experts. Combined estimateswere renormalized to ensure that

probabilities for each row of the transitionmatrices summed to 1.

The relative cost of actions was estimated using itemized cost data

for ground and aerial baiting of foxes from two previous Saving our

Species projects. Ground baiting was assigned a cost of 1. The relative

cost of aerial baiting was obtained by dividing the cost for aerial bait-

ing by the cost of ground baiting. Using this method, the relative cost

of aerial baiting was set to 1.2. The cost of the combined aerial and

ground baiting was assumed to be the sum of its component actions,

that is 2.2.

Generating the rewards for the MOMDP requires the benefit of

species persistence relative to the cost of action. In this case, the units

of benefit are relative values measured against the benchmark of the

cost of ground baiting (i.e. c = 1), so a benefit of v= 10means that the

persistence of the potoroo is valued 10 times as much as the annual

cost of ground baiting. Since these data do not exist, we set v (s) =

0 if the species is locally extinct and trialled multiple benefit values

(10,15,20) otherwise. These benefit values were chosen because they

spanned a variety of optimal policies (see Section 3). The benefit value

can be varied to determine how the decision maker’s perception of

extinction risk affects the optimal policy. The effect of the benefit value

on the optimal policy can easily be varied by manually changing the

‘Benefit of non-extinction’ parameter in the Shiny application.

2.6 Simulating the policy

To test the effectiveness of the optimal policy, we simulated different

policies using an assumed (‘known’) model dynamic. We tested poli-

cies that always applied each of the four actions irrespective of the

belief (‘static’ actions) and the MOMDP policy which changes actions

based on the observed state component and the belief. Under a known

model, we know which actions are effective, so the static policies with

effective actions provide a benchmark to assess the MOMDP policy’s

performance.

For brevity, we report the results for one known model here (all

other models were run; these can be tested using the Shiny applica-

tion). In the simulations reported below, the simulated threat model

assumes that ground baiting and the combined action are effective, but

aerial baiting is ineffective (i.e. the ‘true’model is F2). The speciesmodel

assumes that the species responds negatively to high threat levels but

is unaffected by a low threat (i.e. ‘true’model is S2). The performance of

ground baiting and the combined action provide an approximate upper

limit to the simulation performance. If the MOMDP policy is learning,

then it should approximate the performance of the static policies for

ground baiting and the combined action.

2.7 Generating the policy graph

A policy graph is a visual representation of a policy where each node

represents the action to apply given the current observable state com-

ponent and the belief, and edges represent observations. The policy

graph for our problemwas complex due to the large number of possible

models (15), which created large policy tree diagrams that were diffi-

cult to plot or interpret. To simplify these, we plotted stationary policy

graphs for eachpossiblemodel dynamic (the stationary belief statewas

assessed visually from simulations of the belief over time). Transitions

for the stationary policy graphs are created fromaweighted average of

the transition probabilities, whereweights are drawn from the station-

ary belief state. However, the stationary beliefmay differ depending on

the true systemdynamicswhich are unknownuntil observed. Thus, our

simplified policy graphs depict the optimal policy conditional on a ‘true’

model dynamic. Users can generate the current belief based on existing

observations and follow the conditional policy graph for themost likely

model given the belief.

3 RESULTS

Simulating the performance of the optimalMOMDPpolicy for our case

study against static action strategies demonstrated that the MOMDP

solution produces good policies despite not knowing the underlying

dynamics. TheMOMDPpolicy outperformsall but the combinedaction

in both reducing the threat and preventing species extinction, and has

a cumulative reward close to those of the ‘effective’ ground baiting and

combined action policies (Figure 3). The combined action is the optimal

action under most simulations for this problem (Figure 4c). The policy

graph (Figure 5) shows that the combined action is optimal in the (Low

Fox, Low Species) state, but doing nothing is optimal in all other states.

Since the system is almost always in the (Low Fox, Low Species) state

(Figure 3), the combined action is frequently selected in practice.

Our simulations showed that despite expert optimism that the con-

trol actions would reduce fox numbers (Figure 3a), declining trends

meant that none of the policies were likely to maintain potoroos in

the long term regardless of the action taken (Figure 3b), suggesting
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F IGURE 3 Fifteen-year simulations of threat (fox predation) and species (potoroo) under different management strategies with an assumed
model dynamic (model F2 S2; see Section 2). Panels (a) and (b) show the simulated threat and species states, respectively; panel (c) shows
cumulative rewards. Solid lines represent themean of 100 simulations; dashed lines show the standard error. The performance of ground baiting
and the combined action provide an approximate upper limit for performance since these actions are pre-defined to be effective in the simulation.
In panel (a), the performance of aerial baiting is obscured because it is identical to the performance of the ‘Do-nothing’ policy.

pessimism about the effectiveness of fox control as a sole means to

recover potoroos. During the elicitation, experts verbally indicated

that fox control can be highly effective (regardless of whether aerial

or ground control is used), but that it requires sustained intense con-

trol to prevent immigration of foxes to the control area, which is rarely

achieved in practice (Gentle et al., 2007;Mahon, 2009).

The belief simulations (Figure 4a,b) showed that the correct species

responsemodel could be identified rapidly (the correctmodel emerged

after 3 years given initial uniform belief; this was typical when test-

ing across different assumedmodel dynamics).However, threatmodels

could not be distinguished, other than ruling out model F1 (all actions

ineffective) within the first year. This inability to identify the correct

threat model from the belief state was typical when testing different

assumedmodel dynamics exceptwhen F1was the true threat dynamic,

in which case it was identified after a single year. The optimal policies

under different model dynamics almost always selected the combined

action,with theexceptionofmodel F1whichalternatedbetween trying

the combined action and doing nothing.

We tested our case study with different values for the benefit of

species persistence (we tested benefit v(s) = 10; 15; 20) to identify

the decision spacewhere other actionsmay become optimal. However,

for this problem this decision space is small: while we could find some

decision uncertainty between doing nothing or the combined action,

we did not find the space where ground or aerial actions competed

with the combined action in the optimal policies due to a trade-off

in cost–benefit. For our case study, the most effective policy is to do

nothing when the benefit of species persistence is <10; and to always

take the combined action when the benefit of species persistence is

20. In between these values, there is uncertainty about when to man-

age, but not about which action to take. This result is particular to the

reward values used in our case study and may not occur with other

parameterizations.

4 DISCUSSION

Our optimal adaptive management formulation can be applied to any

single threat and species combination to discover the optimal manage-

ment policy from a discrete set of alternative actions. This approach

can reduce the cost of implementation for large lists of threatened

species because it reuses a common framing and has low information

needs. We minimized the number of observable states to reduce the

high information requirements needed to parameterize Markov deci-

sion processes and make expert elicitation feasible. With two threat

states and three species states, the number of elicitation questions is

only 2|A| + 12. These simplifications allowed us to explore all combina-

tions of unobserved system dynamics, ensuring that the true dynamics

are in themodel set and enabling us to identify themost likelymodel of

how species respond tomanagement.

Our case study showed the promising result that the true species

response dynamics model (i.e. species response to threat reduction)

can be rapidly identified, and this finding was robust across differ-

ent response dynamics. While this is encouraging, there are some

caveats. For example, wemade the simplifying assumptions that threat



NICOL ET AL. 9 of 12

F IGURE 4 Fifteen-year simulatedMOMDP policy with an assumedmodel dynamic. Panels (a) and (b) show the simulated belief for the threat
(fox) and species (potoroo), respectively. Solid lines represent themean of 100 simulations; dashed lines show the standard error. Panel (c) shows
the frequency that actions were applied by the optimal policy in the 100 simulations. The simulated beliefs in panel (a) are identical for all threat
models except F1; we annotated the terminal threat beliefs to help readers identify which lines overlap in the plot.

and species responses are binary. Environmental, demographic and

antecedent conditions, variability in management approaches and

interacting threats mean that responses may differ from predictions.

When the states are simplified and the goal of management is to avoid

extinction (a binary outcome), these simplifying assumptions are likely

to be appropriate; however, more complex models would likely be

necessary if the management goals were more specific, for example

identifying thresholds for threat reduction.

Our case study could not uniquely identify the true model for

threat response to management actions. This was likely caused by the

assumptions in the model set rather than being a general result. In our

threatmodel set, if any baiting actionwas effective, then the combined

baiting action was also effective. The combined action was also the

optimal policy for every species and threat state likely to occur, so each

model always chose the same action and observed the same ‘effective’

response regardless of the state visited. Consequently, for this prob-

lem there was never any optimal action that could distinguish between

threatmodels for which at least one baiting actionwas ineffective (F2–

F5). We could not identify the threat model, but in practice we do not

really care since the optimal policy (combined action) is the same for

all threat models. For the potoroo problem that we modelled, for all

states likely to be visited, the best action was either to always apply

both ground and aerial baiting or do nothing.

Although the combined action was themost expensive action, there

was a low cost differential between the actions compared to the ben-

efits of non-extinction (costs of action ranged from 1 to 2.2; but the

benefit of non-extinction was between 10 and 20) and the combined

action was more likely to avoid species extinction than the other

actions. With such a high value on the benefit of species persistence

and little difference in cost, there was no incentive to choose actions

with higher probabilities of extinction (i.e. ground or aerial baiting only)

that would help to distinguish models. Put differently, there was no
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F IGURE 5 Simplified policy graph showing the optimal stationary policy assumingmodel F2 S2 is the ‘true’ model. Nodes depict the
observable states and corresponding optimal actions. Edges show the transition probabilities between nodes. Edges with probability<0.05 are not
shown. Note that the optimal action in all states (depicted inside each node) is to do nothing, with the exception of the (Low Fox, Low Species) state,
for which the optimal action is the combined action (a3).

value of information in resolving the adaptive management problem

for our case study parameters because the benefits of taking the most

effective action were never influenced by the cost (Maxwell et al.,

2015). The value of information would be higher where (1) the cost

of action was high relative to benefit of non-extinction; (2) the reward

function was more nuanced (e.g. different benefits for high and low

species, and/or benefits associated with low threat state); or (3) the

combined action was not much better than (or equivalent to) one of

the other actions. Nonetheless, this finding is instructive: it tells us that

there is no decision uncertainty about the most effective action, so

resources would be better spent on implementation rather than trying

to determine themost effective actions.

This study sought to overcome the challenge of developing cus-

tom adaptive management studies for long threatened species lists.

Our findings highlight the crucial importance of the reward function,

which requires decision-makers to be explicit about their values. In

practice, the reward function is rarely expressed, as the existence value

of a species is a taboo trade-off (Walshe et al., 2015). Despite this,

we postulate that our case study may be illustrative of many threat-

ened species, where there is a narrow decision space in which there

is any real uncertainty about the optimal action so that the ‘existence

value’ is of little interest since we know the most effective action to

take a priori (Maxwell et al., 2015; Moore & Runge, 2012; Nicol et al.,

2018). For these species, adaptive management studies about effec-

tiveness are not required, reducing the burden of adaptively managing

long threatened species lists. Without this type of rapid modelling

approach, the traditional approach is to establish controlled experi-

mental designs, often at significant expense. As well as being useful

for selecting optimal actions where decision uncertainty is important,

our approach could be used to determine whether adaptive manage-

ment is necessary and toprioritize limited funds towhere theyaremost

needed.

We applied our approach to a case study where there was a single

main threat; however, most species are affected by multiple threats.

Although ourmodelling approach canmodelmultiple threats by adding

additional threat states, doing so would increase the complexity of

both the elicitation and the solution. We recommend applying our

approach to caseswhere a dominant threat can be identified, for exam-

ple using threat assessment approaches (IUCN, 2012; Salafsky et al.,

2008).

Provided that a single threat can be identified, our approach is not

restricted to any specific ecosystem. Most threat types can be mod-

elled; however, our approach assumes stationary dynamics and somay

not be suitable for systems that are changing over time, including cli-

mate change. Adaptive management approaches for non-stationary

dynamics have been developed (Martin et al., 2011; Nicol et al., 2015;

Nicol et al., 2014). With some additional assumptions and several

extra questions during expert elicitation, most notably regarding the

expected rate of change, these approaches could be used with the

approachwe present here.

Our approach demonstrates how to formulate a general archetype

for species–threat adaptive management problems that can rapidly

inform decision-making for threatened species, reducing the costs

of uptake. General formulations could be created for other classic

classes of adaptive management problems, such as optimal harvest-

ing (Memarzadeh et al., 2019) or epidemiology (Shea et al., 2014). As

well as simplifying the cost of creating adaptive management solu-

tions for individual applications, creating a library of such general
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formulations may present opportunities for further generalizations or

theory to further advance the application of adaptivemanagement.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

The Shiny application can be run from https://conservation-decisions-

lw.shinyapps.io/SpeciesThreatAM/. A readme user manual for the app,

as well as code for the analysis in this paper is available from https://

github.com/nicols02/SpeciesThreatAM. We recommend running the

app from the link above (any OS), however instructions for installation

(Windows) and interpretation of the app are available the readme file

included in the github repository.
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