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Abstract

1. Wildlife managers require defensible and transparent population estimates to jus-

tify species management.

2. Statistical population reconstruction (SPR) is being widely adopted to estimate

wildlife population sizes from hunter harvest data.

3. We assessed factors influencing variation in SPR population estimates produced

for bobcats in Wyoming, USA. Specifically, we tested whether prey availability,

hunter/trapper effort, the number of bobcats killed or the methods used to classify

the age and sex of bobcats (‘classification protocol’) best explained changing SPR

abundance estimates. We then quantified the relative magnitude of these effects

on SPRmodel outputs.

4. Classification protocol had the strongest impact on SPR abundance estimates, such

that a shift to visual age and sex classifications by trappers/hunters resulted in over-

estimates of bobcat abundance.

5. TheWyoming bobcat SPR population estimates were likely unreliable and we sug-

gest that spatially explicit integrated population models may be a better approach

to obtaining defensible estimates uponwhich to establish scientific management of

this charismatic carnivore.
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1 INTRODUCTION

Wildlifemanagers are challengedwith determining howbest to ensure

sustainable wildlife populations, all while balancing, and sometimes

deflecting, political will, the influences of different stakeholder groups

with different values, harvest objectives tomaintain recreational hunt-

ing, poor social tolerance for some wildlife and other complexities

(Fuller et al., 2020; Lute et al., 2020). As public scrutiny of wildlife man-

agement increases, state wildlife agencies have attempted to diversify
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their constituency and build defensible and transparent strategies to

explainmanagement practices (Decker et al., 2019). Trapping andhunt-

ing furbearers for sport or international fur markets exemplifies these

challenges.

To begin with, determining the abundance of furbearers over large

spatial scales is difficult. Therefore, managers have sought alternative

methods for estimating population sizes and trends uponwhich to base

defensible management decisions. For example, Safari Club Interna-

tional (SCI) funded work conducted by the Wildlife Ecology Institute
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to use statistical population reconstruction (SPR; Gove et al., 2002) to

estimate current and historical bobcat (Lynx rufus) population sizes in

17western U.S. states (Hiller et al., 2018). As SCI explains, ‘Evidence to

support sustainable harvest of wildlife is becoming increasingly scru-

tinized, so state wildlife agencies must provide a solid foundation for

informed and defensible management decisions. . .The data from this

project will also give states the data to defend and possibly expand

hunting opportunities regionally’ (SCI, 2020).

The bobcat is a medium, cryptic carnivore widespread in North

America, and one widely exploited for trophy mounts kept locally and

spotted pelts sold to international markets; they are legally hunted in

39 U.S. states, eight Canadian provinces and in Mexico (Kelly et al.,

2016).Most state andprovincial authorities requiremandatory report-

ing of trapped or hunted bobcats, but others rely on CITES tags, which

are required for exporting bobcat pelts, for harvest monitoring. Bob-

cat viewing is also an expanding component in ecotourism for the non-

consumptive public (Elbroch et al., 2017).

SPR estimates annual age-class-specific abundances of hunted or

trapped populations (i.e. SPR requires age-at-harvest data), typically

using Horvitz–Thompson type estimators (Gast et al., 2013). The esti-

mates can be refined with auxiliary data on survival, abundance or

harvest vulnerability of an exploited population (Clawson, 2015). SPR

models have four foundational assumptions (Clawson, 2015; Gove

et al., 2002; Skalski et al., 2007, 2012): (1) age and sex classes of

harvested animals are accurately determined; (2) natural survival is

homogenous within each age/sex class; (3) harvest vulnerability is

homogeneous within each age/sex class and (4) the exploited popu-

lation exhibits geographic closure, meaning that neither immigration

nor emigration occurs across areas within the time frame being recon-

structed.

Here, we assessed bobcat SPR population estimates produced

for Wyoming, USA, by the Wildlife Ecology Institute (Hiller, 2018b;

Hiller et al., 2018; Supporting Information 1), to provide critical

insights into SPR models that are being embraced by other west-

ern states, and possibly some eastern states as well (Hiller, 2018a).

There was a sharp inflection point in Wyoming bobcat SPR pop-

ulation estimates between 2003 and 2004 (Figure S5), with sub-

sequent rapid population growth estimated through 2007 (average

λ[2003–2007] = 1.27/year), and after which bobcat population estimates

remained large (X̄[2004–2017] = 17,066 bobcats). Intriguingly, the inflec-

tion point aligned with a switch in who and how bobcat sex and age

were classified for harvested animals (hereafter ‘classification proto-

col’).

Beginning during the 2003–2004 harvest season, aging and sexing

of bobcats shifted fromWyoming Game and Fish Department (WGFD)

personnel, who analysed bobcat jaws or cementum annuli analysis of

teeth for aging, and pelts or genitalia for sexing, to trappers/hunters

who used visual assessments. There is, however, substantial evidence

that all people, from hunters to wildlife professionals, provide inaccu-

rate and unreliable age and sex classifications for bobcats and other

wildlife when using visual assessments (Beausoleil & Warheit, 2015;

Gee et al., 2014; Williams et al., 2011). For example, Williams et al.

(2011) found that basedonvisual examinations, 64%ofharvested juve-

nile bobcatswere incorrectly classified as adults, and 26%of harvested

adult male bobcats were incorrectly classified as either adult females

or juvenile males. Given the reliance of SPR models on accurate age

and sex determination of individuals in the age-at-harvest data, such

observer error could drastically bias estimates of population size.

2 MATERIALS AND METHODS

We conducted post hoc analyses of the Wyoming bobcat SPR abun-

dance estimates to (1) determine whether changing prey availability,

trapper effort measured in terms of furbearer trapping licenses sold,

trapper success measured in bobcats killed or the changing classifica-

tion protocol best explained variation in SPR abundance estimates, and

(2) quantify the relative magnitude of these effects on SPR estimates.

We obtained the bobcat harvest, furbearer license sales and cottontail

(Sylvilagus spp.) population index data used byHiller (2018b) andHiller

et al. (2018) from WGFD via public records requests under Wyoming

Statute §16-4-201et seq (Figure S1).Weexcluded1996 fromour anal-

ysis because of missing data for cottontail populations (WGFD, 2014).

Prior to analysis, we centred and scaled all three harvest-related met-

rics to havemean of zero and unit variance.

The annual SPR bobcat abundance estimates were overdispersed

(mean = 11,462; SD = 5437; dispersion > 600) and harvest-related

metrics often have nonlinear relationships with population size (Allen

et al., 2020; Priadka et al., 2020). Therefore, we fit Bayesian gener-

alized additive models with a negative-binomial response distribution

and evaluated both linear andnonlinear effects of each harvest-related

metric on the SPR abundance estimates (Hastie & Tibshirani, 1986;

Hilbe, 2014; Wood, 2017). We fit the following eight models (Table 1):

one with classification protocol; two models for each harvest-related

metric, corresponding to linear and nonlinear effects; and a global

model that included classification protocol and themost supported lin-

ear or nonlinear effects of each harvest-related metric. In all models,

we included year with a nonparametric spline to account for the longi-

tudinal nature of the SPR abundance estimates and nonlinearity over

time (Perperoglou et al., 2019).

We applied the following conservatively informative priors in each

model: ∼Normal(0,1) for all population-level effects, including the

intercept (Lemoine, 2019); ∼half-Cauchy(0,5) for the variance compo-

nents (Gelman, 2006); and ∼Gamma(0.1,0.1) for the shape parameter.

We fit models using Stan (v2.19.2) implemented via the brms package

(v2.14.0) in the R statistical analysis program (v3.6.3; Bürkner, 2017,

2018; Carpenter et al., 2017; R Core Team, 2020). All models were fit

with four Markov chains, each with a burn-in of 2,000 iterations, fol-

lowed by 3000 sampling iterations, resulting in a total of 12,000 pos-

terior samples for each model. Convergence was assessed using trace

plots and by calculating the potential scale reduction factor (R̂) and

effective sample sizes (neff), where R̂ < 1.1 and neff > 1000 were con-

sidered optimal (Gelman & Shirley 2011).

We assessedmodel fit via posterior predictive check plots using the

Rpackagebayesplot (v1.7.0;Gabry et al., 2019;Gelmanet al., 2013).We

compared model performance and conducted model selection based
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TABLE 1 Model selection based on the expected log pointwise predictive density (ELPD) of models with linear and nonlinear effects of
harvest-relatedmetrics and classification protocol on bobcat SPR abundance estimates (N) produced by Hiller (2018b)

Model Effect ELPD ∆ELPD (SE) R2 (95%CI)

N∼ s(Year)+ s(Bobcat Harvest) Nonlinear −309.9 0.0 (0.0) 0.86 (0.74–0.92)

N∼ s(Year)+Bobcat Harvest Linear −311.1 −1.2 (1.2) 0.84 (0.71–0.91)

N∼ s(Year)+ License Sales Linear −311.3 −1.4 (2.2) 0.85 (0.71–0.91)

N∼ s(Year)+ s(Cottontail Index) Nonlinear −311.4 −1.5 (1.7) 0.85 (0.72–0.91)

N∼ s(Year)+Cottontail Index Linear −311.8 −1.9 (2.0) 0.83 (0.69–0.91)

N∼ s(Year)+Classification protocol Categorical −312.2 −2.3 (2.1) 0.81 (0.66–0.90)

N∼ s(Year)+ s(License Sales) Nonlinear −313.5 −3.6 (4.4) 0.85 (0.72–0.92)

on the expected log pointwise predictive density (ELPD) estimated via

leave-one-out cross-validation in the R package loo (v2.3.1); ELPD is

more robust for Bayesianmodels than othermethods, such as Akaike’s

or deviance information criterions (Vehtari et al., 2017). We estimated

Bayes factors (K) using nonlinear hypothesis tests (Bürkner, 2017) to

allow comparisons of the strength and magnitude of effects among

reducedmodels andwithin the globalmodel (Kruschke& Liddell, 2018;

Makowski et al., 2019). Parameter estimates were produced as poste-

rior means with 95% credible intervals (CIs).

3 RESULTS

All three harvest-relatedmetrics weremarginally supported over clas-

sification protocol, explaining a nominal 2%–5%more variation in SPR

abundance estimates than did classification protocol (Table 1); how-

ever, 95%CIs ofR2 values for all models overlapped substantially. Non-

linear effects of bobcat harvests and cottontail population index were

more supported than their linear counterparts (∆ELPDBobcatHarv = 1.2;

∆ELPDCottonInd =0.4), whereas a linear effect of furbearer license sales

was supported over a nonlinear effect (∆ELPDLicenses = 2.2). Correla-

tions among the harvest-related metrics were low (r = −0.24 to 0.25),

therebyallowing their inclusion in theglobalmodel,whichwas the least

supportedmodel (∆ELPD=−4.3).

Despite the model selection support for nonlinear effects of bob-

cat harvest and cottontail population index, both the reduced and

global models indicated that the strength of these effects was very

weak (Figure 1). Indeed, negligible support existed for bobcat harvests

(�̂�Reduced =0.23 [95%CI=−0.84 to 1.19],P(�̂� >0)=0.68; �̂�Global =0.25

[95% CI = −0.69 to 1.05], P(�̂� > 0) = 0.73) or cottontail population

index (�̂�Reduced = 0.12 [95% CI = −0.91 to 1.12], P(�̂� > 0) = 0.59;

�̂�Global = 0.15 [95% CI = −0.83 to 0.97], P(�̂� > 0) = 0.65) influencing

SPR abundance estimates. Both reduced and global models indicated

a nominal to weak positive linear effect of furbearer license sales on

SPR abundance estimates (�̂�Reduced = 0.12 [95% CI = 0.09 to 0.32],

P(�̂� >0)=0.83; �̂�Global =0.15 [95%CI=−0.03 to0.33],P(�̂� >0)=0.92).

In contrast, for the reduced and global models, the effect of bobcat

age and sex classification protocol on SPR estimates was strongly sup-

ported (�̂�Reduced = 0.67 [95% CI = 0.15 to 1.21], P(�̂� > 0) = 0.98;

�̂�Global = 0.42 [95%CI=−0.12 to 0.91], P(�̂� > 0)= 0.90). A comparison

F IGURE 1 Estimated Bayes factors from reduced and global
models that tested the effects of annual cottontail population index,
bobcat harvest, furbearer license sales and age/sex classification
protocol on the bobcat SPR abundance estimates produced by Hiller
(2018b) for 1983–2017.

of Bayes factors (Figure 1) highlights the relative strength of the effect

of classification protocol on SPR population estimates.

Based on the reduced model, our analyses indicated that changing

the responsibility of classifying harvested bobcats to trappers/hunters

corresponded to an average increase in SPR abundance estimates

of 9191 bobcats (95% CI = 8252–10,129) per year (Figure 2), or

based on the global model, an average increase of 5273 bobcats (95%

CI = 2714–7289) per year (Figure S2). Hypothetically, if WGFD had

continued classifying harvested bobcats during 2004–2017, both the

reduced and global models predicted that SPR abundance estimates

would have unlikely exceeded 10,000 individuals in any given year

(MaxReduced = 9696;MaxGlobal = 9375; Figures 2b and S2b).

4 DISCUSSION

We conclude that true bobcat abundance in Wyoming remains

unknown and that the SPR abundance estimates in Hiller (2018b)
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F IGURE 2 A comparison of SPR estimates of bobcat abundances published by (a) Hiller (2018b), as compared to (b) probable SPR abundance
estimates ifWyoming Game and Fish Department staff had continued to age and sex bobcats, and (c) probable SPR abundance estimates if hunters
and trappers had always classified the age and sex of bobcats, based on the reducedmodel. Black dots denote the bobcat SPR abundance estimates
produced byHiller (2018b) and the vertical grey dashed line denotes when the shift in classification protocol for aging/sexing harvested bobcats
occurred.

and Hiller et al. (2018), while commendable, do not provide ‘the data

to defend and possibly expand hunting opportunities regionally’ (SCI,

2020), as was the original intention of the study. Although Hiller

(2018b, p. 2) cursorily noted that age and sex classification protocols

for bobcats in Wyoming changed, the potential impact on SPR esti-

mates was not considered. Neither WGFD nor Hiller (2018b) con-

ducted field work to determine any local bobcat abundances with

which to compare or calibrate SPRestimates, and therefore, it is impos-

sible to evaluate the accuracy of the SPR bobcat abundance estimates.

Further, genetic data were never used to test the veracity of sex-class

assignments, whether by WGFD personnel or trappers/hunters, and

determining bobcat sex is also often fraught with misclassifications

(Williams et al., 2011).

Our analyses revealed that changing classification protocol for har-

vested bobcats unintentionally introduced bias into the foundational

data, which violated a primary assumption of SPRmodels. For example,

incorrectly classifying juvenile bobcats as female adults (e.g., Williams

et al., 2011) would erroneously increase the number of breeding-age

females in the age-at-harvest data; as a result, SPRmodels would over-

estimate juvenile abundance (i.e. mean litter size= 2–3 juveniles/adult

female), and inflate the number of juveniles that survive to adulthood

in later years. Additionally, any incorrect age or sex classification of

bobcats likely had cascading effects, leading to additional model viola-

tions, such as heterogeneous survival and harvest vulnerability within

age/sex classes. For instance, the male-biased dispersal patterns of

juvenile bobcats increase their harvest vulnerability and reduce sur-

vival (e.g. Hughes et al., 2019); unless accounted for, this variation



MURPHY ET AL. 5 of 6

impacts the juvenile survival and recruitment parameters in models

estimating bobcat abundance.

As an alternative to SPR models, we propose that spatially explicit

integrated population models (SIPM; Ahrestani et al., 2017; Chandler

& Clark, 2014) may be a more defensible method to monitor bob-

cat populations. This approach uses multiple data types from multi-

ple sources that are collected with varying spatial and temporal inten-

sity to estimate not only population abundance, but also population

density, growth rate, recruitment, survival, immigration and the influ-

ence that ecological and anthropogenic factors may have on popula-

tion dynamics. Although this would require additional effort to col-

lect spatially and temporally replicated detection data (e.g. capture–

recapture data from camera traps or geneticmaterial), SIPM can incor-

porate harvest data as auxiliary information as well as telemetry data

to inform survival and movement parameters. Furthermore, because

SIPM accommodates the spatial information about where and when

individual animals are detected, irregular survey designs can be used to

efficiently survey large geographical areas (Humm&Clark, 2021;Mur-

phyet al., 2019). TheSIPMapproach is currently beingused toestimate

populationdynamics and informmanagementof bobcats andmountain

lions (Puma concolor) in Montana and black bears (Ursus americanus) in

Maine (Linden & McKinney, 2016; MFWP, 2019). Regardless of what

method wildlife agencies employ to monitor bobcat populations, we

hope that it is scientifically and statistically robust, reflects the diver-

sity of perspectives found among North Americans and allows for sus-

tainable, ecologically functional populationsof this charismatic species.
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