
Received: 15October 2020 Accepted: 10 November 2021

DOI: 10.1002/2688-8319.12120

R E S E A RCH ART I C L E

Monitoring of honey bee floral resources with pollen DNA
metabarcoding as a complementary tool to vegetation surveys

LizMilla Alexander Schmidt-Lebuhn Jessica Bovill Francisco Encinas-Viso

Centre for Australian National Biodiversity

Research, CSIRO, Canberra, Australian Capital

Territory, Australia

Correspondence

LizMilla, Centre forAustralianNationalBio-

diversityResearch,CSIRO,GPOBox1700,

CanberraACT2601,Australia.

Email: liz.milla@csiro.au

Funding information

CSIROEnvironomicsFutureSciencePlatform

HandlingEditor: ScottMacIvor

Abstract

1. Monitoring biodiversity is a growing and pressing challenge, particularly as climate

change threatens specieswith extinction and leads towidespread shifts in plant dis-

tribution and phenology. Tracking changes via ground vegetation surveys is costly

and time-consuming, hence monitoring of complex and heterogenous communities

remains an ongoing challenge.

2. Molecular DNA methods are rapidly being developed to provide fast and repro-

ducible results for environmental monitoring, including diet and ecosystem assess-

ments. Here, we used DNA metabarcoding of pollen foraged by European honey

bees (Apis mellifera) to investigate their floral resource use in an urban reserve. We

collected three different pollen samples from hives: individual bees, raw honey and

pollen traps, and identifiedplants using twometabarcodingmarkers (ITS2and trnL).

We then compared the results to a ground vegetation survey of surrounding flow-

ering taxa.

3. Pollen DNA metabarcoding detected 74 taxa (48.6% identified to species) across

all pollen sources, compared to 44 taxa recorded by the survey (93% identified

to species). Within the metabarcoding results, we identified 25% of the genera

and 9% of the species found during the survey, with three of the top 10 flow-

ering genera represented. While honey was the most taxon-rich pollen source

(mean = 8.5, SD = 3.5), followed by honey bees (mean = 5.8, SD = 6.1) and pollen

traps (mean = 4.2, SD = 1.7), combining the results of six individual bees could

detect similar taxa numbers to honey, while 20 bees were required to detect as

many taxa as the survey.

4. We demonstrate how DNA metabarcoding of the pollen foraged by honey bees

can detect more flowering taxa than traditional survey methods, and how differ-

ent pollen sources and genetic markers affect the level of detection of plant taxa.

The foraging choices of honey bees matched few species detected by the vege-

tation survey, therefore pollen metabarcoding is recommended as a complemen-

tary approach to ground surveys. Rigorous validation and stringent filtering of
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metabarcoding results were also required to exclude potential false positives. Alto-

gether, this molecular approach can be used to augment vegetation surveys, while

tracking the floral resources used by bees.
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1 INTRODUCTION

The global effects of climate change on plant species diversity and dis-

tribution have been well documented (Kelly & Goulden, 2008; Pear-

son et al., 2013; Walther et al., 2005). The detection of shifts in vege-

tation patterns has been largely enabled by long-term ground surveys

(Crimmins et al., 2011; Elmendorf et al., 2012; Gonzalez et al., 2010)

providing vital information formonitoring, management and conserva-

tion (Chytrý et al., 2011). Traditionally, ground surveys are conducted

by researchers systematically identifying, measuring and recording

plant, soil and climatic traits along transects or in plots (Austin &

Heyligers, 1989), resulting in very fine-scale resolution of vegetation.

This approach is both labour and cost intensive and requires significant

botanical expertise. Remote sensing methods can supplement ground

surveys by inspecting vast areas and collecting large amounts of data

using high (below 1m) and ultra-high (below 20 cm) resolution satellite

imagery (Antwi et al., 2008; Felinks et al., 1998; Fernández-Guisuraga

et al., 2018). However, remote sensing methods are limited to map-

ping broad vegetation types or detecting a few target species due to a

trade-off between resolution and coverage (Larson et al., 2020). Rapid

and scalable surveys that can detect multiple individual species, par-

ticularly smaller plants, within complex and heterogenous landscapes

would be a significant advantage tomonitoring programs.

In recent years, high-throughput molecular analyses, especially

those dealingwith traces ofDNA in the environment (knownas eDNA),

have been successfully employed to monitor the presence of species

in wide-ranging habitats, such as fish and mammals in oceans (Bessey

et al., 2020; Foote et al., 2012), invertebrates in soil (Bienert et al.,

2012) and aquatic plants inwetlands (Shackleton et al., 2019). Another

commonapplicationof eDNAanalysis is diet assessmentof animals (De

Barba et al., 2014; Kartzinel et al., 2015; Pompanon et al., 2012). Few

eDNA studies to date have measured vegetation diversity in terres-

trial environments. Analyses of soil eDNA have successfully described

above and below ground plant diversity, but detection can be obscured

by the abundance of non-target organisms, such as fungi (Fahner et al.,

2016), or inhibited by environmental conditions (van der Heyde et al.,

2020). Animal scats have also been proposed as a source of plant eDNA

for biomonitoring (van der Heyde et al., 2020), but few results are

yet available. An alternative approach to monitoring the presence of

angiosperms is via the analysis of plant DNA found in pollen, a tech-

nique that has the potential to discriminate species more efficiently

than conventional microscopy (Keller et al., 2015; Milla et al., 2021;

Smart et al., 2017; Valentini et al., 2010).

Several studies have used pollen DNA metabarcoding to examine

the diet and foraging preferences of European honey bees (Apis mel-

lifera L.) (Cornman et al., 2015; de Vere et al., 2017; Galimberti et al.,

2014; Nürnberger et al., 2019; Richardson, Lin, Quijia, et al., 2015).

Honey bees are one of the most common insect pollinators worldwide,

extensively used in agricultural and urban settings for their generalist

pollination ability and honey production (Aizen et al., 2009; Deelstra &

Girardet, 2000; Klein et al., 2007). Large global declines in colony num-

bers (Dainat et al., 2012; Ellis et al., 2010; Seitz et al., 2015; vanEngels-

dorp et al., 2010) have led to growing interest in improving hive man-

agement practices. Pollen diversity in honey bee diet can contribute to

longer lifespans and improved immunocompetency (Alaux et al., 2010;

Pasquale et al., 2013), thus ensuring bees have access to a variety of

floral resources can help maintain hive health (Decourtye et al., 2010).

A single colony can visit thousands of flowers each day (Requier et al.,

2015), with the average foraging distance ranging from a few hundred

metres to a few kilometres depending on resource availability, land-

scape and season (Beekman & Ratnieks, 2000; Couvillon et al., 2015;

Danner et al., 2017; Sponsler et al., 2017; Steffan-Dewenter & Kuhn,

2003). PollenDNA analyses have shown that pollen collected by honey

bees canbeused to detect a botanical geographic signature (Milla et al.,

2021; Utzeri et al., 2018), changes in plant phenology (Cornman et al.,

2015) and the presence of rare, toxic or invasive species (Bruni et al.,

2015; Galimberti et al., 2014; Tremblay et al., 2019; Utzeri et al., 2018).

For these reasons, identifying the pollen collected by honey bees has

been suggested as a potential vegetation monitoring tool (Cornman

et al., 2015; Richardson, Lin, Sponsler, et al., 2015; Tremblay et al.,

2019). However, it is unclear how well different sources of collected

pollen reflect the surrounding plant diversity, with previous findings

suggesting bees visit only small fraction of the surrounding flowering

vegetation (de Vere et al., 2017).

We compare here for the first time three different honey bee

pollen sources (individual bees, pollen collected with traps and pollen

extracted from honey) and compare the plants foraged by hives placed

within an urban reserve against flowering plants recorded by a ground

vegetation survey of the reserve and to those historically recorded

within a 5-km radius. For the metabarcoding part of the study, we

selected two widely used plant markers, ITS2 and trnL, which are

relatively short and suitable for degraded DNA (Chen et al., 2010;

Hollingsworth et al., 2011; Taberl et al., 2006). In this study, we address

two main questions. First, we assess how different pollen sources and

metabarcoding genetic markers compare in terms of the number of

plant taxa detected and identified. Second,we comparemetabarcoding
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F IGURE 1 Map of Jerrabomberra wetlands (centre) and the surrounding urban area in ACT, Australia. Location of vegetation survey plots
(blue squares) and location of beehives (red circle) are shown

of honey bee-collected pollen to the taxa recorded during the ground

vegetation survey.

2 MATERIALS AND METHODS

2.1 Vegetation survey and pollen collection

The study site was located at Jerrabomberra wetlands, an urban

reserve in Canberra, Australia. Vegetation surveys of angiosperms

were carried out on 31 October 2019 and 2 November 2019, using

eight randomly selected 50 m × 50 m plots at locations shown in Fig-

ure 1. Counts of individual plants for every flowering species found

within a plot were recorded, the total number of flowers (if any) esti-

mated, and plant vouchers were identified by botanists at the Aus-

tralian National Herbarium (Figure S1). On 31 October 2019, pollen

was sampled from three honey bee hives that had been located at the

site for several months. Ten bees from each hive were collected in ster-

ile 50-ml tubes as they returned to the hive, representing pollen col-

lected by individual bees during foraging. Between 2.4 and 9.7 g of

honey was collected from each hive by scraping honeycomb directly

into sterile 50-ml tubes, representing pollen and nectar collected over

severalweeks. Twopollen traps (BeeEquipmentAustralia)were placed

at the entrance of two hives and left for a period of 24 h. Pollen pellets

collected by worker bees were caught in a tray below. The traps were

removed on 1 November 2019, and the pellets collected were stored

with all other samples at−20◦C until processing.

2.2 Pollen DNA amplification and sequencing

We followed suitable pollen isolation and DNA extraction protocols

for each of the pollen sources, as described in Supplementary Mate-

rials S1. Metabarcoding works by amplifying short genetic markers

that can discriminate species through interspecific sequence differ-

ences, or “barcode gaps” (Hebert et al., 2003). The internal transcribed

spacer region 2 (ITS2) is a variable region between 100 and 700 bp in

plants (Yao et al., 2010), and it has been shown to provide good dis-

criminatory power in pollen metabarcoding studies, particularly at the

genus level (Keller et al., 2015; Richardson et al., 2019; Richardson, Lin,
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Sponsler, et al., 2015). The P6 loop of the chloroplast transfer RNA

gene for Leucine (trnL P6) is a very short region between 10 and 143

bases with high amplification success, and it has been used in various

metabarcoding studies dealing with degraded DNA, including honey

pollen (Pornon et al., 2016; Valentini et al., 2010). Both markers were

amplified via a two-step PCR process, as well as four DNA extraction

controls, and three PCRs each of blank controls and positive controls.

Full protocol details are in SupplementaryMaterials S1.

2.3 ZOTU prediction and taxonomy assignment

An overview of the data processing workflow is illustrated in Figure

S2. Briefly, the demultiplexed paired FASTQ reads were merged with

USEARCH v11.0.667_i86linux32 (Edgar, 2010). Gene-specific primer

sequences were removed from the merged reads using cutadapt 2.7

(Martin, 2011). We used the fastqfilter function of USEARCH to filter

trimmedreads toQ20. Sequencesweredenoisedandzero-radiusoper-

ational taxonomic units (ZOTUs, or sequences representing individual

taxa) were chosen using the USEARCH unoise3 function using a mini-

mum cluster size of 16 reads.

To create custom reference databases, we downloaded Viridiplan-

tae sequences from the ITS2DB (Ankenbrand et al., 2015; Koetschan

et al., 2010, 2012;Merget et al., 2012; Selig et al., 2008)website at http:

//its2.bioapps.biozentrum.uni-wuerzburg.de and the trnL UAA intron

region file (trnL_GH.fasta) from the PlantAligDB (Santos et al., 2019)

website at http://plantaligdb.portugene.com on 20 August 2020. We

used mothur (Schloss et al., 2009) to remove duplicates and retain

sequences between 100 and 800 bp for trnL and between 50 and

1000 bp for ITS2. To filter sequences to species recorded in the honey

bee foraging area, we drew a 5-km radius from the approximate loca-

tion of the hives (−35.32, 149.161) using the Atlas of Living Aus-

tralia (ALA) website (www.ala.org.au) and exported all plant records,

filtered to those species that had at least three spatially validated

entries since 1960. Using a custompython script, we filtered the down-

loaded ITS2DB and trnL_GH files to species names from the ALA plant

list and generated searchable databases with the USEARCH makeudb

program. To assign taxonomy to predicted ZOTUs, we used the USE-

ARCH sintax function with an 95% bootstrap cut-off against the corre-

sponding custom databases. The sintax command uses the kmer-based

SINTAX algorithm (Edgar, 2016) to make taxonomic predictions. Sec-

ondary identifications were assigned using blastn against the full NCBI

nt database, returning the top 10matches. The topBLAST resultswere

parsed using the python script taxonomy_assignment_BLAST_V1.py

(github: Joseph7e/Assign-Taxonomy-with-BLAST), which assigns the

consensus lowest taxonomic level possible from all BLAST hits that

match the provided identity percent cut-offs. We set a minimum e-

value of 1e−10, minimum identity cut-offs of 95%, 90% and 80% for

species, family and phylum, respectively, a minimum query cover of

90% and a maximum of 0.5% divergence from the best hit to be

included in the consensus.

2.4 Data analysis

Further analyses were performed using the R statistical software (R

Core Team, 2019) and are shown in Supplementary Materials S2. To

deal with potentially erroneous taxonomy assignments, we checked

any mismatches at family and genus level between the USEARCH

assignment and the BLAST results where the BLAST identity scorewas

at least 99%. We excluded ZOTUs where there was a family mismatch

between theUSEARCHandBLAST results and checked eachmismatch

at the genus level. We assigned the BLAST results to ZOTUs where no

identification to at least family level was assigned by USEARCH, and

then removed all remaining ZOTUs without a taxonomic assignment.

To address potential contamination, we used the R package metabaR

(Zinger et al., 2020). First, we identified contaminant ZOTUs based

on their presence in negative controls using the contaslayer function.

Secondly, we determined an adequate abundance filtering threshold

to reduce the number of false positives. Using the function tagjump-

slayer, we tested a range of filtering thresholds to reduce the num-

ber of ZOTUs present in the negative controls. Adequate sampling was

checkedwith rarefaction curvesusing the rarefy functionof theRpack-

age vegan 2.5.6 (Oksanen et al., 2007).

After removing contaminants and filtering reads to lower the rate

of false positives, the remaining ZOTUs were merged by their taxo-

nomic identification using the tax_glom function of the phyloseq pack-

age (McMurdie&Holmes, 2013).We subsequently use the terms taxon

or taxa to refer to ZOTUs identified and merged to the lowest level

of identification (either family, genus or species). We further excluded

any taxa representing less than 1% of the reads of a sample. We fitted

a Gamma probability distribution to both datasets based on the best

fitting distribution calculated during data exploration. We compared

the results using generalized linear models, with species richness as

the response variable, and pollen source and hive as factors, and com-

pared richness between groups usingKruskal–Wallis tests. To compare

beta diversity, we converted counts to relative abundances. We calcu-

lated distance indices and tested differences usingWilcoxon rank sum

tests. Differences between pollen substrates and hives for eachmarker

were visualized with Principal Coordinates Analysis (PCoA) ordina-

tion and tested using PerMANOVA with the adonis function in vegan.

We also tested the differences in dispersion (variance) for each pollen

source with the betadisper command in vegan. We repeated the Per-

MANOVA analyses using presence/absence data by converting abun-

dances greater than 0 to 1.

To compare the metabarcoding results with those of the vegetation

survey, we first examined the overlap in families, genera and species

detected by each method, with the metabarcoding results from the

three sample types (bees, honey and pollen traps) and markers com-

bined. Because resolution of metabarcoding results to species level

was low, we then compared all genera and the top 10 taxa (based

on highest number of samples detected) detected by metabarcoding

in each sample type to the genera and top 10 taxa (based on high-

est number of plots) detected by the survey. Finally, we calculated the

http://its2.bioapps.biozentrum.uni-wuerzburg.de
http://its2.bioapps.biozentrum.uni-wuerzburg.de
http://plantaligdb.portugene.com
http://www.ala.org.au
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proportion of taxa detected by each method compared to the taxa

recorded in the area in the ALA at all identification levels.

3 RESULTS

3.1 Database creation and amplicon sequencing

The ALA search within 5 km of the hives returned a total of 601

plant species in the area.We found reference sequences for 412 (68%)

species in ITS2DB and 248 (41.3%) species in trnL_GH. From the

sequencing results, we obtained a total of 4,629,533 reads for ITS2

after trimming and filtering. We predicted 823 ITS2 ZOTUs, of which

291 (with 56% of reads) were identified to at least family level by

the USEARCH algorithm. We removed 23 fungal ZOTUs with 18,200

ITS2 reads from the analysis, as well as 304,934 reads that did not

match any plant sequences. There were no family mismatches and one

genus mismatch (Lolium, USEARCH, 97% support compared to Bromus

hordeaceus, BLAST, 100% identity) between the custom ITS2 database

and the BLAST hits. The mismatch was removed. We assigned taxon-

omy fromBLASTresults to anadditional 336 ITS2ZOTUsnot identified

by USEARCH.We removed 10 ZOTUs identified as potential contami-

nants and set a threshold of 0.3%minimumZOTU abundance per sam-

ple to reduce false positives (Figure S3). One bee sample was removed

as rarefaction analysis indicated it had been under-sampled.

For trnL, we obtained a total of 6,208,784 reads after trimming and

filtering. We predicted 105 trnL ZOTUs, of which 61 (93.7% of reads)

were identified to at least family level by the USEARCH algorithm

against the filtered PlantAligDB. We removed 490 trnL reads that

could not be classified as plants. We found one family mismatch (Betu-

laceae,USEARCH,96%support andCasuarinaceae,BLAST, 100% iden-

tity) that was removed. We assigned taxonomy from BLAST results to

an additional 28 ZOTUs not identified by USEARCH.We identified and

removed seven ZOTUs as potential contaminants in the trnL dataset

and set a threshold of 0.3% minimum ZOTU abundance per sample to

reduce false positives.We also removed one bee sample as rarefaction

analysis indicated it had been under-sampled.

After filtering reads to remove false positives and potential contam-

ination, we merged the remaining ZOTUs by taxonomic identification,

resulting in 19 unique taxa from trnL and 116 unique taxa from ITS2.

Removing low abundance taxa (below 1%), resulted in 73 taxa from

ITS2 and 10 taxa from trnL, with 9 taxa detected by both markers (Fig-

ure 4a).

3.2 Comparison of metabarcoding markers and
pollen sources

With ITS2, we detected an average of 10.3 plant taxa per bee, 5.5 taxa

per pollen trap sample and 11.2 taxa per honey sample. With trnL, the

mean detected taxa were 1.2 per bee, 3 per pollen trap sample and 5.8

per honey sample (Figure 2a). The numbers of detected taxa by each

pollen sourcewere not significantly different using ITS2, but theywere

using trnL (Kruskal–Wallis, ITS2: χ2 = 2.74, p = 0.25; trnL: χ2 = 26.05,

p<0.001).We found significant differencesbetween the relative abun-

dances of plant taxa detected by each marker in pollen sources com-

bined (Wilcoxon rank sum, p < 0.001) and individually (ITS2: F = 5.27,

df = 2, p = 0.001; trnL: F = 27.18, df = 2, p = 0.001; also Figure S5a,c).

These differences in pollen source were also significant when the data

were converted to presence/absence of taxa (ITS2: F = 4.99, df = 2,

p = 0.001; trnL: F = 8.57, df = 2, p = 0.001; also Figure S5b,d). Using

the species accumulation curve for bees, we calculated that we could

detect as many taxa as the average number (+2 SD) found in a pollen

trap sample by combining the results of four bees (Figure 2b). We also

estimated that combining the results from six bees would detect as

many taxa as the average honey sample (+2 SD) (Figure 2b).

When comparing the results of metabarcoding markers from com-

bined pollen sources, we found that 90%of trnL taxawas also detected

by ITS2 (Figure 4a). After combining markers, we found pooled indi-

vidual bees detected around half of the taxa (41 or 55.4%), with only

a small overlap between the three pollen sources (Figure 4b). We

found greater overlaps in taxa detected by the individual hives ranging

between 21.4% (pollen traps, two hives) and 34.3% (bees, three hives)

(Figure S6). With both metabarcoding markers combined, 74 distinct

taxa were detected. ITS2 provided much higher taxonomic resolution

than trnL,with47%of73detected taxa identified to species level, com-

pared to 20% of 10 taxa detected by trnL. By combining both markers,

we identifieda total of 36 species, 45generaand25 families (Figure4c),

with 85% of unique taxa identified to at least genus level.

The taxa with the highest mean read percentages per sample

detected by each marker were Rosaceae (mean: 75% of reads), Rham-

naceae (57%) and Salicaceae (48%) for trnL, andRosaceae (43%),Malva

(33%) and Salix (30%) for ITS2. Both markers had high mean propor-

tions of reads (>10%) mapping to Quercus robur and Acer. Salicaceae

speciesweredetected in high levelswithin honey samples (mean: 45%),

while Malvaceae species were in the most abundant taxa for bees and

pollen traps, but not for honey.

3.3 Comparison of honey bee-foraged plants to
vegetation survey

The vegetation survey detected a total of 44 taxa (with 41 or 93%

identified to species level, Figure S1) belonging to 32 plant genera

and 20 families in the eight 50-m plots (Figure 4c). Within each plot,

we recorded between four and 28 species. Overall, we recorded open

flowers on 39 species (88.6%) from 29 genera (90%) and 19 families

(95%) (Figure S1). Using the species accumulation curve for all bees, we

calculated that the combined results of 20 bees could detect at least as

many taxa as the ground survey (Figure 2b).

Themost frequently detected genera in the survey plots were three

non-native herbaceous plants: Plantago (75% of plots), Hypochaeris

(62%) and Sonchus (50%) (Figure 3 and Figure 5). In terms of high-

est proportion of flowers, the top three genera in the survey were

Eucalyptus, a widespread genus endemic to Australia (26.7% of flowers

recorded, at least five species), Conium (18.3%, one species, C. macu-
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latum) and Raphanus (10.8%, one species, R. raphanistrum) (Figure S1).

The three genera and families most frequently detected by metabar-

codingwereQuercus (90% of bees, 100%of honey and pollen trap sam-

ples), undifferentiated Rosaceae species (87% of bees, 100% of honey

and pollen trap samples) and Eucalyptus (73% of bees and 100% of

honey samples) (Figure 3 and Figure 5). While we observed standing

trees ofQuercus in the vicinity of the hives, theywere not present in our

survey plots nor in ALA records. Trifolium (30% of bees, 50% of pollen

trap and 40% of honey samples) and Acer (23% of bees, 50% of pollen

trap and 100% of honey samples) were also commonly detected taxa

among pollen sources. Three of the top 10 genera in the survey were

also detected in the top 10 metabarcoding results: Plantago, Eucalyp-

tus and Trifolium (Figure 3). Overall, we found 28.6% of families, 11.6%

of genera and 5.3% of species in common between our survey and the

metabarcoding results (Figure 4c).

When compared to the ALA records within a 5-km radius, we found

that 22 (21%) families, 30 (8.6%) genera and 15 (2.4%) species were

detected in the pollen foraged by bees (Figure 4d). Comparatively, the

survey (which covered a smaller area of approximately 2 km2) detected

20 (19.6%) families, 30 (8.9%) genera and 32 (5.2%) species recorded

in the area (Figure 4d). Both methods detected taxa not found within

the ALA records, withmetabarcoding detecting an extra 21 species, 15

genera and three families, and the survey detecting an extra 12 species

and two genera.

4 DISCUSSION

Efficient and comprehensive detection and monitoring of biodiversity

is critical, as global changes including land clearing (Bradshaw, 2012;

Tilman et al., 2001), invasive species (Mooney & Cleland, 2001) and

climate change (Godfree et al., 2019; Hutyra et al., 2005; Liu et al.,

2010) continue to threaten ecosystems. One way to assess impacts

on vegetation is through regular plant community ground surveys, but

these are resource intensive and require extensive botanical expertise.

Although relatively new, pollen DNAmetabarcoding has been demon-

strated to be a powerful tool to investigate the foraging choices of

honey bees (de Vere et al., 2017; Richardson et al., 2019). Its value in

monitoring flowering plant diversity, however, has not beenwell estab-

lished.

Our findings here suggest that DNA metabarcoding of pollen col-

lected by honey bees can provide useful information on the surround-

ing flowering vegetation.We detected higher numbers of taxa (74) and

genera (45) but identified fewer species (36) from 39 pollen samples
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Family Genus Species

(a) Overlap in taxa between MB markers (b) Overlap in taxa between pollen sources

(c) Overlap between survey and MB at three taxonomic levels

64
(86.5%)

1(1.3%)

9
(12.2%)

ITS2

trnL

6
(8.1%)

1
(1.3%)

13
(17.6%) 5

(6.8%)

8
(10.8%)

41
(55.4%)

Bees

Honey Pollen 
traps

15
(42.9%)

10
(28.6%)

10
(28.6%)

MB Survey
37

(53.6%)
24

(34.8%)

8
(11.6%) 37

(50.7%)
32

(43.8%)

4
(5.5%)

MB Survey MB Survey

(d) Overlap with taxa recorded within 5 km radius (ALA) at three taxonomic levels  

Family Genus Species

3
(2.8%)

12
(11.4%)

70
(66.7%)

10
(9.5%)

10
(9.5%)

MB Survey
15

(4.2%)
2

(0.6%)

22
(6.2%) 8

(2.3%)

22
(6.2%)

284
(80.5%)

MB Survey
21

(3.3%)
9

(1.4%)

11
(1.7%) 4

(0.6%)

28
(4.4%)

557
(88.4%)

MB Survey

ALA ALA ALA

F IGURE 4 Overlap between taxa (lowest possible level of taxonomic identification) detected by different combinations: (a) in all pollen
samples by eachmetabarcodingmarker (purple for ITS2, pink for trnL), (b) in all pollen samples by pollen source type (grey for bees, red for pollen
traps and orange for honey), (c) overlap between taxa at three different levels of taxonomic identification (family, genus or species) in all pollen
samples bymetabarcoding (green) and in all plots by survey (yellow), (d) overlap between taxa at three different levels of taxonomic identification
(family, genus or species) bymetabarcoding and survey compared to historical records from 5-km radius of hives (brown, source: Atlas of Living
Australia [ALA]). For metabarcoding results in panels b–d, ITS2 and trnL results have been combined

compared to the ground survey of eight plots (44 taxa and 32 gen-

era, with 41 taxa identified to species). The plants foraged by honey

bees poorly matched the species identified by the survey, with only a

quarter of the genera and less than 10% of the species detected in the

survey found in the pollen samples. Although honey bees are super-

generalist foragers (Crane, 1990; Huryn, 1997), their foraging prefer-

ences can vary over time and according to flowering resources (Coffey

& Breen, 1997), thus they are unlikely to visit the same plants detected

by a systematic survey. Pollen sampling at different time intervals could

help account for changes in bees’ foraging preferences and detect a

wider range of flowering taxa. Pollen metabarcoding is highly scal-

able and offers better taxonomic resolution than alternative pollen

identification methods such as microscopy (Smart et al., 2017). While

metabarcoding costs are not trivial (between $3000 and $4500 USD

plus labour for 90 samples), Bell et al. (2017) concluded the cost of

similar work using microscopy could be much higher as palynologi-

cal expertise is very specialized and varies among palynologists. Addi-

tionally, the costs of sequencing have decreased over time and more

labs are becoming proficient in PCR techniques. Overall, the reduc-

tion in time spent in the field and the scalability of the method make

pollen metabarcoding a promising complementary tool for monitoring

of flowering taxa, with further research required into optimizing the

number of hives, their placement and sampling frequency in order to

incorporate this approach intomonitoring programs.
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Ulmaceae   Ulmus
Sapindaceae   Acer
Salicaceae   Salix
Salicaceae   Salicaceae ssp.
Salicaceae   Populus
Rutaceae   Philotheca
Rubiaceae   Galium
Rosaceae   Sorbus
Rosaceae   Rosaceae ssp.
Rosaceae   Rosa
Rosaceae   Prunus
Rosaceae   Photinia
Rosaceae   Malus
Rosaceae   Crataegus
Rosaceae   Acaena
Rhamnaceae   Rhamnaceae ssp.
Ranunculaceae   Ranunculus
Proteaceae   Grevillea
Poaceae   Poaceae ssp.
Poaceae   Lolium
Platanaceae   Platanus
Plantaginaceae   Veronica
Plantaginaceae   Plantago
Pittosporaceae   Pittosporum
Papaveraceae   Papaver
Oxalidaceae   Oxalis
Oleaceae   Oleaceae ssp.
Oleaceae   Fraxinus
Myrtaceae   Myrtaceae ssp.
Myrtaceae   Melaleuca
Myrtaceae   Leptospermum
Myrtaceae   Eucalyptus
Myrtaceae   Callistemon
Malvaceae   Modiola
Malvaceae   Malvaceae ssp.
Malvaceae   Malva
Lamiaceae   Salvia
Juglandaceae   Juglans
Iridaceae   Iris
Geraniaceae   Geranium
Fagaceae   Quercus
Fagaceae   Fagaceae ssp.
Fabaceae   Vicia
Fabaceae   Trifolium
Fabaceae   Robinia
Fabaceae   Medicago
Fabaceae   Indigofera
Fabaceae   Fabaceae ssp.
Fabaceae   Acacia
Euphorbiaceae   Euphorbia
Caryophyllaceae   Paronychia
Cannabaceae   Celtis
Brassicaceae   Sisymbrium
Brassicaceae   Raphanus
Brassicaceae   Lepidium
Brassicaceae   Erysimum
Brassicaceae   Eruca
Brassicaceae   Capsella
Brassicaceae   Brassicaceae ssp.
Brassicaceae   Brassica
Boraginaceae   Symphytum
Boraginaceae   Myosotis
Boraginaceae   Echium
Betulaceae   Betula
Asteraceae   Tragopogon
Asteraceae   Taraxacum
Asteraceae   Sonchus
Asteraceae   Olearia
Asteraceae   Hypochaeris
Asteraceae   Gamochaeta
Asteraceae   Euryops
Asteraceae   Erigeron
Asteraceae   Chrysocephalum
Asteraceae   Cassinia
Asteraceae   Asteraceae ssp.
Asteraceae   Arctotheca
Araliaceae   Hedera
Apiaceae   Conium
Anacardiaceae   Pistacia
Adoxaceae   Viburnum

  Ulmus
   Acer
   Salix
  Salicaceae ssp.

  Populus
  Philotheca

  Galium
  Sorbus

  Rosaceae ssp.
   Rosa

  Prunus
  Photinia

   Malus
  Crataegus

  Acaena
 Rhamnaceae ssp.

  Ranunculus
  Grevillea

  Poaceae ssp.
  Lolium

  Platanus
  Veronica
  Plantago

  Pittosporum
  Papaver

  Oxalis
  Oleaceae ssp.

  Fraxinus
  Myrtaceae ssp.

  Melaleuca
  Leptospermum

  Eucalyptus
  Callistemon

  Modiola
  Malvaceae ssp.

   Malva
   Salvia

  Juglans
   Iris

  Geranium
  Quercus

  Fagaceae ssp.
   Vicia

  Trifolium
  Robinia

  Medicago
  Indigofera

  Fabaceae ssp.
  Acacia

  Euphorbia
  Paronychia

   Celtis
  Sisymbrium

  Raphanus
  Lepidium

  Erysimum
   Eruca

  Capsella
 Brassicaceae ssp.

  Brassica
  Symphytum

  Myosotis
  Echium
  Betula

  Tragopogon
  Taraxacum

  Sonchus
  Olearia

  Hypochaeris
  Gamochaeta

  Euryops
  Erigeron

  Chrysocephalum
  Cassinia

  Asteraceae ssp.
  Arctotheca

  Hedera
  Conium
  Pistacia

  Viburnum

0.07 (2)
0.23 (7) 0.5 (2) 1 (5)
0.1 (3) 1 (5)0.25 (2)

0.03 (1) 1 (5)
0.07 (2)
0.23 (7) 0.2 (1)

0.38 (3)
0.27 (8)
0.87 (26) 1 (4) 1 (5)
0.03 (1)
0.03 (1) 0.4 (2)
0.5 (15)
0.1 (3)

0.03 (1)
0.12 (1)

0.1 (3)
0.25 (2)
0.25 (2)

0.37 (11)
0.03 (1)
0.3 (9)

0.12 (1)
0.53 (16) 0.4 (2)0.75 (6)

0.1 (3)
0.12 (1)
0.25 (2)

1 (5)
0.3 (9)

0.4 (2)
0.12 (1)

0.1 (3)
0.73 (22) 1 (5)0.38 (3)

0.25 (2)
0.25 (2)

0.03 (1) 0.5 (2)
0.23 (7) 0.75 (3)0.12 (1)

0.25 (2)
0.03 (1)

0.25 (2)
0.12 (1)

0.9 (27) 1 (4) 1 (5)
0.03 (1) 0.25 (1)

0.25 (2)
0.3 (9) 0.5 (2) 0.4 (2)0.25 (2)

0.57 (17) 0.25 (1)
0.07 (2)0.12 (1)

0.2 (1)
0.07 (2)

0.25 (2)
0.12 (1)
0.12 (1)

0.03 (1) 0.25 (1)
0.03 (1)

0.38 (3)
0.5 (2)

0.03 (1)
0.03 (1) 0.8 (4)
0.1 (3)

0.07 (2) 0.2 (1)
0.33 (10) 1 (5)
0.13 (4) 0.5 (2)
0.2 (6)

0.12 (1)
0.03 (1)

0.25 (2)
0.03 (1) 0.2 (1)
0.13 (4)0.5 (4)
0.07 (2)

0.62 (5)
0.12 (1)

0.03 (1)
0.4 (2)

0.12 (1)
0.12 (1)

0.13 (4) 0.4 (2)
0.43 (13) 0.4 (2)
0.03 (1)
0.1 (3)0.38 (3)

0.07 (2)
0.03 (1)

Survey Bees HoneyPollen
traps

F IGURE 5 Families and genera detected by vegetation survey and
bymetabarcoding of bee, pollen trap and honey pollen samples. For
pollen samples, ITS2 and trnL results have been combined. Numbers in
cells indicate proportion of total plots (survey) or total samples
(metabarcoding) where a given genus was detected, with the counts of
plots (survey) and samples (metabarcoding) where the genus was
detected in brackets. Cell colours indicate the size of the proportion,
with the spectrum from grey (low) to orange (mid) to red (high)
signifying increasing proportion

4.1 Selection of metabarcoding markers for floral
resource monitoring

A key consideration for DNA-based monitoring programs is the com-

bination of appropriate genetic markers to deliver the desired detec-

tion sensitivity and taxonomic resolution. The relatively small over-

lap between ITS2 and trnL in taxa detected (nine out of 74 over-

all) emphasized the need to use multiple markers (Prosser & Hebert,

2017; Richardson et al., 2019; Richardson, Lin, Quijia, et al., 2015). We

found that incorporating a range of quality control checks was criti-

cal for dealing with potential false positives and increasing robustness

of the results: namely, using positive and negative controls to iden-

tify likely contaminants, comparing results against a global database to

confirm taxonomic identifications and stringent filtering of the results

to remove low abundance taxa. Accurate quantification of pollen from

metabarcoding is still problematic (Baksayet al., 2020;Bell et al., 2019),

with common issues such as PCR primer bias (Deiner et al., 2017)

and the interaction between plant species (Pornon et al., 2016) poten-

tially affecting results.While longer fragments of trnL have been found

to quantify airborne pollen species relatively well (Kraaijeveld et al.,

2015), it is unclear from our results whether the much shorter P6 loop

shares the same characteristics.

Identification of taxa to species level through metabarcoding was

low (48.6%), while identification to at least genus level was high

(85.1%). The taxonomic resolution of a marker is highly dependent on

a reference database match. Missing species can produce a false neg-

ative result, and closely related species without a “barcode gap” can-

not be discriminated (Bell et al., 2019; Wilkinson et al., 2017). In our

customdatabases, therewere also fewer representative sequences for

trnL (340) than for ITS2 (703). While searching against a large public

database, such as NCBI’s GenBank, can generate more identifications,

errors can be introduced due to incorrect annotations. To improve

detection of a particular species of interest (for example, an inva-

sive weed), specific markers could be developed to differentiate target

sequences from closely related species. Furthermore, pollen metabar-

coding has the potential to be extended tomonitoring associated plant

pathogens and other biota (Tremblay et al., 2019) by adding different

markers without the need to repeat the sampling effort.

4.2 Selection of pollen sources for metabarcoding

Mostmetabarcoding studies examining floral resource usage by honey

bees have used pollen traps to collect pollen (Melin et al., 2020; Nürn-

berger et al., 2019; Richardson et al., 2019; Tremblay et al., 2019) or

sourced it from honey (de Vere et al., 2017; Prosser & Hebert, 2017;

Utzeri et al., 2018). It is commonly thought that individual honey bees

exhibit high floral fidelity during foraging trips (Free, 1963; West-

erkamp, 1991), thus bulk collecting samples of pellets or honey should

detect a wider range of plants. Individual bees can carry large amounts

of pollen,with estimates ranging fromaround1400 (Horskins&Turner,

1999) to more than 11,000 grains per individual, excluding corbicula

(Escaravage &Wagner, 2004). Microscopic analyses of pollen loads on
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bees have identified dominant species (Escaravage & Wagner, 2004),

but diverse pollen can be carried over from visiting several species

(Horskins & Turner, 1999), or passively acquired through wind trans-

port or contact with other bees. Our results suggest that some honey

bees collect, or perhaps passively sample, several pollen species. Pollen

DNA from a few bees (between four and seven per hive) produced

as many taxa as the average pollen trap sample. Pollen traps greatly

reduce the amount of pollen reaching the hive, and may impact the

bees’ health and foraging activity (Dubois et al., 2018; Webster et al.,

1985). Honey is a natural product of honey bees; however, its produc-

tion is contingent upon several conditions, suchas colony size andavail-

able resources. While healthy colonies can produce up to 25 pounds

of honey in a single day during spring (Cale et al., 1986), honey pro-

duction is highly reduced or absent over winter. Because honey pro-

duction is ongoing, it is difficult to infer when a particular pollen found

in honey was collected. Therefore, repeated sampling using individual

bees during target flowering periods is recommended. To detect longer

term phenological changes such as relative shifts in flowering times

over multiple years or large vegetation changes in the landscape due

to agricultural intensification, honey could be a more suitable choice,

as pollen in honey naturally accumulates over time. For example, Jones

et al. (2021) used pollen DNA metabarcoding of honey samples to

detect shifts in plants foraged by honey bees in the United Kingdom

between 1952 and 2017, with intensification of agriculture, one of the

factors leading to changes in floral resource availability. Using honey

pollen could be used to sample longer intervals than recommended

with pollen traps and avoid the need to collect many individual bees to

cover the same period.

There were some differences in the plant composition of the pollen

samples. Salix (Willow) was one of the major components of honey

(mean abundance of 18% with ITS2) but found in much lower quan-

tities in pollen trap and bee samples. Salix flower from September

to October (Cremer, 2003) and were observed on the edges of the

wetlands. As honey accumulates over longer periods of time, it could

be used to detect plants with short flowering times, which may be

missed by sampling individual bees or pollen traps at discrete intervals.

The presence or absence of plants in pollen samples can be used to

infer changes in phenology; however, sample replicates are essential.

False positives may appear due to incorrect sequence identifications

(tag jumps), which are unused index combinations that can spuriously

appear in sequencing studies (Schnell et al., 2015). Residual pollen,

such as pollen picked up by bees coming into contact with the pre-

vious season’s resources (Richardson, Lin, Sponsler, et al., 2015), may

inflate numbers of foraged taxa. False negatives are also possible due

to lowDNA abundance, taxon or PCR bias (Deagle et al., 2018; Pornon

et al., 2016). Other potential sources of sample variation are the DNA

extraction protocols. In this study, the pollen trap protocol specified

drying of pollen at 60◦C for 60 h and honey was incubated at 65◦C

for half an hour, whereas pollen from individual bees was not heated.

It is not known whether the long drying period for pollen trap samples

contributed to additional DNA degradation and may have affected the

results, therefore consistent protocols and minimal pollen processing

are recommended.

4.3 Using honey bee-foraged pollen as a tool for
angiosperm monitoring

One of the main advantages of using pollinating insects for monitoring

flowering vegetation is their ability to visit plants in sensitive or diffi-

cult to survey areas, such as alpine regions (Mayr et al., 2021; Pornon

et al., 2016). However, a major consideration of using managed honey

bees for biomonitoring is their potential negative impact on wild pol-

linators (Cane & Tepedino, 2017; Henry & Rodet, 2018; Valido et al.,

2019). Introducing hives is highly discouraged where honey bees are

not native or common. Anothermajor disadvantage of pollenmetabar-

coding compared to vegetation surveys is that accurate location infor-

mation cannot be inferred frompollenDNA. In somecases, however, an

approximate location within the foraging range of honey bees may be

adequate, such as in rapid, continuous assessments of flowering veg-

etation or detecting the arrival of invasive species within a new area.

As the amounts and types of pollen collected by hives can vary due to

colony size, season and life stage, further research is needed on the

optimal number of hives at each survey point. In our study, each addi-

tional hive led to a small increase in the number of species detected

by bees (between 9% and 15%more taxa); therefore, more than three

hives at each survey point may not be cost-effective. Alternatively, col-

lecting multiple pollen samples from hives placed at the same loca-

tion over an extended period can providemore opportunities to detect

plants flowering at different times. As foraging distance will be influ-

enced by landscape diversity and resource availability (Danner et al.,

2017; Steffan-Dewenter & Kuhn, 2003), more research is also needed

to determine the most effective placement of hives to survey increas-

ingly complex habitats.

While there was little overlap between the taxa detected by honey

bees and our vegetation survey, the plants foraged by bees provided

useful additional information regarding the flowering vegetation of

the study area. Several common genera recorded in the area such as

Quercus, Malus, Brassica and Prunus were detected only via metabar-

coding. Malus, Brassica and Prunus were present in a small, cultivated

plot less than 100 m from the hives, which we were unable to sur-

vey as it was located within a private allotment. Similarly, there were

several Quercus trees in the vicinity, a genus commonly found in the

city of Canberra (Zhang & Brack, 2021), but they were outside the

survey plots. Honey bees are known to exploit pollen resources from

anemophilous plants (Giovanetti & Aronne, 2011; Keller et al., 2005),

including Quercus (Aronne et al., 2012; Saunders, 2018). Another pos-

sibility is that pollen from wind-pollinated plants could adhere to bees

during flight, as airborne particles have been detected on their bod-

ies (Negri et al., 2015), although we have not tested this. Both the

survey and metabarcoding were able to detect plants that were not

present in the ALA records with more than half the species and a

third of the genera detected by metabarcoding, and nearly a third of

species recorded in the survey were not in the ALA list. However, the

proportion of taxa identified to species level was much higher for the

survey (93.2%) than for metabarcoding (48.6%). Identifying more taxa

through metabarcoding could only be achieved here by expanding the

sequence search to the larger NCBI nt database. Carefully curated
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databases have been shown to achieve a high percentage of detec-

tion at species level (Galimberti et al., 2014; Richardson et al., 2020;

Valentini et al., 2010). As more species are detected via direct sur-

veys or via robust metabarcoding studies supported by local vegeta-

tion knowledge, custom plant databases can become more compre-

hensive and useful. However, species-level identification of plants from

metabarcoding will remain a challenge for some groups, such as fre-

quently hybridizing genera like Eucalyptus (Griffin et al., 1988), which

show low genetic marker differentiation between species (Prosser &

Hebert, 2017).

The foraging choices of honey bees mean that unattractive or

morphologically unsuitable plants might not be visited (Hung et al.,

2018), thus not all flowering plants may be suitable targets for mon-

itoring using honey bees. Some flowering plants may also be under-

represented in pollen metabarcoding when pollen production is low.

Non-entomophilous species are not necessarily excluded from detec-

tion, as pollens from wind-pollinated genera such as Quercus and Acer

are often detected on honey bees (Bruni et al., 2015; de Vere et al.,

2017; Hawkins et al., 2015; Tremblay et al., 2019; Utzeri et al., 2018).

Using pollen metabarcoding on a diverse range of native pollinators

could help address several challenges. Pollen metabarcoding can be

applied to other pollinator groups, such as hoverflies andmoths (Lucas

et al., 2018; Macgregor et al., 2019; Pornon et al., 2016), extending

monitoring to pollinators with diverse foraging preferences to fill in

gaps in plant detection. Combining multiple pollinators for vegetation

monitoring can not only target a wide range of flowering plants, but

also provide valuable information on phenological changes and pol-

lination services through the analysis of pollen transport or interac-

tion networks (Gray et al., 2014; Pornon et al., 2016; Richardson et al.,

2019). Native pollinators, particularly social bees (e.g. bumble bees),

could be samplednon-destructively for pollen (Bänsch et al., 2020; Pot-

ter et al., 2019), potentially contributing towards species conservation

efforts.

5 CONCLUSIONS

Our results demonstrate that the use of pollinators and pollen DNA

metabarcoding could be complementary to traditional methods sur-

veying terrestrial ecosystems. Undoubtedly, ground vegetation sur-

veys provide an important advantage over pollen-based molecular

methods as they provide estimates of plant location, abundance and

trait data (Austin & Heyligers, 1989), as well as being able to detect

non-flowering taxa. In our study, expert taxonomic identification of

plants was superior to the identification obtained by metabarcoding

using the currently available data (i.e. reference sequence databases

and occurrence data). However, the scalability and high-throughput

nature of molecular methods, together with the capacity of pollina-

tors to forage in relatively large and difficult-to-access areas, make

the combination of pollen metabarcoding and insects a promising tool

for tracking floral resources and complementing vegetationmonitoring

programs.
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