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Abstract

1. Monitoring widely distributed species on a budget presents challenges for the

spatio-temporal allocation of survey effort. When there are multiple discrete units

to monitor, survey alternatives such as model-based estimates can be useful to

fill information gaps but may not reliably reflect biological complexity and change.

The spatio-temporal allocation of survey effort that minimizes uncertainty for

the greatest number of units within a budget can help to ensure monitoring is

optimized.

2. We used aerial survey-based population estimates of moose (Alces alces) across 30

WildlifeManagement Units (WMUs) inOntario, Canada to parameterize simulated

populations and test the performance of different monitoring scenarios in captur-

ing WMU-specific annual variation and trends. Firstly, we tested scenarios that

prioritized conducting a survey for a unit based on one of three management crite-

ria: population state, population uncertainty or number of years between surveys.

Also incorporated in the decision framework wereWMU-specific costs and annual

budget constraints. Secondly, we tested how using model-based estimates to fill

informationgaps improvedpopulationand trendestimates. Lastly,weassessedhow

theutility (basedonminimizingpopulationuncertainty) of using amodel-basedesti-

mate rather than conducting a survey was impacted by population density, severity

of environmental stressors and years since the last survey.

3. Interval-based monitoring that minimized the number of years between surveys

captured accurate trends for the highest number of WMUs, but annual variation

was poorly captured regardless of management criteria prioritized. Using model-

based estimates to fill information gaps improved trend estimation. Further, the

utility of conducting a survey increased with time since the last survey and was

greater for populations with low densities when the severity of environmental

stressors was high, while being greater for populations with high densities when

environmental severity was low.
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4. Overall, the utility of aerial survey monitoring was strongly associated withWMU-

specificmonitoring precision and the predictive power ofmodel-based estimates. If

long-term trends are evident, then there is greater value in using alternatives such

as model-based predictions to replace surveys, but model-based estimates may be

a poor substitute when there is strong annual variation and when using a simple

model.
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1 INTRODUCTION

Monitoring of wildlife is essential to inform management actions and

assess their effectiveness (Pollock et al., 2002; Yoccoz et al., 2001).

Limited resources, including budget, can often constrain the frequency

at which populations are monitored, which can lead to uncertainty

in population state (Hauser et al., 2006). Widely distributed species

are especially at risk of being managed with high uncertainty due to

spatial and temporal gaps in monitoring, in addition to uncertainty

introduced through variation in the accuracy or precision of survey

estimates (Andersen & Steidl, 2020; Ficetola et al., 2018; Nuno et al.,

2013). However, the need for monitoring can depend in part on the

nature of population change. Consistent long-term population trends

can require less frequentmonitoring todetect thedirection and/or rate

of change than stable or temporally variable populations (Ficetola et al.,

2018; Reynolds et al., 2011; Row&Fedy, 2017;Wauchope et al., 2019).

A decision-making framework that considers the value of new informa-

tion relative to the cost of obtaining it can therefore help to determine

the optimal time and/or conditions under which to conduct a survey

(Canessa et al., 2015; Hauser et al., 2006).

Jurisdictions containing multiple management units with discrete

populations that are managed independently face the additional chal-

lenge of ensuring that each unit is adequately monitored while bal-

ancing monitoring needs and costs among units (Ficetola et al., 2018).

Typically, populations with low densities, non-uniform distributions

and/or poor detectability will require more spatial and temporal repli-

cation of monitoring effort to obtain accurate and precise population

estimates (Barata et al., 2017; Ficetola et al., 2018; Nuno et al., 2013).

Multi-unitmonitoring schemes can therefore benefit fromdesigns that

balance the utility of monitoring a unit with cost while accounting

for utility and costs of all other units. Utility in wildlife monitoring

can vary but will typically be based on balancing the benefit that the

new information provides with the cost (Canessa et al., 2015; Hauser

et al., 2006). Furthermore, there can be multiple management needs

(i.e. criteria) to consider that can impact the prioritization of units to

monitor each year. Criteria prioritized in monitoring can include track-

ing population state for vulnerable or managed populations, resolving

population uncertainty and/or ensuring that all units are monitored

frequently enough to track population state or trend across a larger

area (Hauser et al., 2006; Joseph et al., 2009; Morant et al., 2020;

Reynolds et al., 2011).

To alleviate uncertainty in population state and/or trends caused

by gaps in monitoring information, alternatives to survey-based mon-

itoring can be used. Model-based estimates are a useful alternative

to conducting a survey and incorporating them in monitoring informa-

tion can aid in the optimization ofmonitoring designs andmanagement

decision-making (Hauser et al., 2006; Nishimoto et al., 2021;Westcott

et al., 2018). However,model-based estimates require prior knowledge

of the conditions that affect population dynamics, which can include

complex biological interactions (Ahrestani et al., 2016; Marolla et al.,

2021). Developing models that are accurate in predicting population

change can be particularly challenging for widely distributed species

that occupy variable environments and experience spatially and tem-

porally variable limiting factors (Ahrestani et al., 2016; Marolla et al.,

2021;Westcott et al., 2018). Therefore, model-based estimates can be

limited in their predictive power and should not always be relied on to

replace surveys.

Moose (Alces alces) are widely distributed across northern portions

of North America. In Canada, populations are experiencing variable

trends, including declines in many regions (Timmermann & Rodgers,

2017). Harvest of moose occurs in many jurisdictions, which typically

requires regular monitoring of populations to guide licensed harvest

allocations and to prevent overharvest (Bottan et al., 2002; Boyce et al.,

2012). Aerial surveys are the most common method of monitoring

moose acrossmost jurisdictions; however, due to high costs andbudget

constraints, aerial surveys are usually conducted every few years per

management unit (Boyce et al., 2012). Irregular unit-based monitor-

ing can result in gaps in information for unit-specific time series, which

can lead to high uncertainty in population state and/or trend (Boyce

et al., 2012). Selection of units to monitor can be based on risk-based

criteria (e.g. anticipated decline in population size); however, there is

often a lack of quantitative approaches to parameterize costs and ben-

efits ofmonitoring, which can result in inefficientmonitoring decisions.

Therefore, moose monitoring can benefit from an optimized design

that guides survey efforts by addressing when extensive monitoring

(such as aerial surveys) is needed to resolve uncertainty for a unit or

when alternative methods (such as model-based estimates) will suffice

to inform decision-making.
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Here, we developed a year-to-year optimization framework to test

alternative criteria for selecting management units to survey moose

and identify when a model-based population estimate can replace a

survey. We used empirical aerial survey data for moose across 30

management units and a time span of 25 years in Ontario, Canada to

parameterize simulations of moose population abundance. Our opti-

mization framework also accounted for total monitoring budget and

unit-specific costs to survey. Our first two objectives focused on com-

paring differentmonitoring scenarioswith the goal of capturing annual

population variation and trends for the greatest number of units.

Firstly, we evaluated how prioritizing one of three risk-based criteria—

(a) population uncertainty, (b) population state or (c) number of years

since the last survey—when selecting units to monitor affected pop-

ulation abundance and trend estimates. Secondly, we evaluated how

using either the previous year’s population estimates or amodel-based

estimate for yearswithout surveys affected population state and trend

estimates within our optimization framework. Our third objective was

to assess how population density, environmental variability and years

since the last survey influenced the utility of model-based estimates to

replace aerial surveyswith the goal ofminimizing uncertainty in annual

population estimates.

2 MATERIALS AND METHODS

2.1 Study area

The study area spanned 255,879 km2 in the province of Ontario,

Canada. The southern portion of the study area was predominantly

deciduous boreal forest (Rowe, 1972), with common species including

sugar maple (Acer spp.), white spruce (Picea spp.) and balsam fir (Abies

spp.; Goldblum & Rigg, 2005). The northern portion of the study

area was composed of mixed deciduous and coniferous boreal forest

(Rowe, 1972), consisting of deciduous tree species including trembling

aspen (Populus spp.) and paper birch (Betula spp.) and coniferous

species including jack pine (Pinus spp.), white spruce (Picea spp.), black

spruce (Picea spp.) and balsam fir (Abies spp.; James et al., 2017).

Forest harvesting and wildfires were the main contributing factors

maintaining early seral stage forests with reduced canopy cover

across the study area. Spruce-budworm (Choristoneura fumiferana)

outbreaks also contributed to substantial reductions in canopy-cover,

particularly in the north-western portion of the province (James et al.,

2017).

2.2 Moose aerial survey data

We used moose aerial survey inventory data collected by the Ministry

of Natural Resources and Forestry (MNRF) in Ontario over a 25-year

period (1991–2015) togenerate timeseriesof expectedmoosepopula-

tion size and trends.Monitoring andharvestmanagement aregenerally

applied independently for eachWildlifeManagement Unit (WMU) and

WMUs were selected to be surveyed approximately every 3–5 years.

OnlyWMUswith aminimum of 5 years of surveys conducted between

1991 and 2015were used in our analysis, resulting in 30WMUs.

Moose aerial surveys took place in the winter (January to March)

when canopy cover from deciduous trees was low and snow-cover

facilitated detection of moose and their tracks. Moose aerial surveys

were conducted for WMUs using stratified random sampling of 25-

km2 plots (McLaren, 2006). Each plot was assigned to one of three

strata representing variation inmoosedensity. Stratificationwasbased

on observations made during previous surveys, as well as habitat suit-

ability (McLaren, 2006). The total number of plots flown varied among

surveys and was adjusted mid-survey to improve precision of the pop-

ulation estimate by sampling more plots in strata of greater observed

variance, which usually required a minimum of 20 plots in total. Sur-

vey precisionwasmeasured using the variance in counts across plots in

a stratum (McLaren, 2006). Standardized survey protocols were used

to reduce detectability bias and improve survey accuracy by setting

conditions for flights with respect to weather, snow ground cover, air-

craft speed, altitude and the number of observers (McLaren, 2006), but

additional sources for detectability bias in aerial monitoring can still

be introduced by variable forest canopy cover (Quayle et al., 2001). To

understand sources of detectability bias and/or survey precision in our

study system, we conducted a supplementary analysis to evaluate the

effects of forest canopy cover type and moose population density on

aerial survey precision (Appendix SA). The analysis was also used to

ascertain both spatial and temporal variability in survey precision at

theWMUand year level.

2.3 Data generation and model development

The following three sections describe how WMU-specific population

timeseriesofmooseabundance, aerial survey counts, andmodel-based

estimates were generated to derive the population estimates used

in our optimization framework. To test the performance of different

monitoring scenarios in capturing WMU-specific annual variation and

trends, we first generated time series of ‘known’ moose population

size from empirical moose aerial survey data.We then simulated aerial

survey-derived population counts based on ‘known’ population size

while accounting forWMU-specific variability in counts of moose dur-

ing surveys. Lastly, model-based population estimates were generated

based on simulated aerial survey estimates within our optimization

framework.

2.4 Generated WMU-specific population time
series

Time series of ‘known’ population size and trend over 25 years (1991–

2015) were generated for 30 WMUs using coefficients from a linear

mixed-effects model of empirical aerial survey-derived estimates of

moose density. Ourmixed-effects model used empirical moose density

(moose/km2) to account for differences in WMU size, and included a

Gamma log-link distribution with a random intercept for WMU and a
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random slope for year that were used to derive WMU-specific pop-

ulation trends (Figure SB1[A]). It has been previously identified that

the moose population in Ontario has been experiencing a province-

widepopulationdecline following apopulation increase andpeak in the

early 2000s (Priadka et al., 2022). Becausewewere interested in simu-

lating a linear trend, we extracted random year slopes from the model

fit to the last 15 years of the study period (2001–2015). To address

the effect of environmental variability onmoose population trends, our

model also included a winter severity index (representing snow depth

and temperature from January to March) with a 2-year time lag that

was previously identified to negatively influence long-termmoosepop-

ulation trends in Ontario (Priadka et al., 2022). Methods describing

how the winter severity index was generated can be found in Priadka

et al. (2022). The coefficient forwinter severitywas extracted as a fixed

effect for all WMUs for the full 25-year time frame and represented

an 8% decline in moose density (Figure SB1[A]). Both year and win-

ter severity valueswere log-transformed. Themixed-effectsmodelwas

constructed in R (R Core Team, 2013) using package lme4 (Bates et al.,

2015).

Coefficients extracted from the empirically derived mixed model

(above; see Table SB1 for a list of WMU-specific mixed model coef-

ficients) were included in 30 independent linear models of ‘known’

population density (n) that spanned 25 years (i) for eachWMU (Figure

SB1[B]). Each linear model included β0 that represented the WMU-

specific model intercept, β1 that represented the WMU-specific year

effect and β2 that represented the WMU-average effect of winter

severity with a 2-year time lag (wint2[ i – 2]):

n[i] = 𝛽0 + 𝛽1 × year[i] + 𝛽2 ×wint2[i−2]. (1)

Winter severity was simulated based on empirical values obtained

for the years that survey data were available and was randomly drawn

from a normal distribution as a standardized variable with xi as the

mean and σi as the standard deviation in winter severity values (Figure
SB1[B]):

wint2[i−2] ∼ Normal (xi,𝜎i) . (2)

Moose population time series were generated as log-transformed

densities to reflect extracted coefficient values from the empirical data

model and were transformed back to the exponential scale. Moose

densities were converted to population abundance based on WMU

area.

2.5 Simulated aerial survey population estimates

We simulated aerial survey-based population counts across 25 years

and for 30WMUs based onWMU-specific time series generated using

linear models (above; Figure SB1[B]). Average counts of moose per

stratumwere derived from empirical data andwere used to calculate a

proportionof the total population countedper stratified plot (mu). Vari-

ability in number of plots flown per year was introduced by randomly

drawing from a normal distribution with average (xu) and standard

deviation (σu) of total number of plots flown y per stratum u for each

WMU (with the assumption that these values represented the average

number of plots needed to achieve the precision target with temporal

variability):

yu = Normal (xu,𝜎u) . (3)

Moose counts at the plot level (nu) were derived using a Poisson dis-

tribution that drew counts for each of the randomly derived number

of plots flown per stratum (yu) based on the average number of moose

counted per plot (mu):

nu,y = Poisson (yu,mu) . (4)

To obtain an extrapolated moose population estimate for theWMU

(Cw), the sum across strata 1, 2 and 3was derived for the average of nu,y
multiplied by the total number of plots in each stratum (Yu):

CW =
∑(

average n1y × Y1
)
+
(
average n2y × Y2

)

+
(
average n3y × Y3

)
. (5)

In addition to a population estimate, we estimated the average coef-

ficient of variation (CV) in counts that was derived from the standard

deviation in counts summed for each stratum (SDtotal) divided by the

population estimate CW:

CV = SDtotal∕CW. (6)

We used CV to represent survey precision (i.e. uncertainty) for

comparison with uncertainty derived frommodel-based estimates. CV

represented the variance in counts across plots in each stratum, and

therefore the uncertainty in the extrapolated population estimate.

Assessment of simulated aerial survey estimates confirmed that they

corresponded with empirical aerial surveys estimates and the gener-

ated ‘known’ population time series in reflecting greater spatial (63%

CV average) than temporal (14% CV average) variation across WMUs

(Table SB2). The R code for the function used to simulate WMU-

specific aerial survey counts and population estimates is available in

Appendix SC.

2.6 Model-based population estimates to fill
information gaps

To derive model-based population estimates, we used at least 15 years

of prior knowledge of the moose population generated as survey esti-

mates in Section 2.5. We used the simulated aerial survey population

estimates to derive model-based estimates, as monitoring data would

be the primary information source typically available for generating

such population models. The inclusion of prior information ensured

that ourmodel had the predictive power to estimate annual population
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TABLE 1 Scoring system that was applied annually to eachWildlifeManagement Unit based on three risk-based criteria that prioritized (a)
population uncertainty based on the coefficient of variation for stratified and randomly sampled survey precision, (b) population state based on a
population objective of 20moose/100 km2 and (c) number of years since the last survey

Risk-based

criteria a

Risk-based

criteria b

Risk-based

criteria c

(a) Population uncertainty (coefficient of variation)

>3rd quartile of allWMUs province-wide 20 10 10

2nd to 3rd quartile of allWMUs province-wide 15 7.5 7.5

1st to 2nd quartile of allWMUs province-wide 10 5 5

<1st quartile of allWMUs province-wide 5 2.5 2.5

(b) Population state (population density)

<10/100 km2 10 20 10

10> 16/100 km2 7.5 15 7.5

16> 18/100 km2 5 10 5

20< 18/100 km2 2.5 5 2.5

>20/100 km2 0 0 0

(c) Number of years since last survey 10 points/year 10 points/year 20 points/year

change and could inform our analysis on when model-based estimates

provided greater utility than aerial surveys to infer population size.

We used a state-space model to derive model-based estimates

that incorporated process variance associated with moose population

change and observation error in population estimates. State-space

models can separately model process and observation-based variance

captured in monitoring data (De Valpine & Hastings, 2002) and have

been useful for identifying drivers of population dynamics and for pre-

dicting population response to exogenous factors in previous wildlife

studies (e.g. Ahrestani et al., 2016; Marolla et al., 2021; Westcott

et al., 2018). Our process model structure included a year-effect and

assumed that we did not know population response to environmen-

tal variability (i.e. winter severity). Therefore, ourmodel only predicted

change in the population based on the prior 15-year trend.We applied

our state-space model using the Markov Chain Monte Carlo (MCMC)

Bayesian approach and incorporated second tiers to our model to

address process and observation noise.

Our process model for log-transformed population abundance (n)

across time (t) included themodel intercept (β0) and the year effect (β1)
applied to year (Y):

nt = 𝛽0 + 𝛽1Yt + 𝜀t. (7)

Process noise (ɛ) was normally distributed with mean zero and

standard deviation (σ2) derived from variation across population abun-

dance in the time series:

𝜎n[𝜀t ∼ Normal
(
0,𝜎2n

)
]. (8)

To estimate population abundance n, our observation model incor-

porated log-transformed population estimates in the time series (Ct – 1)

and assumed that estimates were normally distributed based on pop-

ulation abundance nt – 1 and uncertainty (standard deviation) in the

aerial survey- or model-derived estimates (SDt – 1):

Ct−1 ∼ Normal (nt−1, SDt−1) . (9)

We provided vague prior probabilities of parent parameters (β0,
β1, σn; see Appendix SD for R code of the model function and prior

distributions). Successful convergence of the posterior distribution of

population abundance Ct was derived by Bayes theorem using three

independent MCMC chains for 2,000,000 iterations and after a burn-

in of 100,000 iterations by application of theGibbs sampler using JAGS

3.3.0 via theRpackage rjags (Plummer, 2011).We sampled oneof every

100 iterations from the joint posterior. Convergence of Markov chains

was confirmed based on the diagnostic R̂ < 1.1 for all parameters and

by visually inspecting parameter trace plots. Posterior distributions

of population abundance were summarized by their mean (Ct) and

standard deviation (SDt) that was used to calculate the coefficient of

variation for themodel-based estimate (CVt):

CVt = SDt∕Ct. (10)

2.7 Scenario development

To address our first and second objectives, we developed scenarios

to compare the effects of alternative risk-based criteria on the pri-

ority ranking of WMUs for monitoring and introduced three options

for addressing years without a survey (i.e. missing information). We

focused on three risk-based criteria that reflected general monitor-

ing and management concerns: years since the last survey, precision

of the last survey (or model-based estimate) and population status

(Table 1). Our weighing among the three criteria was intended, in part,

to ensure realistic selection ofWMUs that did not consistently exclude

units with large and/or stable populations. Scores for years since the

last surveywere cumulative until a surveywas conducted, while scores
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F IGURE 1 Optimization scheme outlining steps taken to select
WildlifeManagement Units (u) to monitor in each year (t) based on the
unit-specific population estimate (n) and its associated uncertainty. In
step 1, a score was assigned to each u based on three risk-based
criteria (described in step 1 a–c). The optimization occurred at step 2
bymaximizing scores across all u subject to their cost to ensure that
the greatest number of u are selected, and that monitoring does not
exceed the annual budget. If uwas selected, an aerial survey was
conducted to obtain a survey-based estimate (Scenarios 1 and 2) or
the coefficient of variation (cv) in precision was comparedwith
uncertainty in amodel-based estimate to determine whether a
survey-based estimate was used (Scenario 3). If uwas not selected,
either the previous survey estimate was used (Scenario 1) or a
model-based estimate was used (Scenarios 2 and 3).

for uncertainty (based on quartiles across all WMUs) and population

state (based on a 0.2 moose/km2 threshold) were assigned based on

the annual population estimate (Table 1). In addition to the three risk-

based criteria, missing information in time series was treated either by

using the previous survey’s information (Scenario 1), using a model-

based estimate (Scenario 2) or using a model-based estimate when

its utility (based on minimizing population estimate uncertainty) out-

weighed survey-based utility (Scenario 3). The combination of three

priority ranking criteria and three survey response options resulted in

a total of nine scenarios (Figure 1; Table 2).

We measured utility in Scenario 3 as the difference in the level of

uncertainty (CV) derived from each estimate (model- or survey-based;

Figure 1). Therefore, utility represented the value of new information

(i.e. a survey) and assumed we had prior knowledge of CV for both

a survey- and model-based estimate in each year to make the best

decision. We acknowledge that in most situations we do not have the

advantage of prior knowledge of precision (and therefore uncertainty)

for a survey before it is conducted, but our analysis allows us to eval-

uate when utility for a survey may degrade and how choosing to rely

on model-based estimates to replace surveys will impact the accu-

racy of resulting time series. The decision of replacing surveys with

model-based estimates was made following the optimization (step 2

in Figure 1) to ensure that the WMUs being selected were obtained

from the samepool of samples as in the other two scenarios, and to pre-

vent WMUs with consistent low scores from not being considered for

a survey each year.

Following 10 years of optimization (see Section 2.8), each scenario

resulted in a 10-year time-series data set for eachWMU in the frame-

work (n = 30). Henceforth, we refer to each of these data sets as an

optimized time series. See Figure SB2 for a visual example of how opti-

mized time series were constructed based on the three options for

addressing years without a survey.

2.8 Optimization model framework

Survey selection was optimized on an annual basis to ensure WMUs

with the highest risk-based scores were surveyed each year based on

WMU-specific cost andanannual budget (Figure1). Inour25-year time

series, theoptimization started inyear16 toderivea10-yearoptimized

data set for each of 30WMUs. The optimization scheme included two

steps: (1) in each year t and for each WMU u, a score (s) was assigned

to the population estimate n, and (2) the optimization model selected

WMUs in year t by maximizing su subject to the cost (cu) of conducting

an aerial survey in eachWMU(Figure1). Theoptimizationproblemwas

conducted using a Linear Integer Programming (LIP) approach,where n

was the total number ofWMUs tomonitor (n= 30):

Maximize :
∑n

u=1
suxu, (11)

Subject to :
∑n

u=1
cuxu ≤ B, (12)

wherexisbinary : xu ∈ {0,1}, for u= 1,… ,n.

A budget limit (B) of $300,000 per year for all surveys was used.

The cost of conducting a survey in each WMU was calculated by con-

sidering the cost ($) of a helicopter per hour, the time needed per plot

and the average total number of plots flown per WMU. Average cost

of conducting a survey per WMU varied from CAD $18,287 to CAD

$42,032, with an average of 36 total plots flown in a WMU per year

(Table SB3). The optimization model and constraints were constructed

using R package lpsolve (Berkelaar, 2015).

2.9 Data analysis

2.9.1 Comparison among monitoring scenarios

To compare the performance of each scenario, we compared each 10-

year optimized time series in relation to generated population size
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TABLE 2 The three risk-based criteria that were prioritized for selecting units tomonitor (rows) and three options for howmissing
information in each time series was treated (columns) that were used to develop nine scenarios to use in our optimization framework

Howmissing informationwas treated

Scenario 1 Scenario 2 Scenario 3

Use previous survey

information

Usemodel-based

estimate

Usemodel-based estimate if

model cv< survey cv

Criteria prioritized

tomonitor

Risk-based

criteria a

Population

uncertainty

S1a S2a S3a

Risk-based

criteria b

Population state S1b S2b S3b

Risk-based

criteria c

Years since last

survey

S1c S2c S3c

using two measures. First, we tested the correlation (Pearson’s r)

between time series of optimized estimates and population size and

evaluated the proportion of WMUs with Pearson’s r > 0.5 (indicating

a positive linear relationship) for each scenario. Second, we calculated

whether each optimized time-series slope/trend significantly varied

from the trend in population size. Slope significance was assessed

based on p-value ≤ 0.05 using a generalized linear model (GLM)

with a quasipoisson distribution constructed using R package lmerTest

(Kuznetsova et al., 2017). The model response was population size and

the survey- or model-based population estimate and we tested for an

interacting effect of year between time series. We additionally com-

pared trends captured in each scenario by assessing the correlation

(Pearson’s r) and similarity among trends (within 0.01 units) between

optimized time series.

2.9.2 Assessment of factors affecting survey utility

We assessed how population density, environmental variability (win-

ter severity with a 2-year time lag), and years since the last survey

influenced the utility of conducting a survey (Scenario 3). We used a

generalized linear mixed-effects model (GLMM) with a binomial distri-

bution that treated the binary (0, 1) decision to survey as the response

and included a random effect for scenario (S3a, S3b, S3c). We tested

a full model that included each explanatory variable and included an

interacting effect of density andwinter severity to account for the rela-

tionship of winter severity driving population density in our study area

(Priadka et al., 2022). All variables were tested using Pearson’s r test

to ensure there was no collinearity among variables. Binomial models

were constructed using R package lme4 (Bates et al., 2015). All figures

were created using R package ggplot2 (Wickham, 2011).

3 RESULTS

3.1 Comparison among monitoring scenarios

At least 67% (and maximum 97%) of optimized time series (n = 30)

accurately reflected population trends in each scenario (Figure 2).

However, annual variability was poorly captured in each scenario, with

F IGURE 2 The proportion of optimized time series (n= 30WMU;
% value indicated above each bar) in each scenario that had a linear
relationship (Pearson’s r> 0.5) and a significantly similar trend (based
on linear model results, p-value< 0.05) with population size.

no greater than 57% (and minimum 47%) of optimized time series

(n = 30) reflecting annual population variation based on Pearson’s

r > 0.5 (Figure 2). Among risk-based criteria, prioritizing years since

the last survey performed best at capturing accurate trends for the

greatest number of WMUs (S1c, S2c, S3c; Figure 2). Meanwhile, using

a model-based estimate to fill information gaps for years when a sur-

vey was not selected (S2a–c) resulted in more accurate trends among

optimized time series than using the previous survey’s estimate (S1a–

c) or by replacing surveys with model-based estimates based on utility

(S3a–c; Figure 2).

Although Scenario 3 (replacing surveyswithmodel-based estimates

based on utility; S3a–c) did not result in the greatest number of accu-

rate trend estimates, comparative analysis revealed that optimized

time series in this scenario were highly correlated with time series in

Scenario 2 (S2a–c; Pearson’s r = 0.97) regardless of risk-based crite-

ria prioritized (Figure 3). Additionally, either 87%or 90%of time-series

trends in Scenarios 2 and 3 were within 0.01 units of each other,

which represented a maximum 10% divergence in population change

captured by optimized time series in the two scenarios (Figure 3).

The number of surveys replaced with model-based estimates (Sce-

nario 3) and the result in cost savings over time did not differ greatly

based on risk-based criteria prioritized (Figure 4). In all scenarios, cost-

savings withmodel-based replacement decreased over time, reflecting

an increase in uncertainty in model-based estimates, and therefore

greater utility of conducting a survey, over time (Figure 4).
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F IGURE 3 Comparative analyses for each scenario based on (a) the linear relationships (Pearson’s r) amongst unit-level slopes/trends
captured in each scenario and (b) the proportion (%) of slopes (n= 30) that were within 0.01 degrees of each other. Pearson’s r and proportional
values (%) are indicated in each grid.

F IGURE 4 Annual cost savings for Scenarios 3a, 3b, and 3c that
replaced surveys withmodel-based estimates based on uncertainty in
annual population estimates.

TABLE 3 Model coefficients, standard error and p-values for
variables that explain when it is the best decision tomonitor a unit
(binary response) based on utility (level of uncertainty) in aerial
survey-derived population estimates compared to utility of
model-based estimates. Explanatory variables includedmoose density
(den), winter severity with a 2-year time lag (wint2), year and the
interacting effect betweenmoose density andwinter severity
(den:Wint2)

Variable Coefficient

Standard

error p-value

Intercept –0.41 0.14 0.004

Den 1.00 0.16 0.000

wint2 –0.15 0.16 0.339

Year 0.35 0.14 0.013

den:wint2 –0.40 0.18 0.023

3.2 Factors affecting survey utility

When the utility of conducting a survey was evaluated and compared

to utility of amodel-based estimate, the probability of correctly choos-

ing to survey aWMU in a given year increased with population density

and years since the last survey (Table 3; Figure 5). The effect of popula-

tion density on the probability of correctly choosing to survey declined

with more severe winters (which contributed to population decline;

Table 3; Figure 5). Visual inspection of model results revealed that the

density threshold atwhichwinter severity increased theutility of a sur-

vey was at approximately ≤0.2 moose/km2 (Figure 5). Further, visual

inspection of model results revealed that after approximately 8 years

without a survey, the probability of correctly choosing to survey a

WMU increased to approximately ≥50%; however, the probability did

not reach 75% even after 10 years without a survey (Figure 5).

4 DISCUSSION

4.1 Comparison among monitoring scenarios

We developed a framework to optimize monitoring based on risk-

based criteria and monitoring costs for moose populations spanning

multiple management units and experiencing variation in popula-

tion density, trends and severity of environmental stressors. Our

framework allowed us to test different monitoring scenarios while

accounting for monitoring budget and ascertain when model-based

population estimates could replace conducting an aerial survey for a

unit. While our analysis was conducted on moose, our approach can

be applied to other species where trend information and precision of

survey estimates are important and that face the challenge of opti-

mal spatio-temporal allocation of survey effort acrossmultiple discrete

management units.

In our study, we found thatminimizing the number of years between

surveys performed best at capturing trends for the greatest number

ofWMUs, revealing that interval-based monitoring can be the optimal

choice within monitoring frameworks with many discrete and variable

management units. Notably, trends were detected for 97% of WMUs

when model-based estimates were incorporated in the decision

framework, despite only 2–5 years with a survey across a 10-year

period. Previous studies have similarly identified that interval-based
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F IGURE 5 Explanatory variables influencing the probability of correctly choosing to survey a given unit each year (binary response), including
the interacting effect of moose density andwinter severity, and years since the last survey was conducted.

monitoring performs well for trend detection (Andersen & Steidl,

2020; Wauchope et al., 2019) and can be a cost-saving method for

multi-unit systems if delays in detecting population changes are

acceptable (Reynolds et al., 2011). In line with an interval-based

approach, if units are not spatially correlated and vary in population

dynamics, it is typically better to sample more units less frequently

(Rhodes & Jonzén, 2011). Time series length is also an important

contributor to trend detection, and longer periods of monitoring will

improve accuracy in detecting rates of population change through time

(Ahrestani et al., 2013; Piacenza et al., 2019; Reynolds et al., 2011;

Vallecillo et al., 2021). Additionally, larger population changes in a

consistent direction (e.g. 30% change in the population) are expected

to be easier to detect than more subtle changes (e.g. 15% change in

the population; Barata et al., 2017; Wauchope et al., 2019). While we

introduced temporal variation in trends in our generated time series,

most populations declined on average by 17% across the study time

frame. Although our populations did not experience dramatic declines,

we were still successful in detecting most trends in each scenario,

suggesting that our optimization schemewas adequate.

Our study revealed that incorporating simple (i.e. year-only) model-

based estimates can improvedetection of long-termpopulation trends.

Therefore, if estimation of trends is the primary objective of monitor-

ing, there is value in using simple model-based estimates to replace

monitoring in some years. The non-significant differences in optimized

time series that used model-based estimates to fill information gaps

and those that further replaced surveys with model-based estimates

based on utility (Scenarios 2 and 3, respectively) justify using at least

a simple trends-based model to improve population trend estimation.

The utility of model-based estimates to predict population change is

likely to improve by incorporating additional information about pop-

ulation dynamics. However, environmental complexity can make it

challenging for wildlife managers to develop and collect data for pop-

ulationmodels that include both endogenous (i.e. density dependence)

and exogenous (i.e. climate) factors. Therefore, our model was sim-

plified (i.e. excluded environmental variability) to reflect the realistic

challenge of fully understanding drivers of wildlife population dynam-

ics and variability over time and our results provide a generalized

assessment of model-based utility.

Our findings also corresponded with previous studies that found

the potential for strong bias and inaccuracy in monitoring data or

model-based estimates in capturing annual population change (Wau-

chope et al., 2019). A main contributing factor to higher uncertainty

in population estimates derived from surveys is poor detectability of

animals. Detectability can be influenced by population density, distri-

bution characteristics (i.e. open or closed population; Crumet al., 2021;

Dambly et al., 2021; Westcott et al., 2012), landscape heterogene-

ity (Barata et al., 2017; Nuno et al., 2013; Rhodes & Jonzén, 2011),

observer experience (Barata et al., 2017; Vallecillo et al., 2021) and

weather conditions during monitoring (Morant et al., 2020). While we

did not directly assess detectability bias and its effects on accuracy of

counts in our study system, our analysis (Appendix SA) revealed that

WMU-level variability in population density and dense coniferous for-

est cover contributed to greater among-plot variability and thus more

imprecise population estimates. When monitoring efforts produce

consistently imprecise population estimates with high uncertainty,

managers should focus monitoring efforts on resolving population

uncertainty potentially through increased survey effort (e.g. survey-

ingmore plots) or the implementation and/or integration of alternative

techniques that may improve accuracy. For example, infrared technol-

ogy can improve the detection of animals from the air under conditions

of open forest canopy (Potvin & Breton, 2005), and sightability cor-

rection factors can be applied to improve count-based population

estimates (Anderson & Lindzey, 1996). If uncertainty cannot be easily

resolved, managers may be limited to relying on trends or the compar-

ison of current state (the population estimate) to the population target

to manage populations. While it was beyond the scope of our study,

future studies should investigate how improving detectability and

accuracy in aerial survey-derived population counts may impact the

utility of model-based predictions and the spatio-temporal allocation

of survey effort.

In our study, we focused on model-based estimates to fill monitor-

ing gaps, but other sources of information, such as population indices,
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can be used. For example, harvest indices are commonly used to track

population change for harvested species and supplement extensive

monitoring (Boyce et al., 2012). However, the reliability of indices is

heavily dependent on drivers of observation variance, such as hunter

effort (Priadka et al., 2020), and will require validation to ensure

natural processes are captured. Although detecting trends is less chal-

lenging and effort intensive thanmonitoring annual population change,

it still requires strong reliance on precision over time to prevent mis-

informed decision-making (Seavy & Reynolds, 2007). Therefore, it is

critical to validate any method of monitoring and understand sources

of uncertainty thatmay confound thequality of information it provides.

Additionally, it may be important to perform calibration of informa-

tion for a system usingmore extensivemonitoring to ensure important

changes are detected (DeCesare et al., 2016).

4.2 Factors affecting survey utility

We identified the effects of three important factors on survey util-

ity that improved our understanding of when conducting a survey for

a unit will resolve more uncertainty than relying on a model-based

estimate. Firstly, we identified that the value of conducting a survey

increased with population density. Other studies have similarly found

that higher population densities resulted in reduced observation error,

improved precision andmore accurate trend estimates (Reynolds et al.,

2011; Southwell et al., 2019; Steenweg et al., 2019; Tracey et al.,

2008). Secondly, our findings revealed that environmental variabil-

ity can influence the value of conducting a survey with the objective

of minimizing population estimate uncertainty. In our study, we only

introduced one source of environmental variability impacting moose

population dynamics, but we acknowledge that other sources of vari-

ability will exist in natural systems. For example, moose populations

typically undergo harvest pressure that will impact population dynam-

ics (Brown, 2011) and population response to climate may vary based

on habitat type (Priadka et al., 2022). In our simplified analysis, we

found that if an environmental driver impacting population density is

severe in a given year, then itwas best to survey populationswith lower

densities and units with typically higher monitoring certainty that can

provide the best value for the cost of monitoring. Hauser et al. (2006)

also found that monitoring value increased with population uncer-

tainty following environmental variability that reduced predictability

power of model-based estimates. Population estimates derived from

both surveys and models should therefore be used with caution for

lowpopulation densities or small population sizes that aremore unpre-

dictable and sensitive to environmental stochasticity (Field et al., 2004;

Hauser et al., 2006). Future studies should evaluate other interactions

between environmental factors and/or population density for moose

and how this may impact the utility of model-based estimates versus

surveys to resolve population uncertainty.

Lastly, our findings revealed that uncertainty in model-based esti-

mates increased with the number of years between surveys, resulting

in reduced utility of model-based estimates to replace surveys, and

consequently, a reduction in cost savings over time. Given the complex-

ity of natural systems, model-based estimates will always accumulate

uncertainty without monitoring (Hauser et al., 2006). Therefore, cali-

bration of model-based estimates is needed for long-term monitoring.

Our study identified that reliance on model-based predictions for

moose within our study region should not exceed approximately

8 years without a survey (to maintain a 50% probability of correctly

choosing to survey), especially if the population is not experiencing a

consistent trend that can be predicted using a model-based estimate.

These results may differ if using a more informed population model

or for species with different life history characteristics (e.g. life span,

reproductive rates) and levels of detectability during surveys. Future

analyses should therefore focus on howutility can vary based onmodel

type, which can help to justify the need to determine population-

specific drivers of population dynamics and develop more informative

populationmodels to replace surveys.

In our study, we focused on three common risk-based criteria that

can be easily applied to other taxa, but future analysis might also

consider monitoring scenarios with other criteria typically prioritized

during monitoring based on management needs. For example, more

frequent monitoring of units where population management actions,

such as harvesting or species recovery, are taking placemay be needed

to track population response (Pease et al., 2021; Priadka et al., 2020).

Applying different criteria and priority scoreswill also likely impact the

success of different monitoring scenarios in obtaining precise popula-

tion estimates and accurate population trends for the greatest number

of units. Optimization frameworks for multi-unit monitoring therefore

need to be adaptive and address spatial and temporal variability among

units to ensure that monitoring effort is efficiently allocated based on

management needs.

5 CONCLUSION

Here, we developed a year-to-year optimization framework to test

alternative criteria for selecting management units to survey moose

and identify when a model-based population estimate can replace a

survey. We identified the value of interval-based monitoring, which

minimizes the number of years between surveys across units, to mon-

itor species spanning multiple discrete management units and with

variable population densities, trends and severity of environmental

stressors.We recommend thatmanagers consider simplemodel-based

estimates to fill information gaps, as we found evidence that they can

improve population trend estimation and reduce the need to survey

units more frequently. We found that utility of conducting a survey

increased with time since the last survey and was greater for popula-

tions with low densities when the severity of environmental stressors

was high, while being greater for populations with high densities when

environmental severity was low. Overall, the utility of aerial survey

monitoring was strongly associated with WMU-specific monitoring

precision and the predictive power ofmodel-based estimates.We note

that an important limitation for use of model-based estimates is the

adequate incorporation of biological complexity that can affect accu-

rate estimation of population status and trends. If long-term trends are
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evident, then there is greater value in using alternatives such asmodel-

based estimates to replace surveys, but model-based estimates may

be a poor substitute when there is strong annual variation and when

relying on a simplemodel.

ACKNOWLEDGEMENTS

Funding for this project was contributed by the Ontario Ministry

of Natural Resources and Forestry (OMNRF), Ontario Federation of

Anglers and Hunters (OFAH) Zone G/ Oakville Rod & Gun Club and

Sudbury Game and Fish Protective Association. We are grateful to the

OMNRF staff that contributed to conducting moose aerial surveys,

data organization and provided administrative support.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Pauline Priadka and Glen S. Brown conceived and designed the study,

and Pauline Priadka conducted the analyses andwrote themanuscript.

Pauline Priadka, Glen S. Brown, Bradley C. Fedy and Frank F.

Mallory contributed critically to the analyses, interpreting results and

manuscript drafts and gave final approval for publication.

DATA AVAILABILITY STATEMENT

Moose density data associated with this article are available from the

Dryad Digital Repository: https://doi.org/10.5061/dryad.k6djh9w8s

(Priadka et al., 2022).

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1002/2688-8319.12149.

ORCID

PaulinePriadka https://orcid.org/0000-0003-1204-3449

Glen S. Brown https://orcid.org/0000-0002-0825-9274

REFERENCES

Ahrestani, F. S., Hebblewhite,M., &Post, E. (2013). The importance of obser-

vation versus process error in analyses of global ungulate populations.

Scientific Reports, 3(1), 1–10. https://doi.org/10.1038/srep03125
Ahrestani, F. S., Smith, W. K., Hebblewhite, M., Running, S., & Post, E.

(2016). Variation in stability of elk and red deer populations with abi-

otic and biotic factors at the species-distribution scale. Ecology, 97(11),
3184–3194. https://doi.org/10.1002/ecy.1540

Andersen, E. M., & Steidl, R. J. (2020). Power to detect trends in abundance

within a distance sampling framework. Journal of Applied Ecology, 57(2),
344–353. https://doi.org/10.1111/1365-2664.13529

Anderson, C. R., Jr., & Lindzey, F. G. (1996). Moose sightability model

developed fromhelicopter surveys.Wildlife Society Bulletin,24, 247–259.
Barata, I. M., Griffiths, R. A., & Ridout, M. S. (2017). The power of mon-

itoring: Optimizing survey designs to detect occupancy changes in a

rare amphibian population. Scientific Reports, 7(1), 1–9. https://doi.org/
10.1038/s41598-017-16534-8

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-

effects models using lme4. Journal of Statistical Software, 67(1), 1–48.
https://doi.org/10.18637/jss.v067.i01

Berkelaar,M. (2015). lpSolve: Interface to ‘Lp_solve’ v. 5.5 to solve linear/integer
programs. R package version 5.6.13.

Bottan, B., Euler, D., & Rempel, R. (2002). Adaptivemanagement ofmoose in

Ontario. Alces, 38, 1–10.
Boyce, M. S., Baxter, P. W., & Possingham, H. P. (2012). Managing moose

harvests by the seat of your pants. Theoretical Population Biology, 82(4),
340–347. https://doi.org/10.1016/j.tpb.2012.03.002

Brown, G. S. (2011). Patterns and causes of demographic variation in a

harvested moose population: Evidence for the effects of climate and

density-dependent drivers. Journal of Animal Ecology, 80(6), 1288–1298.
https://doi.org/10.1111/j.1365-2656.2011.01875.x

Canessa, S., Guillera-Arroita, G., Lahoz-Monfort, J. J., Southwell, D. M.,

Armstrong, D. P., Chadès, I., Lacy, R. C., & Converse, S. J. (2015).When do

we needmore data? A primer on calculating the value of information for

applied ecologists. Methods in Ecology and Evolution, 6(10), 1219–1228.
https://doi.org/10.1111/2041-210X.12423

Crum, N. J., Neyman, L. C., & Gowan, T. A. (2021). Abundance estimation

for line transect sampling: A comparison of distance sampling and spa-

tial capture-recapture models. PLoS ONE, 16(5), e0252231. https://doi.
org/10.1371/journal.pone.0252231

Dambly, L. I., Jones, K. E., Boughey, K. L., & Isaac, N. J. (2021). Observer

retention, site selection and population dynamics interact to bias abun-

dance trends in bats. Journal of Applied Ecology, 58(2), 236–247. https://
doi.org/10.1111/1365-2664.13760

De Valpine, P., & Hastings, A. (2002). Fitting population models incorporat-

ing process noise and observation error. Ecological Monographs, 72(1),
57–76.

DeCesare, N. J., Newby, J. R., Boccadori, V. J., Chilton-Radandt, T., Thier,

T., Waltee, D., Podruzny, K., & Gude, J. A. (2016). Calibrating minimum

counts and catch-per-unit-effort as indices of moose population trend.

Wildlife Society Bulletin, 40(3), 537–547. https://doi.org/10.1002/wsb.
678

Ficetola, G. F., Romano, A., Salvidio, S., & Sindaco, R. (2018).Optimizingmon-

itoring schemes to detect trends in abundance over broad scales. Animal
Conservation, 21(3), 221–231. https://doi.org/10.1111/acv.12356

Field, S. A., Tyre, A. J., Jonzén, N., Rhodes, J. R., & Possingham, H. P. (2004).

Minimizing the cost of environmentalmanagement decisions by optimiz-

ing statistical thresholds. Ecology Letters, 7, 669–675. https://doi.org/10.
1111/j.1461-0248.2004.00625.x

Goldblum,D., &Rigg, L. S. (2005). Tree growth response to climate change at

the deciduous boreal forest ecotone, Ontario, Canada. Canadian Journal
of Forest Research,35(11), 2709–2718. https://doi.org/10.1139/x05-185

Hauser, C. E., Pople, A. R., & Possingham, H. P. (2006). Should managed pop-

ulations be monitored every year? Ecological Applications, 16, 807–819.
https://doi.org/10.1890/1051-0761(2006)016%5b0807:SMPBME%

5d2.0.CO;2

James, P. M., Robert, L. E., Wotton, B. M., Martell, D. L., & Fleming, R.

A. (2017). Lagged cumulative spruce budworm defoliation affects the

risk of fire ignition in Ontario, Canada. Ecological Applications, 27(2),
532–544. https://doi.org/10.1002/eap.1463

Joseph, L. N., Maloney, R. F., & Possingham, H. P. (2009). Optimal allo-

cation of resources among threatened species: A project prioritization

protocol. Conservation Biology, 23(2), 328–338. https://doi.org/10.1111/
j.1523-1739.2008.01124.x

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest

package: Tests in linear mixed effects models. Journal of Statistical
Software, 82, 1–26. https://doi.org/10.18637/jss.v082.i13

Marolla, F., Henden, J. A., Fuglei, E., Pedersen, Å. Ø., Itkin, M., & Ims, R. A.

(2021). Iterative model predictions for wildlife populations impacted by

rapid climate change. Global Change Biology, 27(8), 1547–1559. https://
doi.org/10.1111/gcb.15518

McLaren, M. (2006). Standards and guidelines for moose population inven-
tory in Ontario (Technical report no. SSI-121). Southern Science and

Information, OntarioMinistry of Natural Resources.

https://doi.org/10.5061/dryad.k6djh9w8s
https://publons.com/publon/10.1002/2688-8319.12149
https://publons.com/publon/10.1002/2688-8319.12149
https://orcid.org/0000-0003-1204-3449
https://orcid.org/0000-0003-1204-3449
https://orcid.org/0000-0002-0825-9274
https://orcid.org/0000-0002-0825-9274
https://doi.org/10.1038/srep03125
https://doi.org/10.1002/ecy.1540
https://doi.org/10.1111/1365-2664.13529
https://doi.org/10.1038/s41598-017-16534-8
https://doi.org/10.1038/s41598-017-16534-8
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.tpb.2012.03.002
https://doi.org/10.1111/j.1365-2656.2011.01875.x
https://doi.org/10.1111/2041-210X.12423
https://doi.org/10.1371/journal.pone.0252231
https://doi.org/10.1371/journal.pone.0252231
https://doi.org/10.1111/1365-2664.13760
https://doi.org/10.1111/1365-2664.13760
https://doi.org/10.1002/wsb.678
https://doi.org/10.1002/wsb.678
https://doi.org/10.1111/acv.12356
https://doi.org/10.1111/j.1461-0248.2004.00625.x
https://doi.org/10.1111/j.1461-0248.2004.00625.x
https://doi.org/10.1139/x05-185
https://doi.org/10.1890/1051-0761(2006)016%5b0807:SMPBME%5d2.0.CO;2
https://doi.org/10.1890/1051-0761(2006)016%5b0807:SMPBME%5d2.0.CO;2
https://doi.org/10.1002/eap.1463
https://doi.org/10.1111/j.1523-1739.2008.01124.x
https://doi.org/10.1111/j.1523-1739.2008.01124.x
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1111/gcb.15518
https://doi.org/10.1111/gcb.15518


12 of 12 PRIADKA ET AL.

Morant, J., González-Oreja, J. A., Martínez, J. E., López-López, P., &

Zuberogoitia, I. (2020). Applying economic and ecological criteria to

design cost-effectivemonitoring for elusive species. Ecological Indicators,
115, 106366. https://doi.org/10.1016/j.ecolind.2020.106366

Nishimoto, M., Miyashita, T., Yokomizo, H., Matsuda, H., Imazu, T.,

Takahashi, H., Hasegawa, M., & Fukasawa, K. (2021). Spatial opti-

mization of invasive species control informed by management prac-

tices. Ecological Applications, 31(3), E02261. https://doi.org/10.1002/
eap.2261

Nuno, A., Bunnefeld, N., & Milner-Gulland, E. J. (2013). Matching observa-

tions and reality: Using simulation models to improve monitoring under

uncertainty in the Serengeti. Journal of Applied Ecology, 50, 488–498.
https://doi.org/10.1111/1365-2664.12051

Pease,B. S., Pacifici, K.,&Collazo, J.A. (2021). Surveydesignoptimization for

monitoring wildlife communities in areas managed for federally endan-

gered species. Animal Conservation, 24(5), 756–769. https://doi.org/10.
1111/acv.12681

Piacenza, S. E., Richards, P.M., &Heppell, S. S. (2019). Fathoming sea turtles:

Monitoring strategy evaluation to improve conservation status assess-

ments. Ecological Applications, 29(6), e01942. https://doi.org/10.1002/
eap.1942

Plummer, M. (2011). JAGS - Just another Gibbs sampler. http://mcmc-jags.

sourceforge.net

Pollock, K. H., Nichols, J. D., Simons, T. R., Farnsworth, G. L., Bailey, L. L.,

& Sauer, J. R. (2002). Large scale wildlife monitoring studies: Statistical

methods for design and analysis. Environmetrics, 13, 105–119. https://
doi.org/10.1002/env.514

Potvin, F., & Breton, L. (2005). From the field: Testing 2 aerial survey tech-

niques on deer in fenced enclosures—Visual double-counts and thermal

infrared sensing. Wildlife Society Bulletin, 33, 317–325. https://doi.org/
10.2193/0091-7648(2005)33%5b317:FTFTAS%5d2.0.CO;2

Priadka, P., Brown, G. S., DeWitt, P. D., & Mallory, F. F. (2022). Habitat

quality mediates demographic response to climate in a declining large

herbivore. Basic and Applied Ecology, 58, 50–63. https://doi.org/10.1016/
j.baae.2021.11.005

Priadka, P., Brown, G. S., Fedy, B. C., &Mallory, F. F. (2022). Data from:When

can model-based estimates replace surveys of wildlife populations that

span many discrete management units? Dryad Digital Repository, https://
doi.org/10.5061/dryad.k6djh9w8s

Priadka, P., Brown, G. S., Patterson, B. R., & Mallory, F. F. (2020). Sex and

age-specific differences in the performance of harvest indices as prox-

ies of population abundance under selective harvesting.Wildlife Biology,
2020(3), 1–11. https://doi.org/10.2981/wlb.00629

Quayle, J. F., MacHutchon, A. G., & Jury, D. N. (2001). Modeling moose

sightability in south central British Columbia. Alces, 37(1), 43–55.
R Core Team. (2013). R: A language and environment for statistical computing.

R Foundation for Statistical Computing.

Reynolds, J. H., Thompson, W. L., & Russell, B. (2011). Planning for success:

Identifying effective and efficient survey designs for monitoring. Bio-
logical Conservation, 144, 1278–1284. https://doi.org/10.1016/j.biocon.
2010.12.002

Rhodes, J. R., & Jonzén, N. (2011). Monitoring temporal trends in spa-

tially structured populations: How should sampling effort be allocated

between space and time? Ecography, 34, 1040–1048. https://doi.org/10.
1111/j.1600-0587.2011.06370.x

Row, J. R., & Fedy, B. C. (2017). Spatial and temporal variation in the range-

wide cyclic dynamics of greater sage-grouse. Oecologia, 185, 687–698.
https://doi.org/10.1007/s00442-017-3970-9

Rowe, J. S. (1972). Forest regions of Canada (Publication 47–1300). Canadian
Forest Service.

Seavy, N. E., & Reynolds, M. H. (2007). Is statistical power to detect trends a

good assessment of population monitoring? Biological Conservation, 140,
187–191. https://doi.org/10.1016/j.biocon.2007.08.007

Southwell, D. M., Einoder, L. D., Lahoz-Monfort, J. J., Fisher, A., Gillespie, G.

R., & Wintle, B. A. (2019). Spatially explicit power analysis for detecting

occupancy trends for multiple species. Ecological Applications, 29, 1361–
1373. https://doi.org/10.1002/eap.1950

Steenweg, R., Hebblewhite, M., Whittington, J., & McKelvey, K. (2019).

Species-specific differences in detection and occupancy probabilities

help drive ability to detect trends in occupancy.Ecosphere,10(4), e02639.
Timmermann, H. R., & Rodgers, A. R. (2017). The status and management

of moose in North America-circa 2015. Alces: A Journal Devoted to the
Biology andManagement of Moose, 53, 1–22.

Tracey, J. P., Fleming, P. J. S., &Melville, G. J. (2008). Accuracy of some aerial

survey estimators: Contrasts with known numbers.Wildlife Research, 35,
377–384. https://doi.org/10.1071/WR07105

Vallecillo, D., Gauthier-Clerc, M., Guillemain, M., Vittecoq, M., Vandewalle,

P., Roche, B., & Champagnon, J. (2021). Reliability of animal counts and

implications for the interpretation of trends. Ecology and Evolution, 11,
2249–2260. https://doi.org/10.1002/ece3.7191

Wauchope, H. S., Amano, T., Sutherland, W. J., & Johnston, A. (2019). When

can we trust population trends? A method for quantifying the effects

of sampling interval and duration. Methods in Ecology and Evolution, 10,
2067–2078. https://doi.org/10.1111/2041-210X.13302

Westcott, D. A., Caley, P., Heersink, D. K., & McKeown, A. (2018). A state-

space modelling approach to wildlife monitoring with application to

flying-fox abundance. Scientific Reports, 8, 1–9. https://doi.org/10.1038/
s41598-018-22294-w

Westcott, D. A., Fletcher, C. S.,McKeown, A., &Murphy,H. T. (2012). Assess-

ment of monitoring power for highly mobile vertebrates. Ecological
Applications, 22, 374–383. https://doi.org/10.1890/11-0132.1

Wickham, H. (2011). ggplot2.Wiley Interdisciplinary Reviews: Computational
Statistics, 3(2), 180–185. https://doi.org/10.1002/wics.147

Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001). Monitoring of biological

diversity in space and time. Trends in Ecology and Evolution, 16, 446–453.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Priadka, P., Brown, G. S., Fedy, B. C., &

Mallory, F. F. (2022).When canmodel-based estimates replace

surveys of wildlife populations that spanmany discrete

management units? Ecological Solutions and Evidence, 3,

e12149. https://doi.org/10.1002/2688-8319.12149

https://doi.org/10.1016/j.ecolind.2020.106366
https://doi.org/10.1002/eap.2261
https://doi.org/10.1002/eap.2261
https://doi.org/10.1111/1365-2664.12051
https://doi.org/10.1111/acv.12681
https://doi.org/10.1111/acv.12681
https://doi.org/10.1002/eap.1942
https://doi.org/10.1002/eap.1942
http://mcmc-jags.sourceforge.net
http://mcmc-jags.sourceforge.net
https://doi.org/10.1002/env.514
https://doi.org/10.1002/env.514
https://doi.org/10.2193/0091-7648(2005)33%5b317:FTFTAS%5d2.0.CO;2
https://doi.org/10.2193/0091-7648(2005)33%5b317:FTFTAS%5d2.0.CO;2
https://doi.org/10.1016/j.baae.2021.11.005
https://doi.org/10.1016/j.baae.2021.11.005
https://doi.org/10.5061/dryad.k6djh9w8s
https://doi.org/10.5061/dryad.k6djh9w8s
https://doi.org/10.2981/wlb.00629
https://doi.org/10.1016/j.biocon.2010.12.002
https://doi.org/10.1016/j.biocon.2010.12.002
https://doi.org/10.1111/j.1600-0587.2011.06370.x
https://doi.org/10.1111/j.1600-0587.2011.06370.x
https://doi.org/10.1007/s00442-017-3970-9
https://doi.org/10.1016/j.biocon.2007.08.007
https://doi.org/10.1002/eap.1950
https://doi.org/10.1071/WR07105
https://doi.org/10.1002/ece3.7191
https://doi.org/10.1111/2041-210X.13302
https://doi.org/10.1038/s41598-018-22294-w
https://doi.org/10.1038/s41598-018-22294-w
https://doi.org/10.1890/11-0132.1
https://doi.org/10.1002/wics.147
https://doi.org/10.1002/2688-8319.12149

	When can model-based estimates replace surveys of wildlife populations that span many discrete management units?
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Study area
	2.2 | Moose aerial survey data
	2.3 | Data generation and model development
	2.4 | Generated WMU-specific population time series
	2.5 | Simulated aerial survey population estimates
	2.6 | Model-based population estimates to fill information gaps
	2.7 | Scenario development
	2.8 | Optimization model framework
	2.9 | Data analysis
	2.9.1 | Comparison among monitoring scenarios
	2.9.2 | Assessment of factors affecting survey utility


	3 | RESULTS
	3.1 | Comparison among monitoring scenarios
	3.2 | Factors affecting survey utility

	4 | DISCUSSION
	4.1 | Comparison among monitoring scenarios
	4.2 | Factors affecting survey utility

	5 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT
	PEER REVIEW

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


