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Abstract

1. Accurate andup-to-date land covermaps are vital for underpinning evidence-based

landscape management decision-making. However, the technical skills required to

extract tailored information about land cover dynamics from these open-access

geospatial data often limit their use by those making landscape management

decisions.

2. Using Dartmoor National Park as an example, we demonstrate an open-source

toolkitwhich uses open-source software (QGIS andRStudio) to process freely avail-

able Sentinel-2 and public LiDAR data sets to produce fine scale (10 m2 grain size)

land cover maps.

3. The toolboxhas beendesigned for use by staffwithin the national park, for example,

enabling land cover maps to be updated as required in the future.

4. An area of 945 km2 wasmapped using a trained random forest classifier following a

classification scheme tailored to the needs of the national park.

5. A 2019 land covermap had an overall user’s accuracy of 79%,with 13 out of 17 land

cover classes achieving greater than 70% accuracy.

6. Spatially, accuracy was related via logistical regression to blue band surface

reflectance in the spring and topographic slope derived from LiDAR (1 m reso-

lution), with greater accuracy in steeper terrain and areas exhibiting higher blue

reflectance.

7. Between an earlier (2017–2019) and later (2019–2021) time frame, 8% of pix-

els changed, most of the change by area occurred in the most common classes.

However, the largest proportional increase occurred in UplandMeadows, Lowland

Meadows and Blanket Bog, all habitats subject to restoration efforts. Identifying

areas of change enables future field work to be better targeted.

8. We discuss the application of this mapping to land management within the Dart-

moor national park andof the potential of tailored land cover and land cover change

mapping, via this toolbox, to evidence-based environmental decision-making more

widely.
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the original work is properly cited.
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1 INTRODUCTION

Accurate and up-to-date land cover maps are vital for underpinning

evidence-based landscape management decision-making. The avail-

ability andaccuracyof thesemaps can impact ona rangeof policy areas,

such as agri-environment schemes (e.g. Environmental Land Manage-

ment Schemes (Department for Environment Food & Rural Affairs

& Rural Payments Agency, 2021) and the Common Agricultural Pol-

icy); targeted Land-Use, Land-Use Change and Forestry (Watson et al.,

2000) including peatland restoration and afforestation; conservation

and urban development. A time series of land cover maps enables land

cover change to be quantifiedwhich can highlight areas of concern and

provide a means to assess the impacts of decisions within a dynamic

landscape (Brown et al., 2020).

Earth Observation satellites have been routinely collecting image

data of the Earth’s surface since the launch of Landsat-1 in 1972.

Their use for land cover mapping has increased over time as the spa-

tial resolution of image pixels has increased, the return period between

image collection dates has decreased and the costs of data access

have reduced or become free (Woodcock et al., 2008). Meanwhile

data are increasingly analysis ready,whilst computational power, image

processing and analysis capabilities have improved in many settings

(Wulder et al., 2018).

Landsat imageryhasbeenused tomakeglobal (e.g. Chenet al., 2015;

Gong et al., 2013; Liu et al., 2021), continental (e.g. CORINELandCover

2000 in Europe [Heymann et al., 1994]), national (e.g. Conterminous

United States [Vogelmann et al., 2001]) and local (Yuan et al., 2005)

scale land cover maps for target periods (usually 1–3 year window)

for decades. Bringing advanced processing to the archive of Land-

sat imagery (1972-present), studies are now also looking at land use

change (e.g. Souza et al., 2020). However, these have aminimum spatial

resolution of 30m.

Within the United Kingdom, the Centre for Ecology and Hydrol-

ogy produced a series of national land cover maps (1990, 2000, 2007,

2015, 2017, 2018, 2019, 2020) using consistent broad habitat types.

Originally using parcel-based thematic classification of Landsat data,

since 2017 a Sentinel-2-based 20m raster product has been produced

(Morton et al., 2020a, 2020b). Using Sentinel-2 data to mask non-

agricultural land, the CRopMapOf England (CROME) (Rural Payments

Agency, 2019) uses weekly mosaiced Sentinel-1 data in a random for-

est classifier to output 4157m2 hexagonal vector tiles of 20 crop types.

The recently released Living England (Kilcoyne et al., 2022) land cover

map of England segments the landscape, with a 300m2 minimummap-

pable unit, before using Sentinel-1 and Sentinel-2 data with additional

data in a supervised Random Forest Classifier to produce a vector map

of England.

Commercial Very High-Resolution satellite constellations have the

potential tomap land cover at sub-metre spatial resolution. These data

have been used to map, for example, urban areas (Aguilar et al., 2013;

Hashim et al., 2019), crops (Esetlili et al., 2018;Moody et al., 2016) and

coastal areas (Adam et al., 2014) with high accuracies. However, with

finer spatial and temporal resolution come challenges aswell as oppor-

tunities. Finer spatial resolution has been shown to result in increased

within class spectral variability which reduces the between-class spec-

tral discrimination (Woodcock&Strahler, 1987).It can also increase the

size of datasets (e. g. Moody et al. (2016) had 4-bands of Planet Lab

imagery, eachwith−110million 3mpixels to cover a 29×34km2area)

which has led to an increase in the complexity of pre-processing and/or

the algorithms used (e.g. 3D convoluted neural networks (Saralioglu

& Gungor, 2022). Arguing that within-object variability is a poten-

tial source of information, Carleer and Wolf (2006) used object-based

segmentation to derive spectral (e.g. mean blue), textural (e.g. homo-

geneity) and morphological (e.g. length) information from QuickBird

and Ikonos imagery about segmented objects before classifying urban

and rural areaswithin Belgium. Themain limitation on these data is the

cost to the user: a 38 × 38 km image (as required for this study) would

cost between £1412 (Planet Labs 3m resolution) and £32,367 (GeoEye

0.5m resolution) per image (based on values in Sozzi et al., 2018).

The European Space Agency’s Sentinel-2A and Sentinel-2B satel-

lites (launched in 2015 and 2017, respectively) provide high temporal

frequency (5-day), fine spatial scale (10 m2), freely available data suit-

able for mapping land cover and land cover change at a scale and

extent useful for local and regional landmanagement decision-making.

Workflows to produce local (e.g. Noi & Kappas, 2018), national (e.g.

Close et al., 2018). This is ecologically unlikely given 7 % of broad land

cover classes within DNP were mapped as changed between 1990-

2015 (Morton et al., 2020b). and global (e.g. Karra et al., 2021) land

cover maps are already being developed for these data with promising

results.

To maximize the potential of these data, mapping needs to be

tailored to the area of interest and the question at hand because eco-

logical conditions vary geographically. Global models usually use broad

land cover classes (Friedl et al., 2002). Other studies have mapped

the presence/absence of a particular invasive species (Royimani et al.,

2019) or habitat of interest, for example fenland (Foody et al., 2007).

Where multiple land cover classes have been used, these are often

tailored to the habitat being mapped, for example the UNESCO

VegetationClassificationonlymapsnatural vegetation (Küchler&Zon-

neveld, 1988), whilst the Urban Atlas focuses on land cover for large

urban zones (https://land.copernicus.eu/local/urban-atlas). The tech-

nical remote sensingworkflow required to extract tailored information

about land cover dynamics from these open-access geospatial data

https://land.copernicus.eu/local/urban-atlas
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often precludes those who make landscape management decisions. It

is vital that this gap is bridged, so that the process of land cover map-

ping, including choices aboutwhat habitats tomap, can be placed in the

hands of thosemaking decisions (Saah et al., 2019).

To address this need, there is a growing trend towards open-

source, open access processing chains which require limited technical

skills. Grippa et al. (2017) used detailed annotations to guide the user

through their Python code, whichlinks a series of GRASS GIS and R

functions together to produce an object-basedclassification of urban

areas, basedonWorld-view-3 imagery andwhereavailable LiDARdata.

Murry et al. (2018) made the data storage and analysis capacities of

Google Earth Engine available to non-specialists via a web-based plat-

form (https://remap-app.org), which produces 30 m2 land cover and

land cover change (between 2003 and 2017) maps based on a user’s

supplied training data. Similarly Xing et al. (2021) have developed O-

LC Mapping, although no link to the website was available. Offline,

plugins for QGIS (Semi-Automatic Classification (Congedo, 2021) and

dzetsaka (Karasiak, 2021)) enable users to classify remote sensing

images through a click-button graphical users interface. Over time,

updates have increased the number of tools available, including Ran-

dom Forest classifier in Semi-Automatic Classification v7.0.0 (October

2020), improved reliability and reduced the required technical capacity

of the user.

In this project, we set out to develop an open-source toolkit aimed

at putting the remote sensing workflow in the hands of agencies lead-

ing, or advising on, land management decisions such as national park

authorities, councils, landowners, farm advisers or wildlife charities.

Using Dartmoor National Park as an example, we set out to test the

toolkit using freely available Sentinel-2 data combined with freely

available airborne LiDAR data with the goal of testing a workflow for

producing robust and repeatable annual land cover and land cover

change maps at a fine resolution (10 m2) over a landscape extent

(954 km2).

2 MATERIALS AND METHODS

2.1 Study area

Dartmoor National Park, located in southwest England, covers

954 km2 and ranges in elevation from 30 to 621 mASL. The western

side of the park is dominated by uplandmoorland ofwhich 315 km2 has

been mapped as underlain by peat (Gatis, Luscombe, et al., 2019) with

some ecohydrological degradation (Carless et al., 2019). The eastern

side is generally lower in altitude and dominated by grasslands.

Dartmoor National Park Authority have a dual mandate: to pro-

mote the economic and social well-being of local communities whilst

also conserving and enhancing the natural beauty, wildlife and cul-

tural heritage of the park and promoting opportunities for the public

to understand and enjoy its special qualities (https://www.dartmoor.

gov.uk/about-us/who-we-are). They have identified accurate and up-

to-date land cover maps as an essential requirement to allow them

to balance these management goals: to efficiently monitor and under-

stand the effects of climate change, increase visitor numbers and new

agri-environment schemes as well as assess the success or otherwise

of conservation and enhancement schemes.

2.2 Land cover mapping

2.2.1 Classification scheme

For land cover mapping to be useful, it must map the land cover(s)

of interest. Here, we used a classification scheme derived from the

UK Habitat Classification system (www.ukhab.org) which has been

designed so that all terrestrial and freshwater habitats found in the

United Kingdom fit within a hierarchy that aligns with both the

largescale Mapping and Assessment of Ecosystems (MAES) categories

as well as the European Habitats Directive Annex 1 habitats at the

small scale. It is the current standard survey method for Preliminary

Ecological Appraisals and underlies the Department for Environment,

Food and Rural Affairs (DEFRA) Biodiversity Metric, a means by which

ecologists, planners and developers can assess biodiversity change

resulting from development or changes in land management in the

UnitedKingdom.Other classification systems,more appropriate to dif-

ferent geographical areas and policy decisions, should be derived and

used as required.

The classification scheme created for this tool (Table 1) is derived

from theUKHabitat Classification System to levels 2, 3 and 4 as appro-

priate with the exception of f1a5 Blanket Bog and f1a6 Degraded

Blanket bogwhichweremapped to level 5 due to the extent and impor-

tance of this habitat type within the National Park. Degraded blanket

bogwas then subdivided based on the overlying vegetation type. Some

UK Hab classes were not included in this tool; the reasons are given in

Table 1.

As lowland and upland grasslands as well as lowland and upland

heathland are not spectrally distinguishable in Sentinel-2 images,

these were grouped together for classification. Post-classification pix-

els identified in either of these groups were allocated to upland or

lowland classes based on the ground elevation (uplands extent layer

derived from LiDAR). We tested a broader Acid grassland class includ-

ing Purple moor grass and rush pastures and Fen marsh and swamp,

but the increased within-class variability reduced overall accuracy and

resulted in these important classes being omitted.

2.2.2 Training and validation data

Using the open-source GIS software QGIS 3.16.2 Hannover (QGIS

Development Team, 2020), training and validation points were

selected by stratified random sampling using the RandomPoints inside

Polygons tool based on landscape character types downloaded from

https://www.devon.gov.uk/planning/planning-policies/landscape/

devons-landscape-character-assessment. A greater density of pixels

(10%) were selected in the less common landscape character types

(e.g. Moorland edge slope) and a lower density (2%) in the more

common (e.g. Farmed and Forested Plateau) in an effort to balance the

sample sizes. For an area with no previous mapping, where there is

https://remap-app.org
https://www.dartmoor.gov.uk/about-us/who-we-are
https://www.dartmoor.gov.uk/about-us/who-we-are
http://www.ukhab.org
https://www.devon.gov.uk/planning/planning-policies/landscape/devons-landscape-character-assessment
https://www.devon.gov.uk/planning/planning-policies/landscape/devons-landscape-character-assessment
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TABLE 1 Classification scheme used by this tool and how it relates to the UKHabitat Classification scheme

UKHab level UKHab code UKHab label Land Cover class code Land Cover class label

4 g1a Lowland dry acid

grassland

1 Lowland acid grassland

4 g1b Upland acid grassland 3 Upland acid grassland

4 g1c Bracken 2 Bracken

3 g2 Calcareous grassland Negligible/no extent of this habitat within DNP

4 g3a Lowlandmeadows 6 Lowlandmeadows

4 g3b Upland haymeadows 7 Upland haymeadows

4 g3c Other neutral grassland Not distinguishable from upland hay and lowlandmeadows

3 g4 Modified grassland 9 Modified grassland

4 w1a Upland oakwood 10 Upland oakwood

3 w1 Broadleavedmixed and

yewwoodland

11 Other broadleaved, mixed

and yewwoodland

3 w2 Coniferous woodland 12 Coniferous woodland

4 h1a LowlandHeathland 13 LowlandHeathland

4 h1b UplandHeathland 14 UplandHeathland

4 h1c Mountain heaths and

willow scrub

Not distinguishable from upland and lowland heathland

2 h2 Hedgerows Not distinguishable from other broadleaves, mixed, yew or

conifer woodlands

4 h3e Gorse scrub 18 Gorse scrub

5 f1a5 Blanket bog (H7130) 19 Blanket bog (H7130)

5 f1a6 Degraded blanket bog 303 Acid grass over degraded

blanket bog

314 Heathland over degraded

blanket bog

328 Unvegetated degraded

blanket bog

4 f2b Purple moor grass and

rush pastures

23 Purplemoor grass and rush

pastures

3 f2 Fenmarsh and swamp 25 Flushes, fens, marsh and

swamp

2 c Cropland 26 Cropland

2 u Urban 27 Urban

3 s1 Inland rock 28 Inland rock

3 s2 Supralittoral Rock Negligible/no extent of this habitat within DNP

3 s3 Supralittoral Sediment

2 r Rivers and lakes 29 Rivers and lakes

2 t Marine inlets and

transitional waters

Negligible/no extent of this habitat within DNP

no information to guide a random stratified pixel selection, selecting

random points is recommended (Olofsson et al., 2014), and this can be

done using the Random Points in Extent tool. Despite the deliberate

sampling bias, some classes were still under-represented due to their

limited spatial extent. Additional pixels were identified so that all

classes had aminimumof 50 pixels following recommendations byHay

(1979) and Congalton (1991) being careful that pixels selected from

small fragments were not auto-correlated. In total, there were 4140

pixels. Statisticalmethods (under-samplingmore common classes, over

sampling rarer classes and SyntheticMajority Oversampling [SMOTE])

to balance the sample sizewere found to reduce classification accuracy

(details in Supporting Information S1).

Pixels were assigned a land cover class based on photo-

interpretation of higher resolution aerial imagery via Google Earth and



GATIS ET AL. 5 of 19

TABLE 2 R packages used in the code

Package Version Reference

Caret 6.0–90 Kuhn, 2020

doParallel 1.0.16 Microsoft Coporation &Weston,

2020)

diffeR 0.0–6 Pontius Jr & Santacruz, 2019

e1071 1.7–9 Meyer et al., 2020

Here 1.0.1 Müller, 2020

MASS 7.3–54 Venables & Ripley, 2002

Packrat 0.5.0 Ushey et al., 2018

randomForest 4.6–14 Liaw&Weiner, 2002

Raster 3.5–9 Hijmans, 2020

Rgdal 1.5–28 Bivand et al., 2021

Rgeos 0.5–9 Bivand et al., 2020

Splitstackshape 1.4.8 Mahto, 2019

svDialogs 1.0.3 Grosjean, 2021

Google Street View. Pixelswere divided up into 10 groups—thesewere

allocated non-sequentially to four people, familiar with the land covers

expected, in order to spread any individual’s bias in identification

geographically and across the different habitat classes, that is, one

person did not photo-interpret all the pixels on the high moor and

another all the farmland but each person covered a range of landscape

character types.

The tool randomly assigns pixels to one of two groups with 75%

assigned to training the random forest classifier and the remaining

25% to assess the accuracy of the classifier via a confusion matrix

and to train the logistic regression model which spatially estimates

classification accuracy.

2.2.3 R-Code

All code was written in RStudio (v1.4.1106 [RStudio Team, 2020])

using R (v.4.1.2 [R Core Team, 2020]) using the packages outlined in

Table 2. The full reproducible code and input data are available at

https://zenodo.org/record/5797735 (Gatis et al., 2021). It has been

written so that it can be implemented for a new area of interest, with-

out editing the code, by supplying appropriate input files (shapefile

outlining the area of interest; shapefile of peat extent [optional]; digital

terrain map [optional]; spring and summer Sentinel images; shapefile

of training/testing pixels and a table of class codes and labels). A user’s

guide is provided in Supporting Information S2 and with the code.

Dependent on the user’s computer and the areal extent, processing

may take some time.

2.2.4 Random forest classifier

Many algorithms are available to classify land cover; popular super-

vised classifiers include maximum likelihood classification, K-nearest

neighbour, Support VectorMachine (Mountrakis et al., 2011) and Ran-

dom Forests (Breiman, 2001). Random forest classifier was selected

here as it is less sensitive to noise and overfitting than other non-

parametric methods (Rodriguez-Galiano et al., 2012) with the addi-

tional benefit of being parallelizable via caret (Kuhn, 2020) with

comparatively small computational demands (and therefore shorter

processing times).

A random forest classifier randomly takes a subset of the training

data and the features (Sentinel-2 bands, vegetation indices, aspect and

slope). This subset of data is used to create a decision tree. Within the

decision tree, the training data are sequentially split, each time based

on a single feature until the data have been separated into classes.

This is then repeated for a given number of trees (ntree), in this case

500 trees, with the final classification for each training pixel based on

the majority vote (classit is most often classified as out of ntree (500)

repeats). The number of features randomly sampled as candidates at

each split (mtry) was tuned using a 10-folds cross-validation. This ran-

domly splits the data into 10 subsets repeating the analysis with mtry

varying from 1 to 15.

This random forest model, based on the pixels of known classes,

is then applied to the whole area to predict the land cover class in

unknown areas. Areal estimates for each land cover class were then

adjusted for omission and commission errors following Olofsson et al.

(2014).

2.2.5 Accuracy assessment

The first accuracy assessment compares the predicted land cover class

(via the random forest classifier) with the photo-interpreted classifi-

cation to produce a confusion matrix. This provides both overall and

per class user’s accuracy: class I user’s accuracy number of pixels cor-

rectly predicted as class I/total number of pixels predicted as class I;

overall user’s accuracy total number of correctly predicted pixels/total

number of pixels.

https://zenodo.org/record/5797735
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One way of evaluating spatial patterns of accuracy is via per pixel

accuracy assessment; therefore, a second spatially explicit accuracy

assessment was carried out. The tool uses a global logistical regression

to model accuracy (Khatami et al., 2017). The validation pixels were

assigned 1 where correctly classified and 0 where incorrectly classi-

fied. A stepwise (forward and backward) multiple logistical regression

model was run using the pixels as the dependent variable and using

all input layers to the random forest classifier (standardized) as the

independent variables. Global logistic (accuracy) model inputs were

selected byminimizing the Akaike information criterion.

2.2.6 Remote sensing data

Sentinel-2 imagery

Sentinel-2 data were selected as they are freely available and have

global coverage and a fine spatial scale (10 m2). The revisit period with

2 satellites is 5 days; this high temporal frequency increases the chance

of cloud free images, enabling land cover to be mapped at a scale and

extent useful for decision-making across a landscape.

Ideally, all satellite images would be free from contamination by

cloud, cloud shadow and haze. One option to ensure this is to use a

temporal compositewith uncontaminated pixels selectedwithin a time

frame based on a set of rules. Maximum normalized difference veg-

etation index (Gutman et al., 1994) was popular, but with increased

computing power other rules are being trialled (e.g. Azzari & Lobell,

2017; Lück&vanNiekerk, 2016). There is still no universally agreed set

of rules for creating composites, with different rules performing bet-

ter for each satellite and ecosystem combination. Additionally, image

compositing can induce spectral differences within a class across the

composite image as not all pixels will be contemporaneous, and there-

fore differences due to phenology, land cover and radiation may occur.

For example, bracken varies in the near-infrared, red and blue wave-

lengths over a growing season (Blackburn & Pitman, 1999). Carrasco

et al. (2019) found a two-date composite more accurate than a sea-

sonal median. For these reasons as well as processing simplicity, it was

decided to focus on a limited number of cloud-free images and not to

create a composite image.

Following visual inspection, cloud free images from 2019 were

downloaded fromhttps://www.sentinel-hub.com and the overall user’s

accuracies with different combinations were assessed. In a balance

between processing time, accuracy and the likelihood of good-quality

images in future years, it was decided two images—one from spring

(1 January 2019 to 30April 2019) and one from summer (1 June 2019

to 30September 2019)—offered the best trade-off (see Supporting

Information S1). Cole et al. (2014) also found better spectral discrim-

ination between moorland species during spring (April) and summer

(July) months.

Using Sentinel-hub EOBrowser (https://www.sentinel-hub.com), all

imageswithin the time frame of interest (spring or summer)with<50%

cloudwere visually assessed and thebestwere shortlisted.Wheremul-

tiple cloud free images were available, they were selected in order of

priority from March > February > April > January for the spring and

June > July > August > September for the summer. Bands 1 (coastal

TABLE 3 Vegetation Indices Used

Vegetation

index Formula Reference

Excess of

Green

(2 x Green) –

Red – Green

Rouse et al., 1974

Difference

Vegetation

Index

NIR – Red Jordan, 1969

Modified

Green Red

Vegetation

Index

(Green2 – Red2)

/

(Green2+Red2)

Bendig et al., 2015

Normalized

Difference

Water Index

(Green –NIR) /

(Green+NIR)

McFeeters, 1996

Moisture Index (NarrowNIR –

Aerosol) /

(Narrow

NIR+Aerosol)

After Gao (1996)

aerosol), 9 (water vapour) and 10 (cirrus) were removed due to their

coarser spatial resolution (60m). To reduce processing time, all images

were clipped to the national park extent (shapefile provided by the

national park) with a 20-m buffer to reduce edge effects.

Five vegetation indices were selected (Table 3) from 18 which

increased overall users’ accuracy (compared to no vegetation indices)

and were within the top 20 most important variables for the ran-

dom forest classifier (see Supporting Information S1). These were

calculated for both the spring and the summer images separately.

LiDAR data

The tool derives slope and aspect from a digital terrain model, in

this case 1 m resolution 2013 Tellus-SW LIDAR (www.tellusgb.ac.uk).

Inclusion of these layers increased the overall user’s accuracy by 0.3%.

As some of the habitat types are distinguished by elevation, for

example upland heathland being above 300 m and lowland heathland

below, a layer defining the extent of uplands is derived from the LiDAR

based on a user supplied (via pop-up box) definition of uplands.

Peat extent

As degraded peat cannot be reliably identified by the overlying vege-

tation (Gatis, Luscombe, et al., 2019), it was decided to use previously

mapped peat extent to define the area of blanket bog. The tool will

run without this layer but this will impact the land cover accuracy for

peat discrimination in particular—see Sections 4.1 and 4.3 for greater

discussion.

2.3 Land cover change mapping

2.3.1 Pixel assessment

As the tool is designed tobeused into the future, thephoto-interpreted

pixels will need to be kept up to date. Manually re-evaluating all

4140 pixels would be prohibitively time consuming. Instead, we have

https://www.sentinel-hub.com
https://www.sentinel-hub.com
http://www.tellusgb.ac.uk
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TABLE 4 Sentinel-2 image acquisition dates for land cover
mapping

Year Spring Summer

2017 25/01/2017

(L1C data)

24/07/2017

2018 24/02/2018 27/09/2018

2019 20/04/2019 04/07/2019

2020 25/03/2020 23/06/2020

2021 24/04/2021 13/06/2021

developed a workflow to shortlist pixels that may have changed land

cover since the last classification. Sentinel-2 images from year 2 are

classified using the random forest classifier defined for year 1. The pre-

dicted class for year 2 is then compared to the photo-interpreted class

in year1. Thepixelswhere these aredifferent are shortlisted.A random

sample of 10% for each class is then output for re-evaluation.

2.3.2 Change mapping

To detect change, transitional classes, for example cultivated land to

forest, can be defined and used in a classifier (Zhang et al., 2019). The

number of habitat classes, and therefore number of possible transi-

tions, in this study (484) made the amount of training data required

to capture all combinations unfeasible. Conversely, pre-classification

methods such as image differencing, image rationing, image overlay

and multidate principal component analysis do not require training

data. However, post-classification change detection has been shown to

be preferable for landscapes with multiple land covers (Chughtai et al.,

2021). As such, land cover classification maps were created for the

years 2017–2021 using the methods outlined above with Sentinel-2

imagery acquisition dates given in Table 4.

Initially, land cover change between individual years suggested

around 20% of pixels were changing. This is ecologically unlikely given

7% of broad land cover classes within DNP were mapped as changed

between 1990 and 2015 (Morton et al., 2020). It is more likely much

of this change reflects uncertainties in the classification for each year.

To reduce this noise, Zhou et al. (2008) used pixel histories over five

time points to allocate pixels to unchanged, human or natural change,

whilst Souza et al. (2020) added a temporal filter to identify and correct

class transitions over a 3–5 year period. In this study, the modal class

for two 3-year time frames (2017–2019 vs. 2019–2021) were com-

pared. Where a modal value did not exist (i.e. different class for each

year), a no data valuewas given and therefore no change recorded. The

two modal maps were overlain, areas where land cover differed were

identified and two maps produced. In the first map, pixels are assigned

to the land cover predicted for time frame 2 (habitat gain); in the sec-

ond map, the pixels are assigned to the land cover predicted for time

frame 1 (habitat loss). The probability that the modal pixel value for a

time frame is correct is given by the probability that years 1 and 2, or

2 and 3, or 1 and 3, or 1 and 2, and 3 are correct given they are not

mutually exclusive. The resultant land cover change accuracy map was

the product of the two modal land cover accuracy maps. The differ-

ence due to change compared to error was assessed following Fuller

et al. (2003).

3 RESULTS

3.1 Mapped land cover

Figure 1 shows the land cover map produced using this tool. It covers

the entire national park area (954 km2) and has mapped land cover

with a consistent method to a fine spatial resolution (10 m2) shown in

Figure 2.

Mapping suggests (Figure 1; Table 5) that the park is currently dom-

inated by grasslands (>55%) with Modified (24%), Upland acid (18%)

and Upland acid over degraded blanket bog (8%) the most common.

The next most common land cover is woodland (16%) of which Other

broadleaved, mixed and yew woodland (12%) is more common than

Coniferous woodland (3%).

Typical ofmuch of the lowland area, Figure 2a is dominated byMod-

ified grassland.However, the land covermap showspatches of Lowland

meadows (pale orange) as well as Broadleaf and Coniferous wood-

land both as contiguous woodland and hedgerows. Figure 2b shows

an example of the complex mosaic of land covers often found in semi-

natural environments. There is a predominance of Lowland heathland,

Lowland Acid grassland and Bracken, but there is also Gorse and the

roads (Urban class). The classification scheme used in this study subdi-

vides degradedblanket bog by the overlying vegetation (acid grassland,

heathland and unvegetated). Figure 2c shows a complex transition

between Blanket bog mosaiced with Unvegetated degraded blanket

Bog through Heathland and Acid grassland over degraded blanket

bog to Acid grass and Upland Heathland. There are also areas of

water and Flushes, Fens, Marsh and Swamp along the streams. The

final panel (Figure 2d) shows a typical example of gorse and bracken

encroachment around themoorland fringe.

3.2 Accuracy of the mapped land cover

This tool achieved an overall user’s accuracy of 79% with 13 out of 17

classes achieving greater than70%accuracy andall but gorse achieving

at least 60% accuracy (Table 6; Figure 3). Acid grassland and Neu-

tral grassland were commonly confused with the spectrally similar and

more geographically dominant Modified grassland (Table 6; Figure 3).

Acid Grassland and Heathland, which form a vegetation continuum,

were commonly confused when separated into discrete classes. We

were asked to map Upland Oak separately as it is an important land

cover forDNPA (due to its rarity and conservation status). It has a small

training sample size (due to its limited geographical extent) and has

very poor spectral distinction fromOther broadleaved, mixed and yew

woodland (Table 6) and was mis-classified as that for 17 of 18 pixels;

however, where it wasmapped it was correct.
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TABLE 5 Pixel count, error adjusted pixel count and error adjusted area for each land cover class within the national park

Habitat class

label Pixel count

Error-adjusted

pixel count

Error-adjusted

area (km2) Area (%)

1 Lowland dry

acid grassland

229,277 224,979 22.5 2

2 Bracken 570,677 568,864 56.9 6

3Upland Acid

grassland

1,754,756 1,721,862 172.2 18

6 Lowland

meadows

14,862 239,725 24.0 3

7Upland hay

meadows

4965 80,086 8.0 1

9Modified

grassland

2,731,585 2,258,237 225.8 24

10Upland

oakwood

3892 119,720 12.0 1

11Other

broadleaved,

mixed and yew

woodland

1,369,494 1,166,275 116.6 12

12 Coniferous

woodland

235,381 284,381 28.4 3

13 Lowland

heathland

135,007 129,151 12.9 1

14Upland

heathland

581,180 555,970 55.6 6

18Gorse 104,730 131,392 13.1 1

19 Blanket bog 62,000 89,347 8.9 1

23 Purplemoor

grass and rush

pastures

91,792 116,618 11.7 1

25 Flushes, fens,

marsh and

swamp

53,952 139,901 14.0 1

26 Cropland 58,009 132,185 13.2 1

27Urban 197,889 177,485 17.7 2

28 Inland rock 53,406 89,993 9.0 1

29 Rivers and

lakes

29,861 77,559 7.8 1

303 Acid grass

over degraded

blanket bog

795,388 780,478 78.0 8

314Heathland

over degraded

blanket bog

412,114 394,238 39.4 4

328

Unvegetated

degraded

blanket bog

62,019 73,792 7.4 1
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F IGURE 1 True colour aerial Imagery©2021Google 2019 and 2019 land cover map for the entire Dartmoor National Park area. Labelled
boxes show the extent of themaps in Figure 2.

Accuracy was also assessed spatially using a global logistic regres-

sion. Itwas found that surface reflectance of the blue band in the spring

and slope were the best predictors of spatial accuracy (Table 7). This

results in the highest accuracies along the steeper banks of rivers, and

generally better accuracy in the uplands (dominated by Acid grass-

land) than the lowlands (dominated byModified andNeutral grassland)

(Figure 4).

The three classes with the greatest User’s accuracy (Rivers and

lakes: −100%, Coniferous woodland: –92.5% and Cropland: 91.7%)

also had the lowest median reflectance in the spring blue band

for photo-interpreted pixels 182, 205 and 311, respectively. Whilst-

the class with the lowest User’s accuracy (64.6 %), heathland, had

higherreflectance (839).

The results were more mixed for slope with the median slope for

the photo-interpreted pixels being both the flattest (1.3◦) and steep-

est (19.4◦) for classes with 100% user’s accuracy (River and lakes

and Upland Oakwood, respectively). However, the number of pixels

in these classes is limited due to the limited geographical extent of

these land cover types. Generally, for the more extensive land cover

classes, higher accuracies occurred for land cover classes that occurred

on steeper slopes, in particular woodlands (other broadleaved, mixed

and yew woodland [users accuracy 80.6, slope 13.4◦]) and coniferous

woodland (users accuracy92.5%, slope11.5◦), whilst land cover classes

that occurred on flatter land had lower accuracies, for example heath-

land (users accuracy 64.6%, slope 5.2◦) and neutral grassland (users

accuracy 66.7%, slope 6.0◦).

3.3 Mapped land cover change

Comparing the time frames 2017–2019 to 2019–2021, 84% of pix-

els persisted, 8% changed and 8% were undefined (i.e. did not have

a modal value for at least one of the time frames). The largest

number of pixels changed in the most commonly occurring classes,

that is Modified grassland. Much of the mapped change is single

isolated pixels which are more likely to be incorrectly mapped. How-

ever, where clumps of pixels show change as in Figure 5, it is more

likely to reflect real change. The largest proportional change was

observed in Lowland meadows, Upland meadows and Blanket bog,

all land cover classes that have been subject to restoration efforts.

Figure 5 shows an example of change fromModified grassland to Low-

land meadows following meadow restoration (https://moormeadows

.org.uk/).

Using modal values over a 3-year time frame, the percent of cor-

rectly mapped pixels (as change/no change) was increased from ∼50%

for a year-on-year analysis to>73%.

https://moormeadows.org.uk/
https://moormeadows.org.uk/


GATIS ET AL. 11 of 19

F IGURE 2 Smaller scale (1:10 000) examples from the 2019 land cover map for Dartmoor National Park showing (a) mapped lowland habitat
types including Lowlandmeadows, (b) the complexmosaic of fragmented habitats captured in semi-natural areas, (c) the variation in vegetation
cover overlying degraded blanket bog and (d) Gorse and Bracken encroachment on themoorland fridge. Aerial Imagery©2021Google

4 DISCUSSION

4.1 Mapped land cover

Due to the random nature of a random forest classifier (selection of

training pixels, bands and variation in the number of bands selected at

each node), the land cover map produced by each run of the tool may

differ slightly (unless the random seed is fixed). However, given good

quality training data, the tool is robust and consistent.

Figure 2b exemplifies the heterogeneity that can occur in semi-

natural environments. Being able to map this complexity is both

a strength and weakness. Land cover occurs in small, fragmented

patches; the fine pixel size (10 m2) of this land cover map can resolve

land cover patches of this size. This results in a more detailed map;

however, this detail can make the map harder to read and therefore

decision-making more difficult. It was decided not to filter post-

classification as filtering removes both erroneous pixels and correct

but small land cover patches.

Blanket bog is a good example of the difficulty of using remote

sensing to map land cover using a field survey scheme. Blanket bog is

defined by the presence and thickness of soil (in this case,>50 cmpeat)

beneath the vegetation. In a hydrologically functioning state, blanket

bog has distinct plant communities visible to remote sensors. However,

in a degraded state blanket bog is overlain bynon-peat-forming vegeta-

tion typical of other land cover classes. Using the overlying vegetation

to define the class would have missed these areas overlying blanket

bog, whilst classing these all as bog would have missed the variation in

overlying vegetation which requires differing management strategies.

In this study, we used peat depth and extent mapped via other remote

sensing methods (Gatis, Luscombe, et al., 2019); if these data were not

available, itwouldnotbepossible tomapdegradedblanketbogas accu-

rately. In this case, wewould suggestmapping the overlying vegetation

classes rather than a Degraded blanket bog class.

Of the 133.8 km2 mapped as blanket bog, a habitat identified as

most threatened and requiring conservation (Bain et al., 2011; Gatis,

Benaud, et al., 2019), only 8.9 km2 is not degraded, the remaining is

in a degraded state with 7.4 km2 unvegetated. Although they show a

similar geographical distribution this total extent is greater than the

3.6 km2 of eco-hydrologically functioning peat and 0.9 km2 of bare

peat previously mapped for Dartmoor using higher resolution remote
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F IGURE 3 User’s accuracy (%) for eachmapped land cover, along the bottom, coloured by the actual (photo-interpreted) land cover class

TABLE 7 Best models for predicting correct and incorrectly
mapped pixels and their Akaike information criterion (AIC) from
multiple logistic regression

AIC Model

Forward 894.09 B2_Sp+B3_Sp+

B4_Sp+B5_Sp+

B6_Sp+B7_Sp+

B8_Sp+B11_Sp+

B8a_Sp+B2_Sum

+B3_Sum+

B4_Sum+

B5_Sum+B6_Sum

+B7_Sum+

B8_Sum+

B11_Sum+

B8a_Sum+

ExG_Sp+DVI_Sp+

NDWI_Sp+

MGVRI_Sp+

ExG_Sum+

DVI_Sum

+

NDWI_Sum

+

MGVRI_Sum

+

Slope

+

Aspect

Backward

892.17 B2_Sp+ Slope

Stepwise 892.17 B2_Sp+ Slope

F IGURE 4 Accuracy of the 2019 land cover map (Figure 1)

sensing data sets (Carless et al., 2019), in part due to the larger pixel

size. Knowledge of the extent and location of priority habitats will help

in the targeting of restoration efforts and in the application to potential

funders to support these efforts. Although the rate of change of vege-

tation post-restoration can be on decadal scales, it is hoped changes in

land cover as a result of peatland restoration efforts (Grand-Clement

et al., 2015; Parry et al., 2014) will, in time, be discerniblewith this tool.
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F IGURE 5 Mapped land cover change showing a decrease (on the left) fromModified grassland in the earlier time frame (2017–2019)
changing to Lowlandmeadows (on the right) in the later time frame (2019–2021) in an area undergoingmeadow restoration. Aerial Imagery
©2021Google

Bracken encroachment, evidenced in Figure 2d, has long been a

problem (Taylor, 1985) particularly for heathland and upland acid

grassland communities. Bracken has a distinct seasonal phenology

unveiling green fonds in the spring, rapid summer growth, then dying

back to red/brown litter in the autumn/winter which persists into the

following spring (Holland & Aplin, 2013). By using images from two

seasons, the spring one before green-up and the summer one after,

this phenology discriminates bracken from other vegetation. Pakeman

et al. (1996) estimated that Dartmoor had 53.6 km2 of bracken in the

1980s. The land cover map for 2019 estimates bracken to cover a

similar area (56.9 km2) suggesting current management is preventing

rapid encroachment. Knowledge of the extent and location of bracken

patches and how these change over time enables continued targeted

management (cutting, rolling or herbicide application), or identifies

potential areas for woodland regeneration, as bracken often grows in

formerly wooded locations.

There are two species of gorse common on Dartmoor, European

(Ulex europaeus) and Western (Ulex gallii). Western gorse typically

grows to 30–40 cm tall and together with the dwarf-shrubs heather

(Calluna vulgaris), cross-leaved heath (Erica tetralix) and bilberry (Vac-

cinium myrtillus) forms a mosaic of species within the rare and desig-

nated (EU Habitats Directive) Upland heathland habitats. In contrast,

European gorse grows to 2–3 m tall forming dense, and often laterally

extensive areas. Although European gorse is valuable to wildlife and

is part of the heathland community, if not managed it may dominate

an area. Due to the smaller size of the Western gorse (height and lat-

eral extent) it is most likely that the gorse identified by this land cover

map represents European gorse (covering 13.1 km2). Being able to

map the extent (and growth) of gorse patches, as in Figure 2d, enables

management to be targeted to areas where gorsemay be problematic.

For themost geographically limited classes, for exampleUplandoak-

wood and Gorse, classification accuracies are reduced due to the small

training sample size. These rare features could be mapped separately

(e.g. Foody, Boyd & Sanchez Hernandez, 2007) however this would

likely end in over-prediction of these rarer habitats,multiple land cover

map layers and for some areas potentially multiple land cover options.

This was not considered desirable given the end-users of the maps

being produced.

As outlined by the examples above, land management and the

strategies required to obtain the desired land covers are unique to

each area. The ability to select relevant land cover classes of inter-

est, with some limitation discussed below, amplifies the usefulness and

relevance of any land cover map produced.

4.2 Cross comparison to other land cover maps

The Living Maps Landscape Pioneer (Kilcoyne et al., 2017) which cov-

eredDartmoor National Park and theNorth Devon Biosphere Reserve

achieved overall accuracies of 67% for detailed and 75% for broad
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habitats, similar to the 70% achieved by this study (Table 6). They

reported difficulties with mosaic or fragmented habitats such as those

found in the upland heathland possibly because of object segmenta-

tion prior to classification. They reported 5 classes (LowlandMeadows,

Scrub, Upland Flushes, Fens and Swamps, Upland Hay Meadows and

Upland Heathland) with below 50% accuracy compared to one class

(Gorse) in this study. Due to licensing restrictions, we were unable to

obtain the data to enable a direct comparison of mapped land covers.

The subsequent national scale product, ‘Living England’ (Kilcoyne

et al., 2022), had different land cover classes. It segmented the land-

scape, with a minimum mappable unit of 300 m2, as such it underesti-

mates smaller scale features especially Inland rock (0.1 km2 compared

to 9.0 km2), Rivers and lakes (1.9 km2 compare with 7.8 km2), smaller

urban settlements (5.9 km2 compared with 17.7 km2) and trees in

hedgerows, resulting in a smaller extent ofBroadleaved,mixedandyew

woodland (89 km2). See Supporting Information S1 for areal extents

of all maps compared. Object based segmentation, oversimplifies the

complex mosaic of habitats found in the upland moor. The Bog cate-

gory has a minimum, mean and maximum object size of 1200, 41,030

and 577,600m2, respectively. The authors acknowledge Acid, Calcare-

ous and Neutral Grassland is over-mapped (360 km2) at the expense

of Improved grassland, with 57 km2 mapped compared to 226 km2

of Modified grassland in this study. To maintain consistency between

Government maps, the Arable and Horticultural land in the Living Eng-

landmap is based on the cropmap of England discussed below. Despite

these differences, the map produced here, and the Living England map

broadly agree on the location and extents of land covers. The differ-

ences observed are primarily a result of the spatial scale at which they

are intended to be used.

The crop map of England (CROME) (Rural Payments Agency, 2019)

poorly represents land covers other than crops, it indicates 81%

(783 km2) of the extent is Grass. Focussing on the area mapped as

crops (23.9 km2) indicates this map under-represents cropland (13.2

km2), with areas commonly mis-classified as Lowland heathland and

Modified grassland. For land management associated with arable and

horticultural land use, CROME would be better suited as this is its

intended purpose.

LCM2019 (Mortonet al., 2020) also uses Sentinel data anda random

forest classifier. They acknowledge that their classification scheme

is not the most suited to detection by remote sensors, however, it

enables a direct comparison with previous mapping to evaluate land

cover change. They report overall accuracy of 79.4% and class-based

user’s accuracies of between 41.4% (Heather grassland) and 97.8%

(Fen, Marsh and Swamp) comparable to this study (Table 6). The

two maps show similar areal extents (Table 8) and geographical loca-

tions of Modified/Improved grassland, Meadows/Neutral grassland

andUrban/UrbanandSuburban classes. They also showsimilar extents

and geographical location of woodlands, however, the split between

broadleaf and conifer is notably different.

This study illustrates a much larger extent of blanket bog (133 km2

compared to 97 km2). We believe this reflects the miss-classification

of bog in the LCM2019 map due to non-peat forming vegetation, in

particular Acid grass andHeath, overlying areas of peat.

Acid grassland is frequently confused with Heathland by this

tool (Table 6; Figure 3). To minimize this effect LCM2019 (Morton

et al., 2020) has an additional class ‘Heath Grassland’. This may have

improved classification but would also have required photointerpre-

tation into an additional class. Even if Heath over degraded blanket

bog is not included and Heather and Heather grassland are combined

this study found a greater area of Heathland around the moorland

fringe than the LCM2019 map (72 km2 compared to 13 km2). This is

most likely due to different points that each classification scheme uses

to designate the split between discrete heath/grass classes along the

grassland to heathland continuum.

4.3 Applicability to other studies

The tool has been developed and tuned to the study area to maximize

the classification accuracy; lower accuracies may occur in other areas.

However, the inputs used—Sentinel bands, LiDAR slope, aspect, eleva-

tion and vegetation indices—are common across multiple studies and

so sufficient accuracies would be expected.

For areaswithdegradedblanket bog, itwouldbe ideal tohavea layer

accurately defining the extent of peat>50 cm deep, however availabil-

ity of this information is difficult to obtain, and it is not readily available

for many sites. The classifier will function without this layer, but it is

recommended to map these areas based on their overlying vegetation

cover and for the user to be aware of this shortcoming.

The classifier used in this study has LiDAR derived metrics (upland

extent, slope, aspect). The availability of LiDAR data is increasing all

the time, however, if these are omitted from the tool it will still func-

tion. It is however expected that the classification accuracies would

decrease.

Due to overestimation of change, a very high proportion of change

is correctly mapped. This can guide us to understand appropriate and

inappropriate uses of these data. For example, using these data to

prioritize areas for field survey to assess areas mapped as bracken

encroachment would result in some areas being assessed unnecessar-

ily but would be unlikely to miss areas of encroachment. Conversely,

using these data to quantify positive change, for example because

of peatland restoration without further field survey, would give an

overestimate of success.

This tool has been developed to be as user friendly as possible,

requiring basic skills with GIS and a readiness to run, but not alter

code, in R. The pre-processing canbedone in open-source software, for

exampleQGIS and the tool itself runs in RStudio, also open source. The

inputs required are a shapefile outlining the area of interest; a shape-

file of peat extent (optional); a digital surface model (optional); spring

and summer sentinel images; a shapefile of training/testing pixels and a

table outlining the class codes and labels.

It is envisaged that the accuracy and number of photo-interpreted

training/testing pixels will be the main constraints on resultant habitat

map accuracy. Errors within the training data and small training sam-

ple size will result in poorer predictive accuracy. As the tool produces

accuracy metrics (confusion matrix and map) this data is available to
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TABLE 8 Comparison of areal extents of land cover classes mapped by this study and the CEH LCM2019 (Morton et al., 2020)

This study CEH LCM2019

Class label

Areal extent

(km2)

Areal extent

(km2) Class label

Lowland acid

grassland

22.9 372.6 Acid Grassland

Upland acid

grassland

57.1

Bracken 175.5

0.1 Calcareous

Grassland

Lowland

meadows

1.5 1.9 Neutral

Grassland

Upland hay

meadows

0.5

Modified

grassland

273.2 271.3 Improved

Grassland

Upland oakwood 0.4 122.3 Broadleaved

woodland

Other

broadleaved,

mixed and yew

woodland

136.9

Coniferous

woodland

23.5 34.5 Coniferous

woodland

Lowland

heathland

13.5 12.7 Heather

Upland heathland 58.1 0.1 Heather

grassland

Gorse scrub 10.5

Blanket bog 6.2 97.4 Bog

Acid grass over

degraded

blanket bog

79.5

Heathland over

degraded

blanket bog

41.2

Unvegetated

degraded

blanket bog

6.2

Purple moor grass

and rush

pastures

9.2

Flushes, fens,

marsh and

swamp

5.4 0.0 Fen,Marsh and

Swamp

Cropland 5.8 22.9 Arable and

Horticulture

Urban 19.8 0.8 Urban

0.0 18.2 Suburban

Inland rock 5.3 0.1 Inland Rock

Rivers and lakes 3.0 0.7 Freshwater
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the user to determine if the maps produced are sufficient for their

intended use.

5 CONCLUSION

UsingDartmoorNational Park as an example, we demonstrate that it is

possible to produce an open-source tool using freely available data to

map land cover and land cover change at a fine resolution (10m2) over

a landscape extent (954 km2). The method is robust, repeatable and

designed to be usable by non-specialists. The tool enables those taking

land management decisions to choose the land cover classes that are

important to their management objectives to maximize the potential

of these data.

Access to detailed, up-to-date, accurate and tailored land cover

maps will transform evidence-based landscape management decision-

making where this was previously impossible due to the cost or

technical workflows required to produce thesemaps.
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