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Abstract
1.	 Hunter populations can provide a tremendous workforce of citizen scientists 
afield when queried for data. Soliciting incidental observations of non-target spe-
cies from hunters may be a relatively important but untapped population moni-
toring resource in systems where hunter effort is common and widespread.

2.	 During 2012–2016, we queried hunters of deer and elk for observations of a 
non-target species, moose, across their statewide distribution in Montana. We 
analysed data in an abundance-detection framework with n-mixture models and 
evaluated the effects of covariates such as hunter effort, survey response totals, 
weekly session and forest cover on detection probability before using models to 
predict moose abundance.

3.	 We collected an average of 3409 moose observations per year and our best n-
mixture model included effects of week, year (number of responses), site (pro-
portionate forest cover) and site-year (hunter effort) on detection probability, as 
well as an effect of site (area of forest and shrub habitat) on abundance. Density 
estimates averaged 0.099 (range 0.002–0.439) moose/km2 across sites or 0.200 
(range 0.017–0.799) moose/km2 when limited to density within shrub and for-
est cover specifically. Statewide abundance totals across the 5-year study period 
averaged 10,755 (range 9925–11,620). Goodness-of-fit tests showed that models 
were identifiable and overdispersion of the data was low, yet some caution is still 
warranted when extrapolating these data to abundance estimates.

4.	 Querying a sample of deer-elk hunters for observations of a non-target species 
yielded thousands of spatially georeferenced detections per year and analysis in a 
temporally structured framework yielded estimates of both detection probability 
and abundance. Abundance estimates at this scale are unprecedented for moose 
in Montana and are encouraging for long-term monitoring over space and time.
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1  |  INTRODUC TION

Science-based monitoring of population abundance and trend is 
fundamental to conservation and management of wildlife. For many 
species, such monitoring includes components of citizen science, 
wherein public citizens are recruited as collectors of data (Brown 
& Williams,  2019). Long-standing examples of wildlife monitoring 
founded upon citizen science include volunteer surveys such as the 
U.S. Christmas Bird count (Dunn et al., 2005), road-side amphibian 
surveys (Sterrett et al.,  2019) or other efforts of organised public 
involvement towards a given data need. Compared to this active 
investment of effort, other more passive examples of citizen sci-
ence include the annual solicitation of harvest and observation data 
from hunters across many jurisdictions globally (Cretois et al., 2020; 
LaBonte & Kilpatrick,  2017). Hunter populations can provide a 
tremendous workforce of citizen scientists afield when queried 
for data. Furthermore, hunter observations of wildlife have been 
used to monitor species targeted by hunters (Haskell, 2011; Tallian 
et al., 2021; Ueno et al., 2014) as well as other species encountered 
incidentally while hunting (Mahard et al., 2016; Rich et al., 2013).

Through their cumulative numbers and time spent afield, hunters 
represent an impressive workforce of observers deployed to the nat-
ural landscapes occupied by wildlife. A review of hunting statistics 
within the contiguous United States estimated that deer (Odocoileus 
spp.) hunters alone spend nearly 168 million hunter-days afield each 
year (QDMA [Quality Deer Management Association], 2019). Spread 
evenly across the 7.7 million km2 land area of the contiguous U. S. 
this translates to an average of almost 22 hunter-days per km2 of 
land. Because hunters are not evenly distributed across the country, 
some regions, states, and areas certainly have even denser hunter 
effort. Hunting effort is also typically concentrated within specific 
administratively mandated seasons, which has advantages when 
seeking to sample closed populations of non-target species.

Low costs and high quantities of data can be enticing benefits of 
citizen science, yet careful attention to elements of design and sam-
pling are required to minimise effects of bias upon statistical analy-
ses and interpretations (Brown & Williams, 2019; Isaac et al., 2014; 
Steger et al., 2017). Such biases can occur where sampling (i.e. the 
detection process) is uneven over space or time or among taxa, 
which is very often the case with opportunistic data (Geldmann 
et al., 2016; Steger et al., 2017), including data collected by hunters 
(Bauder et al., 2021; Mysterud et al., 2020). Fortunately, occupancy-
detection methods of design and analysis offer one solution to 
such variation by explicitly modelling the detection process (Isaac 
et al., 2014). Where replicates of data collection are possible within 
a period of closure, these approaches have been successfully applied 
for monitoring of presence–absence or distribution with citizen sci-
ence data (Crum et al., 2017; van Strien et al., 2013). Abundance-
detection extensions of this approach, such as the n-mixture model 
for count data (Royle, 2004), offer further potential for monitoring 
of abundance while accounting for heterogeneity in the detection 
process common to citizen science data (Belt & Krausman,  2012; 
Brommer et al., 2017).

Large or charismatic species may be particularly amenable 
to citizen science approaches (Steger et al.,  2017). For example, 
moose (Alces alces) have been a common target of such monitor-
ing across the boreal forests of their Holarctic range. A review of 
North American jurisdictions showed 80% (12 of 15) of states and 
provinces incorporated visual observations of moose by hunters 
into monitoring programs (Crichton, 1993). Similarly, hunter obser-
vations are a foundational component of moose monitoring in some 
European countries, including Norway (Solberg & Sæther,  1999; 
Ueno et al.,  2014) and Sweden (Ericsson & Wallin,  1999; Tallian 
et al., 2021). However in many southern jurisdictions, moose hunt-
ing opportunity is limited or non-existent, and data from hunters 
specifically targeting moose are sparse (DeCesare et al.,  2016). In 
these scenarios, moose are a non-target species that may be inci-
dentally observed by a larger workforce of hunters targeting more 
common species such as deer (Crum et al., 2017). Thus, despite being 
commonly targeted by hunters in some jurisdictions where they are 
more numerous (Ueno et al., 2014), moose in lower density popula-
tions provide a useful case study for monitoring non-target species 
via opportunistic observations from hunters.

We applied abundance-detection methods to hunter obser-
vation data collected for moose in Montana. Traditional ungulate 
monitoring in Montana occurs via aerial surveys and hunter harvest 
statistics (e.g. Paterson et al., 2019). Moose in this environment are 
widespread but locally occur at low densities with very limited hunter 
opportunity, do not aggregate to a high degree in this environment 
and often occupy habitats obscured from above by dense vegeta-
tion, which collectively cause monitoring via aerial survey or harvest 
statistics to be untenable and unsatisfactory (DeCesare et al., 2016). 
While there were only 365 licensed moose hunters annually in 
Montana during our study period on average, there were an aver-
age of 150,959 and 109,111 hunters of deer and elk, respectively, 
totaling over two million hunter-days per year. Thus, we targeted 
this larger pool of deer and elk hunters for observations of moose, 
a non-target species, during weekly sessions for each of 5 years and 
analysed data with n-mixture models. We evaluated the effects of 
hunter effort, survey responses, survey week and forest cover on 
detection probability and the effect of habitat area on abundance. 
Lastly, we made predictions of abundance both per site and scaled 
up to statewide abundance to evaluate the efficacy of this approach 
for broad-scale monitoring.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

We collected moose observation data across the entire state of 
Montana where state-administered deer and elk hunting occurred. 
We then restricted our analyses to observation data collected 
within 79 state administered moose hunting districts (HDs), which 
represented 202,474 km2 (53%) of Montana's land area (Figure 1). 
Ecoregions in Montana include the North and South Central 
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Rockies Forests where the Rocky Mountains span the western 
portion of the state, the Montana Valley and Foothill Grasslands 
along valley floors between mountain ranges, and the Northern 
Short Grasslands across the central and eastern portions of the 
state (Olson et al., 2001). Elevation in the study area ranged from 
554–3882 m and annual precipitation from 16 to 253 cm. Mean 
January temperatures ranged from −14°C to −2°C and mean July 
temperatures from 6 to 23°C.

White-tailed deer (Odocoileus virginianus), mule deer (O. hemio-
nus) and elk (Cervus canadensis) are more abundant than moose in 
this study area. State-administered hunting of deer and elk during 
the study period occurred during a 5-week general season across 
most of the state. Specifically, this season began in late October 
of each year (start date range: 20 October–26 October), lasted for 
37 days and ended in late November or early December (end date 
range: 25 November–1 December). A general deer hunting licence 
was available over the counter to residents and allowed rifle hunting 
of white-tailed deer in 97% of hunting districts and of mule deer 
in 79% of districts in 2016. A separate general elk licence was also 
available over the counter to residents and allowed rifle hunting of 
elk in 85% of districts in 2016. General licence hunting opportuni-
ties yielded 79% of deer harvest and 68% of elk harvest in 2016. In 
addition to general licences, additional hunting opportunity in many 
areas was available through lottery of permits (conferring additional 
permitted uses of general licences) and antlerless licences via special 
drawings.

2.2  |  Data collection

2.2.1  | Moose observation data

Following methods first established for monitoring wolves within 
Montana (Rich et al., 2013), we used annual phone surveys to query 
hunters for observations of moose following five hunting seasons of 
2012–2016. During these years there were an average of 165,594 
(range 161,394–171,604) resident hunters with deer and/or elk  
licences. For this survey we drew a random sample of licence hold-
ers, averaging 50,512 (31%) hunters per year, to target for observa-
tions of moose. We added questions to an existing phone survey 
effort designed for estimating statewide deer and elk hunter harvest in 
Montana to collect ancillary information regarding moose observations 
while hunting these more abundant species (Lukacs et al., 2011). We 
asked a sampled deer and elk hunters: (a) whether or not they saw any 
moose while deer or elk hunting, (b) if yes, in what district and location 
(relative to landmarks, property ownership, or names of topographic or 
hydrologic features), (c) during which week of the 5-week season and 
(d) how many animals were seen in that location. Distinct observations, 
as denoted by different locations or time periods, were entered sepa-
rately but a single observation could include more than one moose. We 
then digitised the locations of moose observations using information 
provided and tallied them by week within the boundaries of 79 moose-
specific HDs. While data were collected by deer and elk hunters whose 
hunting behaviour was regulated within deer and elk hunting districts, 

F I G U R E  1 The Montana study area boundary, as delineated by 79 moose hunting districts administered by Montana Fish, Wildlife and 
Parks, other lands outside of moose hunting districts and hunter observations of moose collected during the five-year study period, 2012–
2016.
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we later summarised these observations with respect to moose hunt-
ing districts because they are spatial units ultimately of interest for 
moose population monitoring and management. Public hunting of deer 
and elk was regulated under the auspices of legal hunting and trapping 
seasons defined by the Montana Fish and Wildlife Commission, under 
the authority granted to them in statute MCA 87-1-301.

Hunter observations may suffer from a problematic lack of in-
dependence when multiple observations can be collected across 
hunters for the same individual animal. We expected such repeated 
counts were present in our dataset, and we used a sequence of spa-
tial analyses to consolidate observations that overlapped in space 
and time. First, we used global positioning system (GPS) teleme-
try data collected from 93 adult female moose in three Montana 
study areas during 2014–2020 to assess the weekly space use of 
moose during the autumn study period. For these analyses, we as-
sumed movement data collected from adult female moose would 
adequately describe weekly space use for both males and females. 
Details of animal capture and handling for those studies are pre-
sented in Newby and DeCesare  (2020). We subsampled GPS data 
to daily locations during each 5-week hunting season and estimated 
the pairwise Euclidean distance between daily locations within each 
of 1016 moose-weeks. We then divided pairwise distances in half to 
approximate circular radii extending from each location and used a 
histogram of the maximum pairwise radii per moose-week to esti-
mate the weekly distribution of potential moose space use surround-
ing a given location. This distribution of weekly space use was then 
applied to convert point locations of observations into probability 
density functions. We buffered observations with concentric circles 
corresponding in radii to the breaks of the distance histogram, with 
probability density calculated according to the proportion of loca-
tions within each interval and the corresponding concentric circle 
area. For each observation, the sum of density*area values across 
all surrounding buffers equaled 1. We then consolidated each set 
of buffers surrounding observations within the same year and week 
into a raster layer. Areas where probability density buffers over-
lapped represented places where observations may have occurred 
within the space use of the same moose. In those overlapping areas, 
we used a single value of the maximum probability density value 
across all buffers to characterise the density per raster pixel. This 
consolidated sets of overlapping observations relative to the degree 
of overlap, such that completely overlapping observations were 
reduced to be equivalent to a single one, whereas completely non-
overlapping observations remained independent. We then summed 
density buffers per raster within each hunting district to estimate a 
single count of spatially independent moose observations per week 
and year of sampling.

2.2.2  |  Environmental predictors of 
detection and abundance

We were interested in monitoring moose abundance per HD while ac-
counting for spatio-temporal heterogeneity in detection probability. 

We evaluated how detection probability varied according to four co-
variates, with one covariate hypothesised to vary by each category 
of site (i.e. HD), year, site-year and week. The site covariate with hy-
pothesised effects on detection was the proportionate forest cover 
of sites (using Montana Land Cover Framework; MNHP [Montana 
Natural Heritage Program], 2017). We hypothesised yearly effects 
on detection according to the number of respondents to questions 
about moose observations during yearly hunter phone surveys, 
2012–2016. The site-year covariate with hypothesised effects on 
detection was the estimated hunter effort of deer and elk hunters 
during the general, 5-week rifle season, in hunter-days per km2. 
Hunter effort was estimated distinctly for deer hunters and elk hunt-
ers for each site-year according to the mean relationships between 
hunter harvest (estimated by phone survey every year) and hunter 
effort (estimated by phone survey in alternating years) per site. 
Because the proportions of hunters queried for moose observations 
varied between deer and elk hunters by year, we calculated total 
effort estimates per site by log-transforming the combined effort of 
both deer and elk hunters weighted by the proportion of respond-
ents queried for moose observations each year. The week-level co-
variate was simply the effect of week itself on detection, treated 
as categorical variables for hunting season weeks 1–5. We treated 
week as a categorical variable to account for heterogeneity in the 
amount of hunting effort spent in the field each week, as dictated by 
weekly variation in weather and hunter behaviour.

We evaluated the effect of area on abundance within each site, 
including log-transformed metrics of total area, shrub area and forest 
area. Habitats used by moose in Montana include a variety of forest 
and shrubland vegetative communities (DeCesare et al., 2014). We 
simplified land cover data to include binary representations of forest 
habitats and shrubland habitats and evaluated the log-transformed 
area of each to inform models of moose abundance.

2.3  |  Statistical analysis

We analysed counts of moose per site using n-mixture models to si-
multaneously estimate functions of detection probability and abun-
dance (Royle,  2004). We used a stacked data structure, wherein 
detection histories for each site-year were recorded independently, 
and we included a random intercept, �0,i, for sites i to account for this 
dependence in the variance structure (Kéry & Royle, 2021). Steps of 
analysis included comparison of Poisson, zero-inflated Poisson, and 
negative binomial mixtures for abundance with Akaike information 
criteria (AIC) following Kéry and Royle (2021), from which the nega-
tive binomial distribution was selected. We also used AIC to conduct 
model selection and evaluate different covariates for detection and 
abundance, beginning with univariate analyses to assess strength 
and relationship of covariates, each centered and standardised, 
before building multivariable models in a manual forward stepping 
fashion. When nested models that differed by only a single param-
eter were within ≤2 ΔAIC units, we additionally screened to exclude 
models with uninformative parameters following Arnold (2010). We 
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conducted analysis in R (v. 4.1.2; R Core Team, 2021) following code 
and model-fitting procedures provided by (Kéry & Royle, 2021), with 
the exception that we used an updated version of the package un-
marked with capability to accommodate our random effect struc-
ture (v. 1.2.3; Fiske & Chandler, 2011).

We evaluated model fit by first refitting our final model with in-
creasing values of K, the maximum value of N used in computing 
marginal likelihoods, to ensure model maximum likelihood esti-
mates (MLEs) were identifiable inside rather than on the boundary 
of the parameter space for abundance and detection (Kéry, 2018). 
Second, because overdispersion can cause violation of assumptions 
and inflated predictions from n-mixture models, we evaluated mar-
ginal, ĉm, and site-sum, ĉs, scalar indicators of overdispersion based 
on Pearson residuals as well as quantile-quantile (qq) plots of ran-
domised quantile residuals against fitted values using the package 
nmixgof (Knape et al., 2018).

We used the final model to make predictions of detection prob-
ability by site, year and week, as well as to estimate abundance at 
each site. Individual moose were not counted independently in our 
data, and instead observations of one or more moose together rep-
resented the unit of modelled abundance. Thus, we adjusted our 
predictions to total moose abundance by multiplying by the mean 
estimate of observation group size, estimated distinctly per admin-
istrative region using counts of moose at each observation. To mini-
mise the influence of outlier values on average group sizes reported 
by hunters, we capped the maximum group size at the 95th percen-
tile value of six moose per group when estimating mean values, in 
accordance with reported group sizes for Shiras moose (Anderson 
Jr. & Lindzey, 1996; Peek et al., 1974).

To estimate the total abundance of moose per year across all sites 
within our study area (excluding areas outside of moose hunting dis-
tricts), we generated 10,000 Monte Carlo simulations of site-year 
abundance estimates drawing from random distributions according 
to model-estimated mean and standard deviation per site-year. We 
then used the mean and standard deviation of these estimates to 

predict statewide totals for each year. We then used two post-hoc 
analyses to evaluate the evidence for a trend in moose abundance 
over time. First, we re-estimated our final n-mixture model with a 
covariate for year in the abundance term to assess the annual trend 
in average abundance per site (Kéry & Royle, 2021) and second, we 
conducted a log-linear regression of annual estimates by year to 
evaluate evidence for a temporal trend at the statewide scale.

3  |  RESULTS

An average of 31,511 (range 26,390–40,578) deer and elk hunters 
annually responded to our phone surveys, or 59%–64% of those 
sampled from the total population. From this sample, we collected 
an average of 3409 (range 2338–4675) spatially mapped moose 
observations per year specific to the 5-week general rifle season 
(Figure  1). Mean group size per observation across sites was 1.99 
moose/observation (SD = 0.54). Translating these observations to 
independent weekly count data yielded a mean of 6.4 moose obser-
vations (range 0–37) counted per site-week across 79 sites (moose 
HDs).

Our best n-mixture model included effects of week, year (number 
of responses), site (proportionate forest cover), and site-year (hunter 
effort) on detection probability, as well as an effect of site (area of 
forest and shrub habitat) on abundance (Table  1). Specifically, de-
tection probability was highest during weeks 1–3 of the season and 
lowest during weeks 4 and 5 (Table 2; Figure 2). Detection probabil-
ity also increased in years with more survey responses and in site-
years with more hunter effort (Table 2; Figure 2). Lastly, detection 
probability decreased in sites with higher proportionate forest cover 
(Table 2; Figure 2). The abundance of moose increased with the total 
area of forest and shrub cover at each site (Table 2).

Model MLEs were not on the boundary of the parameter space 
as determined by the effects of increasing K on model AIC and pa-
rameter estimates. Estimates were slightly truncated at K = 200 but 

Detection and abundance models

AIC ΔAICp λ

Intercept-only �0,i 9187.4 500.7

Responses �0,i 9086.3 399.6

Week �0,i 8843.2 156.5

Effort �0,i 9183.1 496.4

Forest �0,i 9178.6 491.9

Week + responses �0,i 8741.7 55.0

Week + responses + forest �0,i 8733.7 47.0

Week + responses + forest + effort �0,i 8712.6 25.9

Week + responses + forest + effort �0,i + areashrub 8698.4 11.7

Week + responses + forest + effort �0,i + areaforest 8691.1 4.4

Week + responses + forest + effort �0,i + areashrub,forest 8686.7 0.0

Week + responses + forest + effort �0,i + areashrub + areaforest 8689.5 2.8

TA B L E  1 N-mixture models, wherein 
variation in abundance is described by 
a negative binomial distribution with 
mean λ and variation in observed counts 
is described by a conditional binomial 
distribution with detection probability, 
p, and including covariates for p and λ, 
random intercepts, �0, per site, i, Akaike 
information criteria (AIC) and difference in 
AIC from the best model, ΔAIC, for moose 
count data in Montana, 2012–2016.
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stabilised at or above K = 300, which we used for final estimates. 
There was no evidence of problematic overdispersion as estimated 
by marginal, ĉm = 0.90 and site-sum ĉs = 0.86 measures of overdis-
persion. Furthermore, qq plots of both site-sum and observation re-
siduals showed good fit of the negative binomial mixture estimates 
(Figures S1 and S2).

Predicted weekly detection probability estimates averaged 0.10 
per site-year-week (range 0.01–0.29; Figure  3) and yielded cumu-
lative detection probabilities of 0.06–0.77 across the 5-week pe-
riod of each study year. Predictions of abundance averaged 136 
(SDsite = 14.7) and ranged 17–416 moose per site-year. Corresponding 
density estimates averaged 0.099 (range 0.002–0.439) moose/km2 
across entire sites and averaged 0.200 (range 0.017–0.799) moose/
km2 when limiting area to only that of shrub or forest cover within 
each site (Figure 3). Statewide abundance totals across the five-year 
study period averaged 10,755 moose (SDyear = 151.8) and ranged 
from a minimum of 9925 (in 2016) to 11,620 (in 2014; Figure 4).

4  |  DISCUSSION

Querying a sample of deer-elk hunters for observations of a non-
target species yielded thousands of georeferenced moose detec-
tions per year, and analysis in a temporally structured framework 
yielded estimates of both detection probability and abundance. 
Statistical estimates of abundance at this scale are unprecedented 
for moose in Montana (DeCesare et al., 2016) and are encouraging 
for long-term monitoring over space and time. We leveraged infra-
structure, staff and phone calls already committed to annual hunter 
harvest phone surveys when collecting these data. On average, this 
added 1153 h (SD = 125) of person-hours specific to collection of 
these data, annually but would likely require more in jurisdictions 
where such surveys are not already in place.

Survey effort varied across years, sites and week according to 
the number of respondents per year, spatiotemporal variation in 

hunter effort per site-year, and week of the hunting season. In ac-
cordance with previous studies, variation in these metrics of effort 
corresponded to variation in detection probability (Figure 2; Dillon 
et al., 2020; Rich et al., 2013). Detection probability also decreased 
with increases in proportionate forest cover per site, akin to effects 
of forest cover on aerial sightability of ungulates (Griffin et al., 2013) 
and other applications of n-mixture models to observation data in 
forested environments (O'Kelly et al., 2018). The combined effect of 
these covariates yielded a wide range of predicted detection prob-
abilities among sites (0.06–0.77 per year) with important effects 
on the translation of observation counts to predicted abundance  
estimates (Figure 3). While raw counts of moose observations were 
dense in some areas, such as portions of southwestern portion of 
Montana, model predicted density estimates were also high in some 
areas with lower raw counts, such as the more forested portions of 
northwestern Montana (Figure 3).

Recent evaluations of n-mixture models have raised awareness 
of the potential for biased results when failing to meet various model 
assumptions (Barker et al.,  2018; Dennis et al.,  2015; Kéry,  2018; 
Knape et al., 2018; Link et al., 2018). Results of n-mixture models 
are particularly sensitive to double counting of the same individuals, 
overdispersion in abundance or detection, or identifiability prob-
lems (Kéry, 2018; Knape et al., 2018; Link et al., 2018). In our case, 
we consolidated observations that overlapped in space and time to 
reduce the potential for double counting, and multiple goodness-
of-fit evaluations supported that our models were identifiable and 
overdispersion low. However, we surely failed to meet the assump-
tion that heterogeneity in detection probability was fully specified 
by our limited set of covariates (Link et al., 2018), and potential for 
biased abundance predictions remains.

While we are unable to validate these results across their full ex-
tent due to limited independent moose population data, some com-
parisons to other data can be made. A single moose density estimate 
generated from applying camera-trap sampling to a subset of moose 
HD106 in the Fisher River drainage in northwest Montana yielded 
comparable and overlapping density estimates (d2012–2016 = 0.167–
0.187 moose/km2 from this study vs. dcamera = 0.15 [95% CI: 0.11–
0.21] moose/km2; N. J. DeCesare, unpublished data). Vetting of 
our results with local biologists' expert opinion and aerial minimum 
count data (not population estimates) suggested general agreement 
in some HDs but cases of likely under- and over-estimation in other 
areas. Thus, model predictions may be interpreted as indicative of 
relative abundance more so than absolute abundance in some local 
situations, where detection probability estimates do not fully meet 
assumptions (Barker et al., 2018).

We recommend interpretation of these estimates in tandem with 
raw input data for moose management in Montana. Ultimately, mon-
itoring of trends in both model-based abundance estimates as well 
as raw observation input data should be indicative of relative spatial 
and temporal trends in both moose populations and the likelihood 
of hunters encountering moose. This combination of information 
should be a robust platform for management where allocation of 
moose hunter opportunity is a primary goal. Furthermore, using our 

TA B L E  2 Covariate coefficients α for detection probability p and 
coefficients β for site abundance λ from the top N-mixture model 
for moose count data in Montana, 2012–2016.

p α SE z p

(intercept) −2.155 0.277 −7.8 <0.001

Week2 −0.126 0.029 −4.3 <0.001

Week3 −0.035 0.028 −1.3 0.213

Week4 −0.417 0.033 −12.5 <0.001

Week5 −0.415 0.033 −12.4 <0.001

Responses 0.191 0.017 11.2 <0.001

Forest −0.600 0.071 −8.4 <0.001

Effort 0.313 0.052 6.0 <0.001

λ β SE z p

(intercept) 3.975 0.250 15.9 <0.001

areahabitat 0.408 0.073 6.2 <0.001
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population estimates as one input to an integrated population model 
that also incorporates a biological model of moose population dy-
namics, empirical vital rate data (e.g. Newby & DeCesare, 2020) and 
other survey data (DeCesare et al., 2016) for moose in this region 
would likely improve the rigour of local predictions as well as their 
utility for management (McCaffrey & Lukacs, 2016).

Founding a species monitoring program on citizen science 
methodologies relies on truthfulness and accuracy of hunter re-
call (Beaman et al., 2005; Jones et al., 2020) as well as retention of 
public engagement in both hunting and providing observation data 

(Dambly et al.,  2021). In our case, we assumed that location data 
were sufficiently accurate and consistent across observers for us 
to screen data for double counting using spatiotemporal informa-
tion. However, inaccuracy in spatial location data may insert extra 
heterogeneity into such data and could bias our estimates of de-
tection probability low and inflate population estimates. Regarding 
retention of observers, the observations are a passive extension of 
hunting season management, and do not require prior recruitment, 
scheduling, or time commitment outside of the publics' efforts to 
participate in hunting. However, response rates of public citizens 

F I G U R E  2 Predicted effects of (a) the number of survey respondents, (b) week of hunting season, (c) proportion of forested land cover 
within each site and (d) hunter effort (hunter-days per km2), on the probability of moose detection, Montana, 2012–2016.
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providing such information to Montana Fish, Wildlife and Parks 
(MFWP) over the phone may be sensitive to survey fatigue and 
declines in participation over time (de Koning et al.,  2021; Porter 
et al., 2004). Recent advances in hunter survey through mobile apps 
(e.g. Boyce & Corrigan, 2017) may offer improvements to both of 
these challenges if they reduce the time between observation and 

reporting, add tools for mapping locations and simplify participation 
(LaBonte & Kilpatrick, 2019).
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. QQ plots of site-sum randomised-quantile residuals 
against standard normal residuals for fit of the top model to count 
data for moose in Montana, 2012–2016. Under a good fit residuals 
should be close to the identity line (see Knape et al. 2018 for more 
information).
Figure S2. QQ plots of observation randomised-quantile residuals 
against standard normal residuals for fit of the top model to count 
data for moose in Montana, 2012–2016. Under a good fit residuals 
should be close to the identity line (see Knape et al. 2018 for more 
information).
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