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Abstract
1.	 Recent biodiversity declines require action across sectors such as agriculture. The 

situation is particularly acute for arthropods, a species-rich taxon providing im-
portant ecosystem services. To counteract the negative consequences of agricul-
tural intensification, creating a less hostile agricultural ‘matrix’ through growing 
crop mixtures can reduce harm for arthropods without yield losses.

2.	 While grassland biodiversity experiments showed positive plant biodiversity ef-
fects on arthropods, experiments manipulating crop diversity and agrochemical 
input used to study arthropods are lacking.

3.	 Here, we experimentally manipulated crop diversity (1–3 species, fallows), crop 
species (wheat, faba bean, linseed and oilseed rape) and agrochemical input (high 
vs. low) and studied responses of arthropod biodiversity. We tested whether ar-
thropod responses were affected by crop diversity, mixtures and management. 
Additionally, we measured crop biomass.

4.	 Crop biomass increased with crop diversity under high-input management, while 
under low management intensity, biomass was highest in two-species mixtures.

5.	 Increasing crop diversity positively affected arthropod abundance and diversity, 
under both low- and high-input management. Crop mixtures containing faba 
bean, linseed or oilseed rape had particularly high arthropod diversity.

6.	 Mass-flowering crops attracted more arthropods than legumes or cereals. 
Integrating intercropping into agricultural systems could increase flower visits by 
insects up to 1.5 million per hectare, thus likely also supporting pollination and 
pest-control ecosystem services.

7.	 Flower visitor network complexity increased in mixtures containing linseed and 
faba bean and under low-input management.

8.	 Intercropping can counteract insect declines in farmland by creating beneficial 
matrix habitat without compromising crop yield.
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1  |  INTRODUC TION

Arthropods and especially flower-visiting insects provide a range 
of important ecosystem services. Since more than one-third of 
the global food production comes from crops that depend on pol-
linators (Klein et al., 2007), increasing cropping system diversity in 
space or time may help to balance environmental sustainability and 
agricultural production. Modern agricultural landscapes are often 
dominated by large expanses of crop monocultures (Eurostat, 2018), 
where food or habitat resources for flower-visiting arthropods are 
generally scarce (Nicholls & Altieri,  2013). Some mass-flowering 
crops, such as oilseed rape (canola) or sunflower, can support some 
flower visitor species, but only for limited time periods (Westphal 
et al., 2003) and without providing safe sites for reproduction and 
hence population growth. Herbicide application removes weeds ef-
ficiently from agricultural fields and thus leads to clean landscapes 
where only a fraction of species can survive due to habitat and re-
source losses (Nicholls & Altieri,  2013). Input of other agrochemi-
cals, such as fertilizers, insecticides and fungicides increase yield, 
but often at the expense of overall agrobiodiversity, potentially con-
tributing substantially to recent insect declines (Benton et al., 2002; 
Dicks et al., 2021; Tscharntke et al., 2005).

There are, however, countermeasures focussing on the concept 
of sustainable intensification, a process (or system) where yields 
are increased without harmful environmental impacts. Integrated 
pest management and conservation agriculture (including diver-
sified crop rotations) have been practised for a long time already 
with not only positive but also negative effects on biodiversity 
(Beillouin et al., 2021; Dainese et al., 2019; Lichtenberg et al., 2017). 
One approach to support biodiversity in agriculture is intercropping 
(Martin-Guay et al., 2018; Wuest et al., 2021), where two or more 
crop species are grown on the same piece of land. As large expanses 
of cropland worldwide are dominated by cereal monocultures, grow-
ing mixtures of cereals with another crop (e.g. legumes) may have 
positive impacts on the quality of the matrix (Perfecto et al., 2009) 
in which natural habitats are embedded.

Intercropping has been shown to increase flower visitor or 
natural enemy abundance and diversity (Brandmeier et al.,  2021; 
Norris et al., 2018) while at the same time enhancing yield stability 
and productivity (Li et al., 2020; Raseduzzaman & Jensen, 2017; Yu 
et al., 2015) or reducing needs for chemical fertilizers when cereals 
are intercropped with legumes (Hauggaard-Nielsen et al., 2008). De-
spite these benefits, intercropping has remained surprisingly unpop-
ular in industrialized countries, though it is widely used in low-input 
tropical agroecosystems (Hauggaard-Nielsen et al., 2009) and in tra-
ditional smallholder farming systems in the Global South (Brooker 
et al., 2015). When implemented at larger scales in the landscape, 
intercropping may be an important measure to support arthro-
pod populations by increasing the availability of food and nesting 
resources.

Flower visitor species richness and composition depend on the 
local plant community (Biesmeijer et al., 2006), and it has been shown 
that not only crop diversity but also crop identity affects arthropods 

(Meyer et al., 2019). Additional community attributes such as inter-
action network complexity can help to understand relationships be-
tween crop diversity and ecosystem functioning, such as pollination 
success or crop yield (Saunders & Rader, 2019). Beyond the effects 
of crop diversity and identity, a large body of literature has exam-
ined the effects of management intensity (e.g. organic vs. conven-
tional farming) on flower visitors (for recent reviews, see Kennedy 
et al.,  2013; Lichtenberg et al.,  2017). However, only few studies 
so far compared flower visitors in crop monocultures and mixtures 
under high- versus low-input management (Brandmeier et al., 2021).

Here, we set up a fully factorial experiment with the following 
three factors: (i) management intensity (high vs. low input of pes-
ticides and fertilizer), (ii) crop diversity (0, 1, 2 or 3 crop species) 
and (iii) crop identity (wheat, faba bean, linseed and oilseed rape). 
An increasing number of crop species (crop species richness) per se 
can be expected to increase arthropod diversity and abundance due 
to bottom-up effects, as has been shown in grassland biodiversity 
experiments (Scherber et al., 2010; hypothesis 1). Additionally, the 
identity of the crop species will likely affect diversity, abundance 
and plant–flower visitor network structure, due to differences in 
floral resource provisioning (Losapio et al., 2019; Maia et al., 2019; 
Hypothesis 2). Finally, management intensity (fertilizer and herbicide 
input) can be hypothesized to decrease arthropod abundance and 
richness (hypothesis 3), due to indirect effects (reduced weed abun-
dance, microclimate; Brühl & Zaller, 2021; Dupont et al., 2018).

2  |  MATERIAL S AND METHODS

2.1  |  Experimental design

We set up a field experiment as part of a series of multiyear inter-
cropping trials conducted at the agricultural research station of the 
Julius Kühn Institute in 2019 in Münster, Germany (51°58′32.5″N 
7°33′57.4″E; (Brandmeier et al., 2021). The site was bordered by a 
woodland, crop fields and grassland, and residential developments. 
Intensively farmed cereal fields were abundantly present in the 
wider landscape surrounding the site. We manipulated the number 
of crop species (crop diversity), crop species identity and manage-
ment intensity in a randomized blocks design (Figures S1 and S2). The 
full experimental design had N = 240 plots (including monocultures, 
two- and three-species mixtures with barley and pea). Here, we 
focus on a subset of N = 104 plots on which pollinator sampling was 
done. Plots were sown with monocultures or mixtures of summer 
wheat (Triticum aestivum L.), faba bean (Vicia faba L.), linseed (Linum 
usitatissimum L.) and oilseed rape (Brassica napus L.) in a substitutive 
design (Table S1), that is mixture proportions added to 100 per cent. 
A total of 104 plots, each measuring 3 × 4 m, were sown at random in 
four replicate blocks with a sowing machine (Wintersteiger Plotseed 
S) at a row spacing of 12.5 cm with eight rows per metre at a sowing 
depth of 3.5 cm on 14 May 2019. We assigned management inten-
sity at random to half-blocks: One half of each block received high-
intensity management, consisting of (i) one pre-emergence spray 
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of herbicides (4.4 L/ha Stomp Aqua with 455 g/L Pendimethalin as 
active agent) and (ii) nitrogen fertilizer applied as a solution of urea 
and ammonium nitrate (70 kg N/ha); the other half received no treat-
ment (low intensity). We adjusted application levels to the common 
amounts for our region, but reduced fertilizer quantity to account 
for legumes in our mixtures. Arthropods were sampled using either 
pan traps (all plots) or flower visitor observations (a subset of plots 
not containing oilseed rape; Table S1). Permits for insect sampling 
were obtained from the city of Münster (Amt für Grünflächen und 
Umweltschutz) via the Julius Kühn Institute (Institute for Plant Pro-
tection in Horticulture and Forests).

2.2  |  Flower visitor observations

Observations were carried out between 2 and 10 July at appropri-
ate weather conditions (warm, sunny and dry). One square metre of 
each plot was observed for 15 min during each observation run. In 
one block of the experiment, we managed to accomplish two ob-
servation runs, while plots in all other blocks were only visited once 
due to time limitations and the rapid ripening of linseed flowers. 
At each observation run, we assessed the numbers of flower visits 
and flower visitor taxon at the lowest possible taxonomic resolution 
(species, family, order). Observations were done on monocultures of 
wheat, faba bean and linseed, their two- and three-species mixtures, 
and also on bare-ground control plots, where weeds had established 
(Table S2). The plant species visited was noted regardless of whether 
the plant was a crop or a weed species. Each contact with floral or-
gans was counted as one visit. If the ears of wheat plants had been 
visited, this was also counted as a flower visit, as it has been shown 
that hoverflies and bees sometimes also visit wind-pollinated plants 
(Saunders, 2018). For data analyses, we summed all observations per 
crop diversity (four levels, see Staab et al., 2015) and per crop mix-
ture (eight levels).

2.3  |  Pan traps

Pan traps were installed during four time periods (28 June–1 July, 
5–8 July, 12–15 July and 23–26 July) as an indirect measure of ar-
thropod abundance (Scherber & Beduschi, 2021). We had to exclude 
the third sampling period, because heavy rain had flooded the traps. 
We used plastic bowls sprayed with UV yellow paint (Montana Black 
infra yellow, European Aerosols GmbH, Heidelberg, Germany), filled 
with water and a drop of detergent (Frosch, Werner & Mertz GmbH, 
Germany). Traps were placed at ground level in the vegetation of 
each plot and were left active for 72 h; then, we transferred arthro-
pods into 70% ethanol in the field and sorted them up to the lowest 
possible taxonomic level in the laboratory using binoculars (Leica 
EZ4-HD; for details, see Table  S3). We summed the abundances 
from all three sampling periods for each level of crop diversity (four 
levels—0, 1, 2 or 3 species) and per crop mixture (13 different mix-
tures, Table S1).

2.4  |  Crop biomass sampling and weed assessment

We harvested crop biomass from 17 July to 9 August from crops and 
weeds on a randomly selected subplot of 40 × 40 cm of each plot. 
All biomass material was hand-harvested at 1 cm above ground for 
crop species separately and for weed species combined (not species-
specific). Biomass material was oven-dried for 48 h at 70°C, weighed 
immediately afterwards (Sartorius Industry) and extrapolated to g/m2. 
The cover and presence of weed species was assessed visually from 
18 June—4 July on one randomly selected 1-m2 quadrat for each plot.

2.5  |  Statistical analyses

Flower visitor diversity and arthropod diversity were expressed as 
Shannon's entropy (Jost, 2007) and its numbers equivalent (expo-
nential of Shannon's diversity), calculated using the package vegan 
(Oksanen et al., 2019). The numbers equivalent allows to compare 
species richness values corrected for differences in abundance. Data 
analysis was done in R (version 3.6.1) operated via RStudio (Posit 
team,  2022). For all response variables, we checked distributional 
assumptions using the fitdistrplus package (Delignette-Muller & Du-
tang,  2015) and inspected model residuals for constant variance. 
The numbers equivalents of flower visitor diversity and arthropod 
diversity were count data and therefore analysed using generalized 
linear mixed-effects models with a Tweedie family of distributions 
(Dunn & Smyth, 2008). A generalized Poisson distribution (Consul 
& Famoye,  1992) was used to model total arthropod abundances. 
Because of the hierarchical experimental design, we included blocks 
and management nested within blocks, as a random effect to ac-
count for spatial nonindependence. Models were fitted using the 
glmmTMB package in R (Brooks et al.,  2017). The fixed effects in 
the models were either (i) crop diversity*management or (ii) crop 
mixture*management, fitted in separate models.

Plant–flower visitor networks were constructed using the bi-
partite package (Dormann et al., 2009). First, the plotweb() function 
was used to construct individual networks for each crop mixture 
and management intensity, resulting in 16 networks. Additionally, 
we calculated network metrics, using the networklevel() function, 
for data pooled per block, crop mixture and management intensity 
(resulting in N = 64 data points). The effects of crop mixture and 
management on these network metrics were then analysed using 
the same model structure as above, but using generalized Poisson 
or Maxwell-Conway Poisson errors (Huang,  2017). We used the 
number of interactions, number of flower visitor species and Shan-
non's diversity of interactions as metrics to describe the networks, 
as more complex indices need a minimal network size to function 
reliably (Dormann et al., 2009), which was not the case in this study.

The number of flower visits and the total number of arthro-
pod individuals were analysed as described above with generalized 
Poisson errors. Crop biomass was analysed using a Tweedie family. 
Means were compared using Type II Wald chi-squared tests from the 
car library (Fox & Weisberg, 2019). In all models containing factors 

 26888319, 2023, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12267, W

iley O
nline L

ibrary on [20/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 12  |    Ecological Solutions and Evidence ECOLOGICAL SOLUTIONS AND EVIDENCE

as explanatory variables, we used successive difference contrasts 
(Venables & Ripley, 2002) to compare means (e.g. mono- vs. 2 and 
2- vs. 3-species mixtures).

3  |  RESULTS

3.1  |  Arthropod community

In pan trap samples, the most frequent taxa were Diptera (exclud-
ing Syrphid flies), wasps, Coleoptera, Thysanoptera and Auchen-
orrhyncha. In pollinator networks, the arthropod community was 
dominated by the bumblebee species Bombus lapidarius and B. ter-
restris and the hoverfly species Syrphus ribesii and Episyrphus baltea-
tus. A detailed overview of the taxonomic composition is given in  
Tables S3 and S4.

3.2  |  Arthropod diversity in monocultures, 
two- and three-species mixtures

In fertilized plots that had received a herbicide treatment (high man-
agement intensity), arthropod and flower visitor diversity increased 
with increasing crop diversity (Figure 1, Tables S5 and S6). Except 
for three-species mixtures, arthropod diversity was always higher 
if no fertilizers or herbicides had been applied (low management 
intensity).

3.3  |  Effects of crop and mixture identity on 
arthropod diversity

Observation data showed that the presence of faba bean and lin-
seed, in monoculture or mixture, leads to an increase in flower 

visitor diversity (Figure 2a). Pan trap data showed that arthropod 
diversity was influenced by an interaction between crop mixture 
and management: Arthropod diversity was highest in linseed-
oilseed rape mixtures, faba bean-oilseed rape mixtures and lin-
seed monocultures under low-intensity management; and in 
oilseed rape monocultures and wheat-faba bean-linseed mixtures 
under high-intensity management (Figure 2b). Both methods show 
that crop mixtures significantly increased arthropod diversity  
(Tables S5 and S6).

3.4  |  Plant–flower visitor networks and 
network metrics

The number of flower visits was higher under low-intensity than 
under high-intensity management (Table  S7). On untreated (low-
intensity management) plots, fewest visits were observed on wheat 
monocultures (35 visits) and fallow (‘no crop’) plots (53 visits). Num-
ber of visits increased when linseed was present. Wheat-faba bean-
linseed mixtures were visited most frequently (612 visits, Figure 3a, 
Table S7).

Under high-intensity management, fewest visits were observed 
when no flowering crop was sown (i.e. two visits on wheat monocul-
tures and 16 visits on ‘no crop’ plots). With increasing proportion of 
linseed (from 33% in three-species mixtures and 50% in two-species 
mixtures to 100% in monocultures), more visits were observed (i.e. 
353 visits in linseed monocultures, Figure  3b, Table  S7). Overall, 
bees mainly visited linseed, while hoverflies mainly visited weeds 
and faba beans.

The mean number of interactions as well as the number of flower 
visitor species and Shannon's diversity of interactions was lowest 
in high-intensity wheat monocultures and no crop plots. Values for 
all indices increased considerably in mixtures containing linseed as 
well as in linseed monocultures. Shannon's diversity of interactions 

F I G U R E  1 Biodiversity responses to increased crop diversity within cropping systems. (a) Flower visitor and (b) arthropod diversity for 
four different cropping systems (Fallow: no crop was sown, but weeds were present; Mono: crop monoculture, 2 crops; two-species mixture; 
3 crops: three-species mixture) for high (red) and low (blue) management intensity. Graphs show raw data (open circles) and model fits (filled 
circles) with 95% confidence intervals, predicted from generalized linear mixed-effects models from a, flower visitor observations (N = 64; 
Cropping system: χ2 = 13.06, p = 0.005) and b, pan traps (N = 104; Cropping system: χ2 = 16.08, p = 0.001).
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was also high in faba bean monocultures. In most cases, values were 
higher for low compared with high-intensity management (Figure 4, 
Tables S8 and S9).

3.5  |  Arthropod abundances

Flower visitor observations showed that abundances were usually 
higher under low-intensity management (Figure 5a,b), while pan trap 
data (all arthropods) showed a reversed trend (Figure 5c,d). Pan traps 
which were placed on linseed plots contained fewer arthropods than 
traps on plots sown with other crops. Conversely, observations on 
plots containing linseed showed highest numbers of flower visits 
(Tables S10 and S11).

3.6  |  Crop biomass

Crop biomass was influenced by an interaction between crop mix-
ture and management, but not by crop diversity (Tables  S12 and 
S13). Under high management intensity, crop biomass increased with 
crop diversity, while under low management intensity, biomass was 
highest in two-species mixtures. Notably, biomass was low in oilseed 
rape monocultures and in mixtures containing oilseed rape (except 
linseed-oilseed rape mixtures, Figure S3).

4  |  DISCUSSION

Data from our agricultural field experiment show the importance of 
increased crop diversity in cropping systems for arthropod diversity 
and abundances. Independent of the sampling methods employed, 
we consistently found that higher crop diversity increased arthro-
pod and flower visitor diversity (hypothesis 1). Crop identity played 
an important role as well, as some mixtures had more arthropods 
or were visited more frequently than others (hypothesis 2). In our 
study, especially linseed was visited often, both in mixtures and in 
monocultures. This suggests that when a mass-flowering crop is 
available, this crop is more important than other less conspicuous 
crops (in our case faba bean) or weeds, masking their effects. Con-
sequently, plant–flower visitor networks that we analysed here were 
dominated by linseed; when this crop was available, we found par-
ticularly many interactions, a high number of flower visitor species 
and therefore also a high Shannon's diversity of interactions.

The intensity of agrochemical input had only limited effects in 
our study (hypothesis 3), likely because the applied rates of pre-
emergence herbicide and fertilizer were still very low in comparison 
with high-intensity monocropping. In fact, our own observations in 
intercropping trials so far have shown that intercropping allows for 
a ‘system shift’, where not really much management is necessary 
once the crops are sown; legumes will respond negatively to fer-
tilizer, and herbicides (usually targeting either mono- or dicots) are 
inapplicable in mixtures after sowing. Some crop monocultures, such 
as linseed, showed particularly high insect abundances and diversity 
if they had been treated with pre-emergence herbicide and fertil-
izer, likely because they contained fewer weeds and higher flower 
density (personal observations). Increasing weed abundance in fields 
where no flowering crops are present (i.e. wheat monocultures) can 
maintain flower visitor populations and ensure pollination services 
(Bretagnolle & Gaba, 2015). While, in the present study, we did not 
explicitly perform pollinator exclusion experiments to measure polli-
nation success, we have done so previously (Brandmeier et al., 2021) 
and shown that (at least for wheat/faba bean in intercropping) the 
increases in flower visitor abundance also lead to better pollination 
services.

As an alternative to accepting tolerable levels of weed densities 
in the field (Nicholls & Altieri, 2013), intercropping could be deliber-
ately integrated also into conventional farming systems. Our predic-
tions indicate that the number of flower visits could increase from 

F I G U R E  2 Biodiversity responses to crop mixtures. (a) Flower 
visitor and (b), arthropod diversity for a range of crop mixtures (0, 
fallow where no crop was sown; W, wheat; B, faba bean; L, linseed; 
O, oilseed rape; WB, wheat-faba bean; WL, wheat-linseed; WO, 
wheat-oilseed rape; BL, faba bean-linseed; BO, faba bean-oilseed 
rape; LO, linseed-oilseed rape; WBL, wheat-faba bean-linseed; and 
WBO, wheat-faba bean-oilseed rape) for high (red) and low (blue) 
management intensity. Graphs show raw data (open circles) and 
model fits (filled circles) with 95% confidence intervals, predicted 
from generalized linear mixed-effects models for (a), flower visitor 
observations (N = 64; Crop mixture: χ2 = 60.66, p < 0.001) and (b), 
pan traps (N = 104; Crop mixture: χ2 = 40.98, p < 0.001).
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F I G U R E  3 Bipartite plant–flower visitor networks for plots sown with different crop mixtures for (a), low- and (b), high-intensity 
management. Networks were generated by summing all visits for each group. N = 4 for each crop mixture and management intensity. Left 
section in networks represents plant species, and right section represents flower visitors (see Table S4). Small bars indicate fewer visits than 
wider bars. Networks are sorted by total number of visits, starting with the fewest (upper left network) and ending with the most (lower 
right network) within the two types of management intensity.
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about 4700 visits/ha in wheat monocultures up to 566,000 visits/ha 
in wheat-bean-linseed mixtures. In low-input systems (comparable to 
organic farming), the number of visits could be as high as 1.5 million 
visits/ha in wheat-faba bean-linseed mixtures. Of course, such extrap-
olations from small plot sizes to field scale are ambitious, but at least 
they show the potential benefits of intercropping at larger scales.

Previous studies showed that ecosystem service delivery is posi-
tively influenced by the richness of service-providing organisms such 
as flower visitors (Dainese et al., 2019). Although honeybees (mainly 
the European honeybee Apis mellifera L.) are kept worldwide to pro-
vide crop pollination, other insects (such as wild bees, flies, beetles 
and wasps) have been reported to contribute more to total pollina-
tion than previously thought (Page et al., 2021; Rader et al., 2016). 
Floral abundance and richness are important for crop pollination ser-
vices delivered by unmanaged flower visitors (Garibaldi et al., 2014; 
Kremen et al.,  2007); thus, wild pollinator communities should be 
supported by increasing the floral abundance and richness in their 
environment. Obviously, monocultures of mass-flowering crops such 
as linseed or oilseed rape can serve as a food resource for particular 
taxa (Bombus) and for a limited period of time, but floral abundance 
can be increased using crop mixtures, too (comparing mixtures to ce-
real monocultures). The advantage of crop mixtures compared with 
a mass-flowering monoculture is that the monoculture (e.g. oilseed 
rape) has to be treated with higher amounts of fertilizers and pesti-
cides. In mixtures, these amounts have to be reduced, especially if 
legumes are present. This could potentially lead to a system change 
in agriculture, leading away from intensively treated monocultures 
to less intensively treated mixtures.

Pollinators, as mobile organisms, respond to cropping system 
diversification at different spatial scales. Diversification methods 
have already been shown to benefit flower visitors and pollination 
services by enhancing floral diversity at the local scale (Albrecht 
et al., 2007; Garibaldi et al., 2014; Isbell et al., 2017). At the land-
scape scale, an increasing distance from a natural habitat may lead 
to lower wild bee richness, visitation numbers and fruit set (Garibaldi 
et al., 2011). Therefore, integrating flower-rich agricultural fields into 
conventional farming can provide important resources and improve 
the matrix quality (Perfecto et al., 2009) for flower visitors as well as 
other arthropods.

Our pan trap sampling showed that crop identity affected 
arthropod diversity and abundances. In oilseed rape monocul-
tures and mixtures (especially wheat-oilseed rape and wheat-faba 
bean-oilseed rape mixtures), arthropod abundances were high, 
while plots including linseed attracted less individuals. These re-
sults can be explained by the poor crop performance of oilseed 
rape, which suffered from the late sowing date and only grew 
sparsely on some plots. Thus, plots with oilseed rape contained 
more bare ground and pan traps were more easily visible, lead-
ing to a higher attraction than in, for example, linseed plots. As is 
common for plot-based studies in randomized block designs, po-
tential spillover effects among neighbouring plots were minimized 
by randomization, and we accounted for such spatial nonindepen-
dence in our statistical models using random effects for blocks 
and management.

While pan traps are suggested to be an efficient method for 
large-scale agricultural systems and to reduce collector biases 
(Westphal et al., 2008), they are taxon-specific and the catching 
success depends on colour (Moreira et al., 2016). Thus, for plot-
based trials, we conclude that flower visitor observations seem to 

F I G U R E  4 Bipartite plant–flower visitor network indices in 
response to crop mixtures. Graphs show data points (open circles), 
model predictions (filled circles) and 95% confidence intervals from 
generalized linear mixed-effects models for each crop mixture 
(0, fallow where no crop was sown; W, wheat; B, faba bean; L, 
linseed; WB, wheat-faba bean; WL, wheat-linseed; BL, faba bean-
linseed; WBL, wheat-faba bean-linseed) under high (red) and low 
(blue) management intensity. N = 4. (a) Number of interactions 
(Crop mixture: χ2 = 176.65, p < 0.001; Crop mixture: Management: 
χ2 = 17.04, p = 0.017), (b) number of flower visitor species (Crop 
mixture: χ2 = 95.79, p < 0.001) and (c) Shannon's diversity of 
interactions (Crop mixture: χ2 = 47.61, p < 0.001).
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be more appropriate (see also Venjakob et al., 2016). The observed 
subplot represents a sufficient part of the whole plot, and we were 
able to generate plant–flower visitor networks from qualitative 
observation data (Nielsen et al.,  2011). On the contrary, obser-
vations can also be rather time-consuming and may lead to biases 
when conducted by multiple observers (Westphal et al.,  2008), 
which was not the case in our study (we always used the same ob-
servers). Using high-resolution camera traps could be an efficient 
and standardized method to simultaneously assess flower visits 

on multiple plots. Indeed, we employed such a camera trapping 
setup on the same site; these results will be reported elsewhere. 
When using high-technology cameras or camera traps with ade-
quate resolution, flower visitors can be determined up to species 
or family level (Droissart et al., 2021) with low sampling effort. We 
acknowledge that the taxonomic resolution in the present study 
was limited; future studies could, for example, employ DNA me-
tabarcoding approaches, especially for taxa that are difficult to 
distinguish under field conditions.

F I G U R E  5 Number of visits and arthropod numbers in response to (a, c) four different cropping systems (Fallow: no crop was sown; 
Mono: crop monoculture, two crops; two-species mixture; 3 crops: three-species mixture) and (b, d) different crop mixtures (0, fallow; W, 
wheat; B, faba bean; L, linseed; O, oilseed rape; WB, wheat-faba bean; WL, wheat-linseed; WO, wheat-oilseed rape; BL, faba bean-linseed; 
BO, faba bean-oilseed rape; LO, linseed-oilseed rape; WBL, wheat-faba bean-linseed; and WBO, wheat-faba bean-oilseed rape) for high 
(red) and low (blue) management intensity. Graphs show raw data (open circles) and model fits (filled circles) with 95% confidence intervals, 
predicted from generalized linear mixed-effects models from (a, b) flower visits (N = 64; Cropping system: χ2 = 35.36, p < 0.001; Management: 
χ2 = 8.68, p = 0.003 and Crop mixture: χ2 = 176.65, p < 0.001; Crop mixture: Management: χ2 = 17.04, p = 0.017) and (c, d) all arthropods 
caught in pan traps (N = 104; Crop mixture: χ2 = 145.06, p < 0.001).

Observation data

Crop mixture
N

um
be

r o
ff

lo
w

er
 v

is
its

0 W B L WB WL BL WBL

High
Low

Pan trap data

Crop mixture

N
um

be
r o

fi
nd

iv
id

ua
ls

300

700

1100

1500

1900

0 W B L O WB WL WO BL BO LO WBO

High
Low

(a) (b)

(c) (d)

WBL

Pan trap data

Cropping system

N
um

be
r o

f i
nd

iv
id

ua
ls

300

700

1100

1500

1900

Fallow Mono 2 crops 3 crops

Observation data

Cropping system

N
um

be
r o

f f
lo

w
er

 v
is

its

0

100

200

300

Fallow Mono 2 crops 3 crops

High
Low

0

100

200

300

 26888319, 2023, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12267, W

iley O
nline L

ibrary on [20/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9 of 12Ecological Solutions and EvidenceBRANDMEIER et al.

5  |  CONCLUSIONS

Based on our multifactorial intercropping trial, we suggest to inte-
grate intercropping into agricultural systems, as arthropod diversity 
can clearly benefit from increased crop diversity, especially also 
under high-intensity management. Based on our experiments and 
also on results from our own previous study at the same location 
(Brandmeier et al., 2021), we conclude that a full mixing of crops at 
adequate densities (50:50 or others, depending on crop competi-
tive performance) can be beneficial for both crop yields and biodi-
versity enhancement. Thinking intensive farming and intercropping 
together can transform European farmland into a more insect-
friendly matrix. Additionally, the choice of crops is relevant; bring-
ing in some mass-flowering crops at 10%–50% density can provide 
important ‘stepping stone’ resources for arthropods, at least during 
the growth period. In-field diversification through intercropping 
should thus become part of everyday's agricultural landscapes.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Experimental design of the DIVERSify field trial in 2019.
Figure S2. Details on the field site and the experimental plots.
Figure S3. Crop biomass as a function of (a) crop diversity within 
cropping systems (Fallow: no crop was sown; Mono: crop 
monoculture, 2 crops; two-species mixture; 3 crops: three-species 
mixture) and (b) crop mixtures (0, fallow where no crop was sown; 
W, wheat; B, faba bean; L, linseed; O, oilseed rape; WB, wheat-faba 
bean; WL, wheat-linseed; WO, wheat-oilseed rape; BL, faba bean-
linseed; BO, faba bean-oilseed rape; LO, linseed-oilseed rape; WBL, 
wheat-faba bean-linseed; WBO, wheat-faba bean-oilseed rape) for 
high (red) and low (blue) management intensity.
Table S1. Overview of crops, crop mixtures, varieties and sowing 
densities for plots on which data collection was carried out.
Table S2. List of weed species that grew on the experimental plots.
Table S3. List of arthropods caught in pan traps.
Table S4. Information about flower visitors present in networks (see 
Figure 3).
Table S5. Chi-square (χ²) values, degrees of freedom (df), significance 
levels and family distributions for generalized linear mixed-effects 
models on (a) flower visitor (observation data) and (b) arthropod 
diversity (pan trap data).
Table S6. Model summaries using successive difference contrasts 
showing coefficients for generalized linear mixed-effects models 
on (a) flower visitor diversity (observation data) and (b) arthropod 
diversity (pan trap data) vs. crop diversity (Div), crop mixture 
(Mix, ordered factor: ordered by expected number of flowers) and 
management (high vs. low intensity).
Table S7. Total number of flower visits corresponding to the net
works in Figure 3 for each crop mixture for high and for low intensity 
management (N = 4).
Table S8. Chi-square (χ²) values, degrees of freedom (df), significance 
levels and family distributions for generalized linear mixed-effects 
models on network metrics.
Table S9. Model summaries using successive difference contrasts 
showing coefficients for generalized linear mixed-effects models 
on network metrics vs. crop mixture (Mix, ordered factor: ordered 
by expected number of flowers) and management (high vs. low 
intensity).
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Table S10. Chi-square (χ²) values, degrees of freedom (df), 
significance levels and family distributions for generalized linear 
mixed-effects models on flower visitor abundance (observation 
data) and total arthropod abundance (pan trap data).
Table S11. Model summaries using successive difference 
contrasts showing coefficients for generalized linear mixed-
effects models on a) number of flower visits (observation 
data) and b) total number of individuals (pan trap data) vs. crop 
diversity (Div), crop mixture (Mix, ordered factor: ordered by 
expected number of flowers) and management (high vs low 
intensity).
Table S12. Chi-square (χ²) values, degrees of freedom (df), 
significance levels and family distributions for generalized linear 
mixed-effects models on crop biomass.

Table S13. Model summaries using successive difference contrasts 
showing coefficients for generalized linear mixed-effects models 
on crop biomass vs. crop diversity (Div), crop mixture (Mix, ordered 
factor: ordered by expected number of flowers) and management 
(high vs low intensity).
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