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Abstract
1. Current methods for identifying and predicting infectious disease dynamics in 
wildlife	populations	are	limited.	Pathogen	transmission	dynamics	can	be	complex,	
influenced by behavioural interactions between and among hosts, pathogens and 
their environments. These behaviours may also be influenced directly by observ-
ers, with observational research methods being limited to habituated species. 
Banded mongoose Mungos mungo are social, medium size carnivores infected 
with the novel tuberculosis pathogen Mycobacterium mungi. This pathogen is prin-
cipally transmitted during normal olfactory communication behaviours. Banded 
mongoose behavioural responses to humans change over the landscape, limiting 
the use of direct observational approaches in areas where mongoose are threat-
ened and flee.

2. The accelerometers in bio- logging devices have been used previously to iden-
tify distinct behaviours in wildlife species, providing a tool to quantifying specific 
behaviours	 in	 ecological	 studies.	 We	 deployed	 Axy-	5X	 model	 accelerometers	
(TechnoSmArt)	on	captive	mongoose	to	determine	whether	accelerometers	could	
be used to identify key mongoose behavioural activities previously associated 
with M. mungi transmission.

3.	 After	two	collaring	periods,	we	determined	that	three	distinct	behavioural	activi-
ties could be identified in the accelerometer data: bipedal vertical vigilance, run-
ning and scent marking activity; behaviours that have been shown to vary across 
land type in the banded mongoose.

4. Results from this work advance current data analytics and provide modifications 
to	data	analysis	works	flows,	updating	and	expanding	upon	current	methodolo-
gies. We also provide preliminary evidence of successful mathematical classifica-
tion of the target behaviours, supporting the future use of these devices. Methods 
applied here may allow model estimates of M. mungi transmission in free- ranging 
mongoose to be refined with possible application to other systems where direct 
observation approaches have limited application.
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1  |  INTRODUC TION

Pathogen	 transmission	 processes	 are	 complex	 and	 can	 be	 vari-
ably impacted by behavioural interactions that occur between 
and among hosts, pathogen communities and the environment 
(Alexander	 et	 al.,	 2018;	 Alexander	 &	 McNutt,	 2010;	 Arthur	
et al., 2017; Lopes et al., 2016).	Infection	can	also	modify	or	alter	
host behaviour, further impacting how other members of asso-
ciated host communities respond to and interact with infected 
individuals (e.g. Beltran- Bech & Richard, 2014; Curtis, 2014; 
Heil, 2016; Lopes et al., 2016).	 These	 behavioural	 changes	 can	
alter contact rates and pathogen transmission dynamics, lead-
ing to changes in pathogen spread across host communities and 
landscapes	 (Alexander	et	al.,	2016, 2018; Behringer et al., 2006; 
Cremer et al., 2007; Lopes et al., 2016; Sattenspiel & Simon, 1988).	
Current	 methods	 for	 evaluating	 complex	 behaviours	 in	 wildlife	
species remain challenging, with most studies being limited to spe-
cies that can be habituated in landscapes in which they feel safe. 
Habituation, the state of reduced reactivity to human presence, is 
often vital to collecting behavioural and social data from a variety 
of	different	species	 (Allan	et	al.,	2020; Blumstein, 2016; Hanson 
& Riley, 2018; Thompson & Spencer, 1966).	 It	 has	 been	 argued,	
however, that data collected from habituated populations is bi-
ased by observer presence, which may, in turn, influence or mod-
ify	species	behaviour	(Allan	et	al.,	2020; McDougall, 2012; Welch 
et al., 2018).	Furthermore,	observation	of	habituated	wildlife	can	
expose	 researchers	 to	multiple	 risks	 in	 the	 field,	 such	 as	 preda-
tor	 attacks	 and	 exposure	 to	 zoonotic	 diseases	 (Garland-	Lewis	
et al., 2017).	These	may	include	hantavirus,	plague,	brucellosis	and	
rabies (Bosch et al., 2013; Garland- Lewis et al., 2017; Gomo, 2015; 
Kelt et al., 2007; McLean, 1994; Schneider et al., 2009; Tarrant 
et al., 2020),	or	novel	infectious	pathogens.

In northern Botswana the banded mongoose Mungos mungo, a 
small carnivorous species of the Herpestidae family is effected by 
the novel tuberculosis pathogen Mycobacterium mungi	(Alexander	
et al., 2010, 2016; Verble et al., 2021).	 Mycobacterium mungi 
causes significant mortality in this species and can presents a 
threat	to	the	persistence	of	smaller	troops	(Alexander	et	al.,	2010, 
2016).	This	pathogen	is	shed	and	transmitted	between	mongoose	
through infected anal gland secretions used in olfactory commu-
nication	 behaviours	 (Alexander	 et	 al.,	2016; Jordan et al., 2010, 
2011).	There	is	a	great	need	to	advance	our	understanding	of	the	
manner in which the environment, humans, conspecifics and other 
species influence pathogen transmission dynamics. While other 
banded mongoose populations have been successfully habitu-
ated to facilitate behavioural studies (Marshall et al., 2018),	 this	
acclimatization process is not possible across the range of the M. 
mungi- infected population in Northern Botswana. In this region, 
extremely	 high	 density	 of	 wildlife	 such	 as	 elephants	 and	 dense	
vegetation make it difficult and dangerous to traverse on foot and 
prohibit the use of a vehicle. Furthermore, banded mongoose re-
spond variably to humans across the landscape due to differences 
in human reactions to mongoose and persecution of this and other 

wildlife	 species	 (Alexander	&	Nichols,	2020).	 These	 factors	 limit	
the study of mongoose behaviours and pathogen transmission 
potential	 across	 complex	 landscapes,	 requiring	 alternative	 ap-
proaches to be advanced.

Accelerometers	have	previously	been	used	in	bio-	logging	devices	
to identify distinct behaviours in wildlife species, and have proven 
to be a useful tool for quantifying animal behaviour (Fehlmann 
et al., 2017).	For	example,	accelerometers	have	been	used	to	study	
energy	expenditure,	daily	activity	rates	and	patterns,	and	frequency	
of certain behaviours (Chakravarty et al., 2019).	 Accelerometers	
have not, however, to our knowledge been utilized to study disease 
transmission dynamics in wildlife. Most accelerometers utilized 
for wildlife study capture two measures of acceleration: static and 
dynamic acceleration. Static acceleration is caused by the force of 
the Earth's gravitational field, and the accelerometer's subsequent 
orientation with respect to that field, and dynamic acceleration is 
due to animal movement (Fehlmann et al., 2017; Nathan et al., 2012; 
Shepard et al., 2008).	Tri-	axial	accelerometers	function	by	recording	
total acceleration values across three dimensions, including surge 
or forward acceleration, sway or lateral acceleration, and heave or 
vertical acceleration (Figure 1).	 Behaviours	 can	 then	 be	 identified	
or summarized from the commonalities that arise in the patterns of 
acceleration	across	these	three	axes	 (Nathan	et	al.,	2012; Shepard 
et al., 2008).

We	herein	report	the	use	of	an	Axy-	5X	model	accelerometer	
(TechnoSmArt)	on	captive	mongoose	as	a	proof-	of-	concept	study	
to evaluate if accelerometers could be used to identify key mon-
goose behavioural activities relevant to M. mungi transmission. 
These behaviours included bipedal vertical vigilance, running and 
scent marking activity previously shown to vary across the land-
scape	in	this	system	(Alexander	&	Nichols,	2020).	We	also	include	
evaluation of the data analytics and modifications to the data 
analysis	works	flows,	updating	and	expanding	upon	current	meth-
odologies. Finally, we provide preliminary evidence of successful 
mathematical classification of the target behaviours, advancing 
the	 analytical	 toolbox	 for	 use	 of	 these	 approaches	 in	 banded	
mongoose.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

An	Axy-	5X	 model	 accelerometer	 (TechnoSmArt)	 was	 attached	 to	 a	
collar and placed on a captive adult female mongoose housed at the 
Centre	for	Conservation	of	African	Resources:	Animals,	Communities	
and	Land	Use	(CARACAL)	at	the	Chobe	Research	Institute	in	Northern	
Botswana	 (IACUC	Number	19-	251	 (FWC)	Amendment	#1).	Captive	
mongoose	at	CARACAL	can	be	handled	without	the	need	for	chemi-
cal immobilization and are easily observed, thus providing a controlled 
environment	to	evaluate	Axy-	5X	model	accelerometer	performance.	
To size the collar, one finger was placed in between the collar and the 
neck of the mongoose to ensure a secure but non- restrictive fit. The 
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accelerometer	and	collar	weighed	approximately	4 g	(<5%– 10% body 
weight recommendation; Boitani & Fuller, 2001),	and	as	such	could	be	
worn without limiting activity. Data capture settings were set at a sam-
pling	rate	of	25 Hz,	G	full	scale	of	±4 with resolution set to eight bits. 
Collaring	was	performed	for	2 h	on	November	8th	2021	to	calibrate	
the accelerometer and to gather preliminary data on mongoose be-
haviour. Collaring was repeated for a 12- h period on November 11th 
2021 to gather additional movement and behavioural data. Specific 
behaviours were recorded using an iSight model camera and times-
tamped	using	Coordinated	Universal	Time	(UTC).

2.2  |  Data analysis

Data from the accelerometers were downloaded and converted 
using	 X	Manager	 Software	 (provided	 by	 the	manufacturer).	 The	
data were then calibrated based on manufacturer recommenda-
tions using the pracma and rgl packages in R version 4.1.0 (R Core 
Team, 2019;	Van	de	Vuurst	&	Alexander,	2023).	The	UTC	of	 the	
recorded activities was then used to match and isolate specific 
mongoose activities. These activities were then tagged with their 
associated time stamp for future analysis. Data were visualized in 
R	Studio	(version	2021.09.1)	with	the	use	of	the	ggplot2 package 
(Wickham, 2016).

2.3  |  Mathematical behaviour classification

Other studies have applied mathematical classification techniques 
such as k- means clustering, linear discriminant analysis, quadratic 
discriminant	 analysis,	 and	 support	 vector	machines	 (SVMs)	 to	 dis-
cern different behaviours from accelerometer data characteris-
tics (Carter et al., 2022; Nathan et al., 2012; Nielsen et al., 2010; 
Sakamoto et al., 2009; Watanabe et al., 2005).	We	therefore	utilized	
these techniques to assess how readily the three target behaviours 
could be categorized with these standardized classification meth-
ods. Using a subset of the data from the November 11th which had 
all three target behaviours (i.e. scent marking, running and vertical 
vigilance),	we	used	the	fviz_nbclust function (factoextra package ver-
sion	 1.0.7)	 to	 identify	 the	 optimal	 number	 of	 centres	 for	 k- means 
clustering using the within sum squares method (Kassambara & 
Mundt, 2020).

2.4  |  Research permission

The methods used for this study were approved by the Virginia 
Tech	 Institutional	 Care	 and	 Use	 Committee	 (#19-	251-	FWC,	
Amendment	 1).	 Research	 and	 fieldwork	 permission	 for	 this	 pro-
ject was provided by the Botswana Government, Ministry of 

F I G U R E  1 Behaviour	identification	
via accelerometer data. Inset image 
denotes	acceleration	sensor	axes	
orientation and colour corresponding 
with the lower panel. X = surge	or	forward	
acceleration	(blue),	Y = sway	or	lateral	
acceleration	(green)	and	Z = heave	or	
vertical	acceleration	(red).	(a)	Vertical	
vigilance	behaviour	(upper	panel)	and	
corresponding acceleration measurements 
across	three	axes.	(b)	Running	behaviour	
(upper	panel)	and	corresponding	
acceleration measurements across three 
axes.	(c)	Scent	marking	behaviour	(upper	
panel)	and	corresponding	acceleration	
measurements	across	three	axes.
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Environment, Natural Resources Conservation, and Tourism (per-
mit	EWT8/36/4).

3  |  RESULTS

Three	 key	 activities	were	 distinguishable	 using	 the	 tri-	axial	 accel-
erometer data: vertical vigilance, rapid quadrupedal movement (i.e. 
running)	and	scent	marking	(Figure 1).	Vertical	vigilance	was	charac-
terized by a rapid and isolated spike in the Y-  and Z-	axes	(Figure 1a).	
These patterns were likely caused by the rapid vertical movement of 
the mongoose standing on its hind legs, and thus thrusting the collar 
and accelerometer vertically against gravity. Running was character-
ized by rhythmic, short burst patterns of acceleration across all three 
axes	 (Figure 1b).	There	was	not,	however,	 a	 convergence	of	 the	Y 
and Z	acceleration	axes	with	the	X-	axis.	Scent	marking,	in	contrast,	
was characterized by a marked dip of acceleration along the Z-	axis	
below the X-	axis	of	 acceleration	 (Figure 1c).	 This	 could	be	 caused	
by the mongoose dipping its head downward while performing the 
distinctive activity.

Results from the mathematical classification methods varied, 
but were consistently better than random at delineating each of the 
three target behaviours (McNemar's test p < 0.01).	Average	 classi-
fication accuracies ranged from 63% to 76.3%. K- means clustering 
with three centres yielded a between sum of squares/total sum of 
squares	(BSS/TSS)	ratio	of	64.9%.	The	most	successful	classification	
method	was	SVM	 (76.3 ± 1.6%;	McNemar's	 test	p < 0.001).	Within	
the subset of data used for the classification metrics, we determined 
that only 5.4% of the data were classified at ‘running’. This result is 
comparably	lower	than	the	other	target	behaviours	(25.2%),	yet	was	
still classified successfully.

4  |  DISCUSSION

Camera traps previously provided that landscape type variably influ-
enced M. mungi	transmission	behaviours	at	the	den	site	(Alexander	
& Nichols, 2020; Fairbanks et al., 2014).	Our	 results	 showed	 that	
accelerometer- derived data may also be used to identify these same 
mongoose behaviours critical to pathogen transmission across larger 
landscape areas. Deployment of these units in wild populations pro-
vides	a	possible	mechanism	of	extending	our	data	collection	across	
landscape types where observational approaches are impractical or 
impossible.

Our data cleaning and classification effort also yielded evidence 
supporting the utility of accelerometer implementation in this sys-
tem. Notably, all target behaviours were successfully identified 
using standard supervised classification methods, including the de-
tection	of	comparably	rare	behaviours	(e.g.	running	in	our	sample).	
It is important to emphasize that proper data calibration and pro-
cessing were necessary for successful analysis (see data availabil-
ity).	As	such,	data	processing	and	calibration	should	be	performed	

in conjunction with confirmed behavioural training data in future 
studies using these tools.

It is also important to note the limitations of this study re-
lated to the small sample size used in our analysis. Data, however, 
provided	 that	 triaxial	 accelerometers	 can	 discriminate	 crucial	
behaviours found to be important in M. mungi transmission and 
their	 deployment	 on	wild	 populations	 is	 an	 important	 next	 step	
in this research. The results also highlight the critical importance 
of	advancing	our	infectious	disease	toolbox	for	monitoring	animal	
behaviour	across	complex	landscapes	where	direct	observation	of	
a species may not be possible and the utility of accelerometers in 
these efforts.
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