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Abstract
1.	 Current methods for identifying and predicting infectious disease dynamics in 
wildlife populations are limited. Pathogen transmission dynamics can be complex, 
influenced by behavioural interactions between and among hosts, pathogens and 
their environments. These behaviours may also be influenced directly by observ-
ers, with observational research methods being limited to habituated species. 
Banded mongoose Mungos mungo are social, medium size carnivores infected 
with the novel tuberculosis pathogen Mycobacterium mungi. This pathogen is prin-
cipally transmitted during normal olfactory communication behaviours. Banded 
mongoose behavioural responses to humans change over the landscape, limiting 
the use of direct observational approaches in areas where mongoose are threat-
ened and flee.

2.	 The accelerometers in bio-logging devices have been used previously to iden-
tify distinct behaviours in wildlife species, providing a tool to quantifying specific 
behaviours in ecological studies. We deployed Axy-5X model accelerometers 
(TechnoSmArt) on captive mongoose to determine whether accelerometers could 
be used to identify key mongoose behavioural activities previously associated 
with M. mungi transmission.

3.	 After two collaring periods, we determined that three distinct behavioural activi-
ties could be identified in the accelerometer data: bipedal vertical vigilance, run-
ning and scent marking activity; behaviours that have been shown to vary across 
land type in the banded mongoose.

4.	 Results from this work advance current data analytics and provide modifications 
to data analysis works flows, updating and expanding upon current methodolo-
gies. We also provide preliminary evidence of successful mathematical classifica-
tion of the target behaviours, supporting the future use of these devices. Methods 
applied here may allow model estimates of M. mungi transmission in free-ranging 
mongoose to be refined with possible application to other systems where direct 
observation approaches have limited application.
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1  |  INTRODUC TION

Pathogen transmission processes are complex and can be vari-
ably impacted by behavioural interactions that occur between 
and among hosts, pathogen communities and the environment 
(Alexander et al.,  2018; Alexander & McNutt,  2010; Arthur 
et al., 2017; Lopes et al., 2016). Infection can also modify or alter 
host behaviour, further impacting how other members of asso-
ciated host communities respond to and interact with infected 
individuals (e.g. Beltran-Bech & Richard,  2014; Curtis,  2014; 
Heil,  2016; Lopes et al.,  2016). These behavioural changes can 
alter contact rates and pathogen transmission dynamics, lead-
ing to changes in pathogen spread across host communities and 
landscapes (Alexander et al., 2016, 2018; Behringer et al., 2006; 
Cremer et al., 2007; Lopes et al., 2016; Sattenspiel & Simon, 1988). 
Current methods for evaluating complex behaviours in wildlife 
species remain challenging, with most studies being limited to spe-
cies that can be habituated in landscapes in which they feel safe. 
Habituation, the state of reduced reactivity to human presence, is 
often vital to collecting behavioural and social data from a variety 
of different species (Allan et al., 2020; Blumstein, 2016; Hanson 
& Riley,  2018; Thompson & Spencer,  1966). It has been argued, 
however, that data collected from habituated populations is bi-
ased by observer presence, which may, in turn, influence or mod-
ify species behaviour (Allan et al., 2020; McDougall, 2012; Welch 
et al., 2018). Furthermore, observation of habituated wildlife can 
expose researchers to multiple risks in the field, such as preda-
tor attacks and exposure to zoonotic diseases (Garland-Lewis 
et al., 2017). These may include hantavirus, plague, brucellosis and 
rabies (Bosch et al., 2013; Garland-Lewis et al., 2017; Gomo, 2015; 
Kelt et al.,  2007; McLean,  1994; Schneider et al.,  2009; Tarrant 
et al., 2020), or novel infectious pathogens.

In northern Botswana the banded mongoose Mungos mungo, a 
small carnivorous species of the Herpestidae family is effected by 
the novel tuberculosis pathogen Mycobacterium mungi (Alexander 
et al.,  2010, 2016; Verble et al.,  2021). Mycobacterium mungi 
causes significant mortality in this species and can presents a 
threat to the persistence of smaller troops (Alexander et al., 2010, 
2016). This pathogen is shed and transmitted between mongoose 
through infected anal gland secretions used in olfactory commu-
nication behaviours (Alexander et al.,  2016; Jordan et al.,  2010, 
2011). There is a great need to advance our understanding of the 
manner in which the environment, humans, conspecifics and other 
species influence pathogen transmission dynamics. While other 
banded mongoose populations have been successfully habitu-
ated to facilitate behavioural studies (Marshall et al.,  2018), this 
acclimatization process is not possible across the range of the M. 
mungi-infected population in Northern Botswana. In this region, 
extremely high density of wildlife such as elephants and dense 
vegetation make it difficult and dangerous to traverse on foot and 
prohibit the use of a vehicle. Furthermore, banded mongoose re-
spond variably to humans across the landscape due to differences 
in human reactions to mongoose and persecution of this and other 

wildlife species (Alexander & Nichols, 2020). These factors limit 
the study of mongoose behaviours and pathogen transmission 
potential across complex landscapes, requiring alternative ap-
proaches to be advanced.

Accelerometers have previously been used in bio-logging devices 
to identify distinct behaviours in wildlife species, and have proven 
to be a useful tool for quantifying animal behaviour (Fehlmann 
et al., 2017). For example, accelerometers have been used to study 
energy expenditure, daily activity rates and patterns, and frequency 
of certain behaviours (Chakravarty et al.,  2019). Accelerometers 
have not, however, to our knowledge been utilized to study disease 
transmission dynamics in wildlife. Most accelerometers utilized 
for wildlife study capture two measures of acceleration: static and 
dynamic acceleration. Static acceleration is caused by the force of 
the Earth's gravitational field, and the accelerometer's subsequent 
orientation with respect to that field, and dynamic acceleration is 
due to animal movement (Fehlmann et al., 2017; Nathan et al., 2012; 
Shepard et al., 2008). Tri-axial accelerometers function by recording 
total acceleration values across three dimensions, including surge 
or forward acceleration, sway or lateral acceleration, and heave or 
vertical acceleration (Figure  1). Behaviours can then be identified 
or summarized from the commonalities that arise in the patterns of 
acceleration across these three axes (Nathan et al., 2012; Shepard 
et al., 2008).

We herein report the use of an Axy-5X model accelerometer 
(TechnoSmArt) on captive mongoose as a proof-of-concept study 
to evaluate if accelerometers could be used to identify key mon-
goose behavioural activities relevant to M. mungi transmission. 
These behaviours included bipedal vertical vigilance, running and 
scent marking activity previously shown to vary across the land-
scape in this system (Alexander & Nichols, 2020). We also include 
evaluation of the data analytics and modifications to the data 
analysis works flows, updating and expanding upon current meth-
odologies. Finally, we provide preliminary evidence of successful 
mathematical classification of the target behaviours, advancing 
the analytical toolbox for use of these approaches in banded 
mongoose.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

An Axy-5X model accelerometer (TechnoSmArt) was attached to a 
collar and placed on a captive adult female mongoose housed at the 
Centre for Conservation of African Resources: Animals, Communities 
and Land Use (CARACAL) at the Chobe Research Institute in Northern 
Botswana (IACUC Number 19-251 (FWC) Amendment #1). Captive 
mongoose at CARACAL can be handled without the need for chemi-
cal immobilization and are easily observed, thus providing a controlled 
environment to evaluate Axy-5X model accelerometer performance. 
To size the collar, one finger was placed in between the collar and the 
neck of the mongoose to ensure a secure but non-restrictive fit. The 
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accelerometer and collar weighed approximately 4 g (<5%–10% body 
weight recommendation; Boitani & Fuller, 2001), and as such could be 
worn without limiting activity. Data capture settings were set at a sam-
pling rate of 25 Hz, G full scale of ±4 with resolution set to eight bits. 
Collaring was performed for 2 h on November 8th 2021 to calibrate 
the accelerometer and to gather preliminary data on mongoose be-
haviour. Collaring was repeated for a 12-h period on November 11th 
2021 to gather additional movement and behavioural data. Specific 
behaviours were recorded using an iSight model camera and times-
tamped using Coordinated Universal Time (UTC).

2.2  |  Data analysis

Data from the accelerometers were downloaded and converted 
using X Manager Software (provided by the manufacturer). The 
data were then calibrated based on manufacturer recommenda-
tions using the pracma and rgl packages in R version 4.1.0 (R Core 
Team, 2019; Van de Vuurst & Alexander, 2023). The UTC of the 
recorded activities was then used to match and isolate specific 
mongoose activities. These activities were then tagged with their 
associated time stamp for future analysis. Data were visualized in 
R Studio (version 2021.09.1) with the use of the ggplot2 package 
(Wickham, 2016).

2.3  |  Mathematical behaviour classification

Other studies have applied mathematical classification techniques 
such as k-means clustering, linear discriminant analysis, quadratic 
discriminant analysis, and support vector machines (SVMs) to dis-
cern different behaviours from accelerometer data characteris-
tics (Carter et al.,  2022; Nathan et al.,  2012; Nielsen et al.,  2010; 
Sakamoto et al., 2009; Watanabe et al., 2005). We therefore utilized 
these techniques to assess how readily the three target behaviours 
could be categorized with these standardized classification meth-
ods. Using a subset of the data from the November 11th which had 
all three target behaviours (i.e. scent marking, running and vertical 
vigilance), we used the fviz_nbclust function (factoextra package ver-
sion 1.0.7) to identify the optimal number of centres for k-means 
clustering using the within sum squares method (Kassambara & 
Mundt, 2020).

2.4  |  Research permission

The methods used for this study were approved by the Virginia 
Tech Institutional Care and Use Committee (#19-251-FWC, 
Amendment 1). Research and fieldwork permission for this pro-
ject was provided by the Botswana Government, Ministry of 

F I G U R E  1 Behaviour identification 
via accelerometer data. Inset image 
denotes acceleration sensor axes 
orientation and colour corresponding 
with the lower panel. X = surge or forward 
acceleration (blue), Y = sway or lateral 
acceleration (green) and Z = heave or 
vertical acceleration (red). (a) Vertical 
vigilance behaviour (upper panel) and 
corresponding acceleration measurements 
across three axes. (b) Running behaviour 
(upper panel) and corresponding 
acceleration measurements across three 
axes. (c) Scent marking behaviour (upper 
panel) and corresponding acceleration 
measurements across three axes.
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Environment, Natural Resources Conservation, and Tourism (per-
mit EWT8/36/4).

3  |  RESULTS

Three key activities were distinguishable using the tri-axial accel-
erometer data: vertical vigilance, rapid quadrupedal movement (i.e. 
running) and scent marking (Figure 1). Vertical vigilance was charac-
terized by a rapid and isolated spike in the Y- and Z-axes (Figure 1a). 
These patterns were likely caused by the rapid vertical movement of 
the mongoose standing on its hind legs, and thus thrusting the collar 
and accelerometer vertically against gravity. Running was character-
ized by rhythmic, short burst patterns of acceleration across all three 
axes (Figure 1b). There was not, however, a convergence of the Y 
and Z acceleration axes with the X-axis. Scent marking, in contrast, 
was characterized by a marked dip of acceleration along the Z-axis 
below the X-axis of acceleration (Figure  1c). This could be caused 
by the mongoose dipping its head downward while performing the 
distinctive activity.

Results from the mathematical classification methods varied, 
but were consistently better than random at delineating each of the 
three target behaviours (McNemar's test p < 0.01). Average classi-
fication accuracies ranged from 63% to 76.3%. K-means clustering 
with three centres yielded a between sum of squares/total sum of 
squares (BSS/TSS) ratio of 64.9%. The most successful classification 
method was SVM (76.3 ± 1.6%; McNemar's test p < 0.001). Within 
the subset of data used for the classification metrics, we determined 
that only 5.4% of the data were classified at ‘running’. This result is 
comparably lower than the other target behaviours (25.2%), yet was 
still classified successfully.

4  |  DISCUSSION

Camera traps previously provided that landscape type variably influ-
enced M. mungi transmission behaviours at the den site (Alexander 
& Nichols,  2020; Fairbanks et al.,  2014). Our results showed that 
accelerometer-derived data may also be used to identify these same 
mongoose behaviours critical to pathogen transmission across larger 
landscape areas. Deployment of these units in wild populations pro-
vides a possible mechanism of extending our data collection across 
landscape types where observational approaches are impractical or 
impossible.

Our data cleaning and classification effort also yielded evidence 
supporting the utility of accelerometer implementation in this sys-
tem. Notably, all target behaviours were successfully identified 
using standard supervised classification methods, including the de-
tection of comparably rare behaviours (e.g. running in our sample). 
It is important to emphasize that proper data calibration and pro-
cessing were necessary for successful analysis (see data availabil-
ity). As such, data processing and calibration should be performed 

in conjunction with confirmed behavioural training data in future 
studies using these tools.

It is also important to note the limitations of this study re-
lated to the small sample size used in our analysis. Data, however, 
provided that triaxial accelerometers can discriminate crucial 
behaviours found to be important in M. mungi transmission and 
their deployment on wild populations is an important next step 
in this research. The results also highlight the critical importance 
of advancing our infectious disease toolbox for monitoring animal 
behaviour across complex landscapes where direct observation of 
a species may not be possible and the utility of accelerometers in 
these efforts.
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