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Abstract
1.	 Conserving large carnivores requires protecting landscape spaces that encom-

pass all spatiotemporal scales of their movement. Large carnivores normally roam 
widely, but habitat loss and fragmentation can constrain their movement in ways 
that restrict access to resources and increase encounters with humans and po-
tential conflict. Facilitating carnivore population coexistence with humans across 
landscapes requires conservation plans informed by patterns of carnivore space 
use, particularly at the human–wildlife interface.

2.	 We sought to understand lion space use in Laikipia, Kenya. We conducted a path-
selection function analysis using GPS collar data from 16 lions to assess patterns 
of space use across a range of spatial scales (sedentary to home range expanses; 
0, 12.5, 25 and 50 km) and temporal scales (day, dusk, night and dawn). Path-
selection results were then incorporated into space use maps.

3.	 We found that most landscape features influenced path-selection at the broad-
est spatial scale (50 km), representative of home range-wide movement, thereby 
demonstrating a landscape-wide human impact on lion space use. We also de-
tected sub-diurnal variation in lion path-selection which revealed limited space 
use during daylight hours and increased space use overnight.

4.	 Our results highlight that optimal support for human–lion coexistence should be 
temporally adaptive at sub-diurnal scales. Furthermore, spatial approaches to lion 
conservation may be better generalized at broad spatial scales so that land man-
agement plans can account for home range patterns in lion space use.
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1  |  INTRODUC TION

The urgency to support human–wildlife coexistence is increasing 
as human land use and land transformation intensifies worldwide 
(Ripple et al., 2014). The conservation field is increasingly oriented 
towards fostering the sharing of landscapes in places where human–
wildlife interactions occur, as opposed to exclusionary approaches 
that fully separate wildlife from humans. To this end, efforts are 
underway to foster a coexistence landscapes approach in human–
wildlife systems as a way to lower human–wildlife conflict to toler-
able levels of risk for both parties (Carter & Linnell, 2016; Fiasco & 
Massarella, 2022; Oriol-Cotterill, Valeix, et al., 2015).

Large carnivores pose risks to humans because habitat degra-
dation and fragmentation constrain and channel their long-range 
movement in ways that often increase proximity to human activity 
(Ripple et al.,  2014). Even when carnivore home ranges are cen-
tralized within protected areas, individual animals often move out-
side of such boundaries and subsequently come into contact with 
humans (Mills & Harris, 2020; Tumenta et al., 2013; Woodroffe & 
Ginsberg, 1998). African lions (Panthera leo) are an important species 
to consider when developing human–carnivore coexistence land-
scapes because of their sensitivity and responses to anthropogenic 
pressures. Lions persist across most African habitat types, but have 
declined range-wide for decades (IUCN, 2006a, 2006b). Recent fig-
ures suggest that lions occupy as little as 8% of their historic range, 
having undergone a 43% decline between 1993 and 2014 (Bauer 
et al.,  2017). Continued population decline is anticipated (Bauer 
et al., 2015), however, uncertainty surrounds past and future esti-
mates of range-wide lion abundance because no systematic survey 
has ever been conducted across the continent (Gopalaswamy et al., 
2022). Lions are thought to be especially vulnerable to anthropo-
genic pressures because they are less cryptic than other large car-
nivores (e.g. among the largest in size, social and prefer wild prey 
whose size overlaps with livestock; Everatt et al.,  2019). They are 
typically the dominant predator within their ecosystem. However, 
lions succumb to a landscape of fear where they overlap with hu-
mans, whereby they alter their spatial and temporal niches to avoid 
humans (Elliot et al., 2014; Oriol-Cotterill, Macdonald, et al., 2015; 
Suraci et al.,  2019). It is important to simultaneously understand 
both the spatial and temporal dynamics within a landscape of fear 
(Palmer et al.,  2022)—including lion spatiotemporal trade-offs be-
tween anthropogenic risk and space use—in order to inform human–
wildlife coexistence strategies.

There have been significant efforts to develop landscape-scale 
strategies for human–lion coexistence and conflict mitigation 
(Creel et al., 2013; Packer et al., 2013). Most conservation strate-
gies addressing risks of conflict focus on minimizing localized di-
rect encounters between lions, humans and their livestock, which 

could otherwise result in preemptive or retaliatory lion killings 
(Kissui, 2008; Lichtenfeld, 2005; van Eeden et al., 2018). Such ap-
proaches increase the likelihood of lion survival in the short term 
but will not promote long-term survival and coexistence without 
additionally addressing how landscape-scale patterns of human ac-
tivity influence lion space use. Understanding space use is key to 
understanding how lions access resources, such as habitat and prey, 
and the attendant likelihood of human–lion encounters. Even in the 
absence of direct contact, the indirect effects of human activity on 
carnivores include spatiotemporal niche partitioning and less effi-
cient prey consumption stemming from a landscape of fear (Miller 
& Schmitz,  2019; Oriol-Cotterill, Macdonald, et al.,  2015; Smith 
et al.,  2015). This, in turn, can reduce individual fitness and long-
term carnivore survival through restricted dispersal and gene flow 
(Miller et al., 2020; Zollner & Lima, 1999). Effective landscape-scale 
strategies for lion conservation and coexistence with humans de-
pend upon understanding animal space use in response to both an-
thropogenic and habitat features within a landscape.

Laikipia, Kenya is considered a particularly important lion con-
servation area because it is Kenya's second-most wildlife-rich area, 
located where subsistence and commercial livestock ranching occur 
alongside wildlife conservation (Frank, 2023; Ogutu et al., 2016). A 
recent survey estimated 245 lions (PSD = 15.7) within Laikipia (El-
liot et al.,  2021). This is supported by other estimates calculated 
between 2003 and 2014 which yielded density estimates of 5.8–
6.5 adults and subadults per 100 km2 and extrapolates to 207–232 
lions within the area (Frank, 2023). However, in Laikipia, and Kenya 
at large, wildlife conservation is challenged by habitat loss and frag-
mentation from livestock use of rangelands, land conversion and 
subdivision, and infrastructure development (Ojwang' et al., 2017). 
Some wildlife populations have experienced declines up to 68% from 
baseline estimates (Masiga et al., 2016; Ogutu et al., 2016; Western 
et al., 2009). Approximately 35% of Kenyan wildlife is found on for-
mally protected areas, whereas the remaining majority are reliant 
on private, communal or local government trust lands for adequate 
resources (Georgiadis, 2011). Laikipia, in particular, has no national 
park and, instead, lion conservation is dependent upon sharing the 
landscape with humans. The Laikipia conservancy model allows 
individual or communal landowners to designate their land to be 
wildlife compatible (Crego et al., 2021; KWCA, 2016). For example, 
area ranches and conservancies are typically managed to support 
both livestock grazing and wildlife habitat. This land use approach 
is uniquely promising because Laikipia is a mixed-used landscape. 
However, human–lion conflict and human-caused lion mortality re-
mains prevalent, particularly among livestock herders and ranchers 
(Ogada et al., 2003; Oriol-Cotterill, Valeix, et al., 2015; Woodroffe & 
Frank, 2005). As such, a nuanced understanding of the spatiotempo-
ral dynamics of lion space use is needed to anticipate the prominent 
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risks against, as well as the apparent promises for, human–lion coex-
istence in the area.

To this end, resource selection functions (RSFs) offer a means to 
understand how wildlife preferentially utilize space. RSFs assess the 
probability that an animal uses a resource—for example, a specific 
habitat type or a landscape feature—relative to its availability within 
a given area. To calculate RSFs, a resource(s) encountered at an ani-
mal's ‘used’ units (e.g. geospatial point locations) is compared to re-
sources found at randomly ‘available’ units. Whereas traditional RSFs 
assume that resource availability is independent of animal locations 
(Signer et al., 2017), variations of RSFs leverage animal VHF or GPS 
location data to account for autocorrelation between sequential an-
imal locations (Fortin et al., 2005; Signer et al., 2017). Step-selection 
functions (SSFs) in particular extend RSFs by assessing resource use 
and availability along the distance between two consecutive point 
locations (i.e. steps; Fortin et al., 2005, Thurfjell et al., 2014). SSFs 
compare the mean value of a resource along the ‘used’ step to the 
mean value that would otherwise be randomly encountered along 
‘available’ steps (Thurfjell et al., 2014; Zeller et al., 2012). ‘Available’ 
steps are taken from the starting point of the ‘used’ step and distrib-
uting the movement across various lengths and angles. PathSFs fur-
ther extend SSFs by assessing animal movement as a series of steps 
(i.e. paths). ‘Available’ paths are chosen by randomly rotating direc-
tions away from the ‘used’ path's starting point (Kaszta et al., 2021; 
Naidoo et al., 2018; Zeller et al., 2012). Both SSFs and PathSFs typ-
ically employ conditional logistic regression to account for the tem-
poral dependence between sequential animal locations (Signer et al., 
2017; Thurfjell et al., 2014). Furthermore, both SSF and PathSF anal-
yses can be conducted at a range of spatiotemporal scales because 
of the flexibility in defining the spatiotemporal length of steps or 
paths. Selection functions ultimately link individual behaviour (e.g. 
step-  or path-selection) to the scale-dependent population-level 
processes that determine species space use. Selection functions are 
a popular approach to study species space use and interactions with 
humans, as well as migration corridors, dispersal behaviour and gene 
flow (Thurfjell et al., 2014; Zeller et al., 2012). This can inform strat-
egies for species survival and coexistence by informing practitioners 
about how and when a species preferentially utilizes a landscape and, 
subsequently, how to preemptively or actively mitigate conflict with 
humans across animal preferences for landscape locations (Miller 
et al., 2015).

Whether the results are meaningful and applicable is dependent 
upon the spatiotemporal scale(s) of analysis (McGarigal et al., 2016). 
The identification of the ecologically relevant scale at which animals 
preferentially utilize space requires systematic examination of the 
various spatiotemporal scale(s) at which animals respond to differ-
ent landscape features (Boyce, 2006; McGarigal et al., 2016; Zeller 
et al., 2016). PathSFs facilitate systematic analyses that determine 
the optimal scales at which landscape features best explain animal 
movement (Avgar et al., 2016; Lima & Zollner, 1996), particularly 
because of their ability to control for spatial autocorrelation and to 
allow for optimization of selection across a range of scales (Cushman 
& Lewis, 2010; Zeller et al., 2012, 2016).

We investigated lion space use as a function of landscape fea-
tures in Laikipia, Kenya by conducting a multi-scale PathSF analy-
sis using high-resolution lion GPS data. Our goal was to understand 
how different landscape features impact lion space use and to in-
form practitioners of relevant conservation and human–lion conflict 
mitigation strategies that can be derived from our results. Previous 
studies found that lions typically avoid areas of high human presence 
and anthropogenic risk—including towns, highways and agricultural 
and livestock areas—over large spatial scales (Elliot et al., 2014; Ever-
att et al.,  2019; Loveridge et al., 2017; Oriol-Cotterill, Macdonald, 
et al., 2015). However, lions have also exhibited fine-scale tempo-
ral partitioning when avoidance of human activity is not possible 
(Oriol-Cotterill, Macdonald, et al.,  2015). As ambush predators, 
lions are known to spend significant amounts of time in thick bush 
cover and dense vegetation (Elliot et al., 2014; Oriol-Cotterill, Valeix, 
et al., 2015; Schuette et al., 2013). Based on these patterns, we ex-
pect path-selection to occur at the broadest spatial scale assessed 
(50 km) given the pervasive presence of humans in the landscape. 
Temporally, we expect space use to vary sub-diurnally in respect to 
established patterns of human and lion diurnal behaviour (e.g. human 
activity peaking during the day, lion activity such as hunting peaking 
between crepuscular hours; Oriol-Cotterill, Macdonald, et al., 2015). 
We expect lions to avoid all anthropogenically risky landscape fea-
tures (e.g. roads, houses, etc.), with the strongest avoidance occur-
ring during daylight hours. On the other hand, we expect lions to 
select for habitat variables that reflect thicker ground vegetation 
cover (e.g. grass or shrubland) and avoid more sparse ground habitat 
(e.g. barren land, tree cover) or energetically taxing locations (e.g. 
steep slope).

Our objectives were to determine: (1) whether path-selection 
was consistent across spatial scales, (2) whether path-selection 
varied across time, (3) which landscape features were consistently 
selected or avoided and (4) how results can inform land manage-
ment and lion conservation. We conducted PathSF analyses across 
the full suite of spatiotemporal scales at which lion space use oc-
curs. We identified the spatial scale at which path-selection occurs 
through systematic exploration of varying temporal scales, as well 
as the directional effects (e.g. selection or avoidance) of these land-
scape features. We highlight results stemming from each spatio-
temporal perspective and reflect upon relevant approaches to lion 
conservation.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study was conducted across the 8700 km2 semi-arid savannah of 
Laikipia County, Kenya (Figure 1). Laikipia is a mixed-used landscape 
comprised of private- and communally owned properties that create 
a mosaic of farms, conservancies, ranches, pastoral areas and small 
urban areas (LWF, 2012; Sundaresan & Riginos, 2010). Approximately 
38% of the county is explicitly designated as wildlife-compatible 
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conservancies or ranches (Frank,  2023)—hereafter, referred to as 
‘wildlife areas’ (WAs).

2.2  |  Lion data

Between 2014 and 2016, 16 adult lions (11 females, 5 males) were 
fitted with GPS-enabled SMART collars (Williams et al., 2014; Wilm-
ers et al., 2017) provided by Vectronic Aerospace (Berlin, Germany). 
Capturing and collaring protocols and permits for these lions are de-
tailed in Oriol-Cotterill, Macdonald, et al. (2015). Collars recorded a 
GPS location every 30 min and averaged 234 days of data (range 38–
613 days). Lions were selected based upon ease of collaring. Conse-
quently, our sample frame was limited to lions whose home ranges 
are centralized within WAs, although non-WAs should be within an 
accessible distance from these locations. Lions live in fission–fusion 
groups (‘prides’) in which females are philopatric and subadult males 
either disperse into vacant areas or challenge resident adult males 
for territory (Packer et al., 1990; Pusey & Packer, 1987). Each col-
lared lion was a member of a different pride for the duration of the 
study. We assume that each lion had the same capability of moving 
across the landscape and that each lion moved independently within 
their home range. We also assume that the number of prides and 
their respective home range boundaries did not change during the 
study. The majority of GPS points (97%, n = 163,537/168,650) were 
located inside WAs, although most lions (88%, n = 14/16) were ob-
served in non-WAs at least once during the study period.

2.3  |  Environmental data

We applied PathSFs to shed light on the functional relationship be-
tween lions and landscape features, thereby providing estimates of 

space use. We limited the scope of our study to assess the relation-
ship between lion path-selection and physical, static landscape fea-
tures. Specifically, we focused on anthropogenic infrastructure (e.g. 
roads, buildings, dams) as well as land cover and composition (e.g. ag-
ricultural locations, proportions/indices of vegetation types, slope). 
We included human density and livestock density because these are 
major components of human–lion conflict in the area (Frank, 2023). 
We grouped variables, a priori, into three categories known to af-
fect lion habitat preferences and human–lion interactions (Elliot 
et al., 2014; Kingdon, 1997; Pettorelli et al., 2010):

1.	 Anthropogenic: human-built features (e.g. built infrastructure, 
human settlements, land conversion, human population, etc.).

2.	 Land use: locations which host varying types of human activity 
(e.g. agro-pastoral activities on cropland, WAs, dams, etc.).

3.	 Habitat: natural landscape characteristics (e.g. land cover types, 
vegetative indices, slope, natural water, etc.).

We used open-source geographic information system (GIS) lay-
ers for variables or otherwise created our own. Some variables were 
transformed into multiple layers to identify the most ecologically 
relevant predictor for path-selection (e.g. comparing distance from 
WA edges vs. WA centres as the predictor variable). Additionally, 
some GIS layers that represented similar landscape features were 
grouped together to determine which best predicted path-selection 
(e.g. varying vegetative indices). This provided a total of 37 GIS lay-
ers to be initially assessed (Table S1). Layers were resampled to 92 m 
to standardize to the finest original resolution among layers using 
the nearest neighbour method for categorical variables and bilinear 
interpolation method for continuous variables in R (Hijmans & van 
Etten, 2012). When appropriate, continuous raster layers were stan-
dardized to the same extent and values were re-scaled from 0 to 1.

Due to the scope of our study, we did not examine the effect 
of prey accessibility on path-selection. Prey accessibility—not mere 
presence—can influence predator path-selection (Trainor & Schmitz, 
2014). Prey presence is ubiquitous across Laikipia, but recent stud-
ies suggest there are higher rates of prey occupancy (a potential 
proxy for accessibility) within central Laikipia (the WAs; Crego et al., 
2020, 2021). However, the location and strength of prey accessibil-
ity is influenced by the landscape features that we investigated in 
the study.

2.4  |  Spatiotemporal path-selection and scaling

We used PathSFs to predict lion space use as a function of landscape 
features at varying spatiotemporal scales (sensu Cushman et al., 
2016; Elliot et al., 2014). To reduce the effects of non-stationarity, 
we defined ‘used paths’ by dividing sequential GPS data into tempo-
ral windows (Cushman et al., 2005). We established four temporal 
scales to assess variation in space use over time using R package 
hms (Müller, 2021). The four temporal scales are as follows: daytime 
(07:00–17:00 h), dusk (17:00–19:00 h), nighttime (19:00–05:00 h) 

F I G U R E  1 The study area of Laikipia County, Kenya. Shaded 
polygons represent wildlife areas (WAs). Collaring data for 16 lions 
are overlaid across the study area with a unique colour per lion.
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and dawn (05:00–07:00 h). They were selected to detect variation 
in space use sub-diurnally, based on known fluctuations of human 
and lion activity. Each temporal scale was treated as an independent 
PathSF analysis. Although seasonality can be an important driving 
force in wildlife movement, there is no major seasonal wildlife migra-
tion which would prompt broadscale spatiotemporal variation in lion 
movement in Laikipia. Additionally, livestock grazing is integrated 
across the landscape. Therefore, there is no significant spatial strati-
fication of seasonal vegetation regrowth that we would expect in 
order to similarly induce broadscale wildlife movements. We discuss 
potential ways to address seasonality in the system below but focus 
our study on categorizing sub-diurnal path-selection patterns more 
generally.

The ecological processes driving animal space use can be influ-
enced at multiple spatial scales. It is therefore important to deter-
mine the scale at which a species responds to a particular landscape 
feature (Galpern et al., 2012; Sawyer et al., 2011; Wiens, 1989). For 
each temporal analysis, we assessed the relationship between lion 
space use and landscape features across four spatial scales: 0, 12.5, 
25 and 50 km. The four spatial scales represent the bounds of an-
ticipated lion movement, from sedentary (0 km) to maximum-daily, 
home range-wide movement (50 km). We created nine available 
paths for every used path. Autocorrelation was avoided by creating 
available paths of identical length and topology for each correspond-
ing used path. Available paths were randomly rotated 0°–360° from 
the used path's starting location, and randomly shifted a distance in 
x and y coordinates (Cushman, 2010; Cushman & Lewis, 2010). The 
four spatial scales were represented in the random shift distance: 
0 km (no shift), 0–12.5, 0–25 and 0–50 km (Elliot et al., 2014). This 
was done for each PathSF analysis using R packages raster and sp 
(Hijmans, 2021; Pebesma & Bivand, 2005). This resulted in 36 avail-
able paths (nine per spatial scale) for each used path.

2.5  |  Conditional logistic regression analyses

We used a conditional logistic regression approach (Elliot et al., 2014; 
Kaszta et al.,  2021) to compare landscape variables encountered 
along used versus available paths (no intercept estimated). Condi-
tional logistic regression provides a robust way to rank alternative 
spatiotemporal models using Akaike information criterion corrected 
for small sample size (AICc; Anderson & Burnham, 2002; Compton 
et al., 2002; Cushman & Lewis, 2010; Hegel et al., 2010). Consistent 
with Coulon et al. (2008), we used Cox models and performed all sta-
tistical analysis in R 4.1.1 (R Core Team, 2021) using package coxme 
v.2.2-16 (Therneau, 2012). Predictor variables were derived in R by 
calculating the mean value of a GIS layer for all pixels that fell along 
used and available paths using the package raster (Hijmans, 2021). 
Lion ID was a random effect in all models.

We employed conditional logistic regression in a series of ana-
lytical steps: First, we performed a univariate scaling analysis to de-
termine the spatial scale at which path-selection occurred for each 
variable (McGarigal et al., 2016; Thompson & McGarigal, 2002). We 

used model selection to identify the spatial scale (0, 12.5, 25 and 
50 km) at which a variable impacted path-selection based on AICc 
(Anderson & Burnham, 2002). The scale with the lowest AICc rank-
ing was retained. Next, model selection was performed to retain 
the strongest predictor among correlated variables (≥|0.7| based 
on Pearson's correlation) and/or between different metrics of the 
same variable (Dormann et al., 2013). Again, only the variable with 
the lowest AICc was retained. This yielded uncorrelated variables at 
their best-performing metric and spatial scale. Lastly, remaining vari-
ables were incorporated into multivariate model selection to deter-
mine the most appropriate anthropogenic, land use and habitat model 
for each temporal scale (Elliot et al., 2014). Candidate models were 
progressively more complex, starting with the univariate model and 
finishing with the maximal model that included all variables in the 
group (e.g. Elliot et al., 2014; Zeller et al., 2016). We again used model 
selection to identify the best supported model (Tables S2–S4).

2.6  |  Space use maps

We used results from multivariate model selection to create em-
pirically optimized space use maps (Cushman et al., 2016; Elliot 
et al., 2014). Each multivariate PathSF provides quantitative insight 
on animal selection or avoidance of landscape features. This infor-
mation was subsequently used to parametrize lion space use maps 
with the equation 𝑧 = b1v1 + b2v2 + … + bnvn, where bi is the coefficient 
for variable vi (Table 1, Figure 2).

3  |  RESULTS

3.1  |  Univariate scaling analysis

Univariate scaling analyses revealed that lions most frequently 
selected or avoided landscape features at the 50 km spatial scale 
(Tables  S2–S4). This remained consistent across temporal scales, 
with the 50 km scale being selected in 86% (n = 131/148) of all scal-
ing analyses of variables. It was selected in 91% of anthropogenic 
(n = 58/64), 96% of land use (n = 27/28) and 82% of habitat (n = 46/56) 
scaling analyses. Habitat variables comprised the majority of the 0, 
12.5 and 25 km selected spatial scales (59%; n = 10/17; Table S4).

3.2  |  Multivariate analysis

Results are reported in Table 1 and Tables S5–S8.

3.2.1  |  Anthropogenic

Lions selected for proximity to fences and WA roads in every sub-
diurnal model. Fences were most strongly selected at dawn (more 
than twice that of daytime) followed by dusk and night, with the 

 26888319, 2023, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12276, W

iley O
nline L

ibrary on [27/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 14  |    Ecological Solutions and Evidence BURAK et al.

TA
B

LE
 1
 
Pa
ra
m
et
er
 e
st
im
at
es
—
co
ef
fic
ie
nt
s 
(C
oe
ff
.) 
an
d 
st
an
da
rd
 e
rr
or
s 
(S
.E
.)—
of
 m
ul
tiv
ar
ia
te
 c
on
di
tio
na
l l
og
is
tic
 re
gr
es
si
on
 m
od
el
s.

C
at

eg
or

y
Va

ria
bl

e

D
ay

D
us

k
N

ig
ht

D
aw

n

Co
ef

f.
S.

E.
Co

ef
f.

S.
E.

Co
ef

f.
S.

E.
Co

ef
f.

S.
E.

A
nt
hr
op
og
en
ic

Bu
ilt

 s
et

tle
m

en
ts

−0
.2
88

0.
20

7
0.

50
1

0.
10

0
−0
.3
44

0.
20

7
0.

52
3

0.
12

1

Fe
nc

es
−0
.7
33

0.
39

6
−1
.9
41

0.
32

0
−0
.9
98

0.
49

8
−2
.0
23

0.
37

5

H
um

an
 p

op
ul

at
io

n
−2
6.
33
8

4.
13

2
−2
8.
21
2

11
.5

62
−1
9.
41
9

3.
44

6
−4
4.
67
5

21
.4

60

In
fr

as
tr

uc
tu

re
0.

80
0

0.
63

5
−0
.3
29

0.
29

6
0.

55
2

0.
59

6
−0
.4
55

0.
53

0

La
nd

 c
on

ve
rs

io
n

−1
.3
63

0.
44

9
—


—


−4
.6
15

1.
56

6
−1
7.
61
4

0.
00

0

Ro
ad
s 
(a
ll)

1.
16

3
0.

72
6

—


—


0.
04

4
1.

22
8

—


—


Ro
ad
s 
(n
on
-W
A
s)

0.
36

9
0.

20
0

−0
.3
38

0.
31

3
−0
.8
89

0.
35

1
0.

45
1

0.
42

1

Ro
ad
s 
(W
A
s)

−6
.2
90

1.
16

3
−4
.8
74

1.
31

7
−7
.0
79

1.
85

1
−4
.5
27

0.
88

0

La
nd

 u
se

C
ro

pl
an

d
−1
.6
65

0.
68

7
−4
.1
37

4.
30

2
−1
.1
67

0.
03

7
−1
.2
07

1.
35

6

C
ul

tiv
at

ed
 la

nd
−0
.3
29

0.
27

0
−1
.1
58

0.
63

5
−0
.2
06

8.
66

9
−1
.2
55

0.
72

1

D
am

s
−1
.0
62

0.
44

1
−0
.3
67

0.
28

5
—


—


−0
.4
56

0.
23

4

Li
ve

st
oc

k
−3
.0
56

0.
69

5
−1
.3
83

0.
20

0
−2
.0
79

12
14

.5
29

−1
.5
22

0.
27

3

W
A
s

−1
.5
64

0.
30

9
—


—


—


—


—


—


H
ab

ita
t

Ba
rr

en
 la

nd
−1
.1
13

1.
54

6
—


—


—


—


—


—


D
ec

id
uo

us
 c

ov
er

−7
.6
50

0.
92

0
−2
45
3.
80
3

0.
00

0
−1
0.
53
4

48
38

−7
64
.8
22

0.
00

0

EV
I

—


—


−0
.5
08

0.
34

5
—


—


0.
04

1
0.

39
7

H
ab

ita
t h

et
er

og
en

ei
ty

—


—


−0
.0
40

0.
46

5
—


—


−0
.4
06

0.
43

3

H
er

ba
ce

ou
s 

co
ve

r
—


—


2.
08

1
0.

98
9

—


—


1.
95

3
0.

96
9

Sh
ru

bl
an

d
—


—


−1
.9
61

3.
55

0
−0
.0
85

46
7.

80
0

−1
.0
36

2.
77

8

Sl
op

e
−0
.5
13

18
.9

08
−1
.8
01

0.
38

3
−1
.1
37

12
0,

30
0

−0
.6
48

0.
25

6

VC
F 

N
TV

—


—


—


—


1.
50

6
0.

05
1

—


—


W
at

er
−0
.3
48

0.
02

2
−0
.2
50

0.
14

7
−0
.7
22

4.
82

9
—


—


 26888319, 2023, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12276, W

iley O
nline L

ibrary on [27/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7 of 14Ecological Solutions and EvidenceBURAK et al.

weakest selection during the day. There was strong selection for 
WA roads across time, with the strongest selection occurring during 
the night. Lions avoided locations of high human population in every 
model, with avoidance peaking during daylight hours (dusk–dawn) 
and nighttime exhibiting the weakest avoidance. Lions avoided areas 
of high land conversion in most models, with the strongest avoid-
ance at dawn, followed by night and day. Selection or avoidance of 
built settlements and infrastructure followed no discernible pattern: 
Built settlements were avoided at dusk and dawn, but selected dur-
ing the day and night whereas infrastructure was selected at dusk 
and dawn but avoided during the day and night. Coefficient values 
for selection and avoidance of these variables remained relatively 
weak overtime. Non-WA roads were selected at night but avoided 
during daylight hours.

3.2.2  |  Land use

Lions avoided livestock, cultivated land and cropland in every sub-
diurnal model, but the extent to which they did varied as evidenced 
by the coefficients. Avoidance of livestock peaked during the day-
time and was weakest at dusk and dawn. Avoidance of cropland 
peaked at dusk and remained relatively constant during all other 
times of day. Similarly, avoidance of cultivated land peaked at dusk 
and dawn and remained relatively constant during the day and 

night. Lions selected for proximity to dams in most models, with the 
strongest selection during daytime hours. Lions only selected for 
proximity to WAs in the daytime model.

3.2.3  |  Habitat

Lions avoided steep slopes and deciduous cover across all scales. 
Lions also avoided shrubland, except during the day. Lions selected 
for proximity to water in most models. Lions avoided areas of high 
habitat heterogeneity at dusk and dawn, but selected for high her-
baceous cover during these periods. Lions selected for EVI at dawn, 
but avoided EVI at dusk and selected for VCF NTV (non-tree vegeta-
tion) at night. Lastly, barren land was avoided during the day.

3.3  |  Space use maps

Table 1 summarizes variable coefficients incorporated into space use 
maps. All sub-diurnal maps revealed higher space use in central Lai-
kipia where WAs are concentrated and limited lion space use in the 
more urban southwest (Nyahururu town) and northwest (Nanyuki 
town) corners of the county (Figure  2). Additional constraints to 
space use were detected near pastoral grazing areas in the north-
east part of the county at night (Figure 2c). General estimates of lion 

F I G U R E  2 Space use maps for Laikipia, Kenya parameterized across (a) daytime, (b) dusk, (c) nighttime and (d) dawn temporal scales; 
larger values indicate greater space habitat use.
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space use increased at night and dawn (Figure 2c,d) and decreased 
during the day towards dusk (Figure 2a,b).

4  |  DISCUSSION

Univariate scaling analyses overwhelmingly demonstrated that 
landscape features were most frequently selected or avoided at 
the 50 km spatial scale. The broad-scale impact of anthropogenic 
and land use variables was expected given the pervasive effects of 
human land use, activity and presence that has been demonstrated 
on wildlife populations worldwide (Tucker et al., 2018). The selection 
of all variable types, including habitat variables, at the 50 km scale is 
likely reflective of the broad homogeneity of the study area land-
scape. Laikipia is comprised of varying anthropogenic, ecological and 
climatic features, however, on average, their spatial juxtaposition 
creates an apparent uniform pattern across the landscape (Pringle 
et al., 2010; Schmitz, 2010). This does not imply that path selection 
is not determined by features at finer scales. But such an assessment 
would require relating lion use of a landscape's fine-scale nuances 
in terms of the behavioural and/or energetic basis of animal move-
ment between features such as vegetation cover types and water 
availability, something that is currently precluded by the nature of 
our data.

Whereas landscape features impacted path-selection at a uni-
form spatial scale, multivariate model selection and subsequent 
space use maps demonstrated temporal variation in lion path-
selection and space use. The variation that we observed in sub-
diurnal space use reveals decreased space use during daylight hours, 
as demonstrated by lower variation in space use values (Figure 2a,b). 
Such findings are supported by established lion ecology: lions typi-
cally rest during daylight hours when energetic demands are height-
ened by temperature and when anthropogenic risk is heightened 
by increased human activity (Elliot et al., 2014; Suraci et al., 2019). 
However, even at night when space use estimates increase, there 
is still limited space use in the more urban southwest corner and 
the community livestock grazing areas of northeast Laikipia (Fig-
ure 2c,d). These results support the presence of a human–lion land-
scape of fear in which anthropogenic risk is predictable in both space 
and time, and subsequently lions minimize such risk by using spatio-
temporal refuges (Palmer et al., 2022). Previous studies demonstrate 
that lions resort to spatiotemporal niche partitioning in human-
dominated landscapes, rather than complete avoidance of humans 
(Elliot et al., 2014; Oriol-Cotterill, Macdonald, et al., 2015). The sub-
diurnal variation in lion space use in Laikipia suggests some level of 
spatiotemporal adaptability to human presence, despite continued 
avoidance of some anthropogenically risky locations.

Notably, although our maps visualized relatively high estimates 
of lion space use in Laikipia (Figure 2), lions are utilizing seemingly 
suitable areas very little. This is evidenced by an overwhelming se-
lection for WAs, most of which are condensed in central Laikipia (e.g. 
97% of GPS points vs. 38% of land area). There are no physically 
impermeable barriers confining lions to WAs (Dupuis-Désormeaux 

et al., 2016; Evans & Adams, 2016), and non-WAs lie within lion 
home ranges. Other studies have similarly found carnivore prefer-
ence for WAs (Klaassen & Broekhuis, 2018). WA selection may be 
driven by a landscape of fear in which lions avoid perceived anthro-
pogenic risk by erecting behavioural barriers in lieu of physical bar-
riers (Gaynor et al.,  2019; Oriol-Cotterill, Macdonald, et al.,  2015; 
Oriol-Cotterill, Valeix, et al.,  2015). The generally high estimates 
of space use may be due to the fact that risk variation decreases 
when a species accesses spatial and temporal refuges within a land-
scape of fear (Palmer et al., 2022). Studies demonstrate that human–
wildlife conflict and anthropogenic mortality risk can concentrate 
along WA edges and immediately outside of WAs (Schiess-Meier 
et al., 2007). In Laikipia, some WAs border community-run livestock 
grazing areas, and unauthorized livestock grazing also frequently 
occurs along WA boundaries. Lion spatiotemporal avoidance of live-
stock grazing areas has been well documented (Everatt et al., 2023; 
Loveridge et al., 2017; Valeix et al., 2012). WA preference is also re-
flected in our results by the selection for WA roads and daytime 
avoidance of binary non-WA roads. Large carnivores are known to 
utilize low-trafficked dirt roads—commonly WA roads—for ease of 
movement and hunting but avoid high-trafficked and noisy paved 
roads—commonly non-WA roads—which are a significant mortality 
risk (Caro et al., 2014; Kelly et al., 2012; Wynn-Grant et al., 2018; Yiu 
et al., 2019). Additionally, prey accessibility within the WAs (Crego 
et al., 2020, 2021) can influence predator space use. Follow-up stud-
ies are required to discern whether selection for WAs is an artefact 
of our non-random sampling or is derived from the presence of non-
collared lions in surrounding areas, a landscape of fear and/or prey 
accessibility. We encourage future studies to synchronize predator–
prey GPS collaring events such that complementary fix-rates of 
GPS data provide the sub-diurnal spatiotemporal variation needed 
to study predator–prey interactions. This could support a foraging 
study that compares selection of prey, and livestock, across land use 
types that vary in anthropogenic risk.

Multivariate model selection also revealed that anthropogenic 
and land use variables—landscape features that can pose anthro-
pogenic mortality risk—do not always impact path-selection in the 
same manner across temporal scales. Indeed, some variables were 
universally avoided: Lions avoided locations of high human popu-
lation, livestock presence and cropland across all scales (n = 4/4), 
as well as areas of high land conversion in most sub-diurnal models 
(n = 3/4). This avoidance is likely indicative of the inherent anthro-
pogenic risk at such locations. For example, avoidance of humans 
was highest during daylight hours (dusk, day and dawn) when 
human activity is highest. Similarly, avoidance of livestock was 
highest during the day when livestock is grazed. However, some 
anthropogenic and land use variables were universally selected 
across temporal scales: Lions selected for proximity to fences 
(n = 4/4), likely indicative of their use of fence lines in movement 
and hunting strategy. Lions have been observed using fences ‘like 
a net [to] drive prey up against them’ (Alayne Oriol-Cotterill, pers. 
comm., 2022). Lions also selected for proximity to dams (n = 3/4), 
and it was surprising that selection was strongest during the day 
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when livestock is most frequently brought to dams to drink water. 
This is likely reflective of a trade-off in which anthropogenic risk 
at dams is outweighed by the selection for a specific resource 
(e.g. water, or accessible livestock and/or prey). Lions selected for 
proximity to WAs during the day, which was expected because 
WAs act as wildlife-friendly refuges from anthropogenic mortality 
risk during hours of peak human activity. Lastly, path-selection for 
some anthropogenic and land use variables—infrastructure, built 
settlements, cultivated land, non-WA roads and WAs—fluctuated 
between selection and avoidance across temporal scales. This was 
surprising because we expected the anthropogenic risk inherent in 
the variables to be reflected in the same directional effect (avoid-
ance) across scales. Avoidance of non-WA roads during the day, 
but selection at night, is likely because of the higher and lower 
rates of road usage and subsequent anthropogenic risk during 
these times. Overall, multivariate model selection for anthropo-
genic and land use variables demonstrates that, although some 
variables have uniform impact on path-selection overtime, others 
are more nuanced and may depend on their interaction with other 
variables included in model selection.

Multivariate model selection for habitat variables revealed simi-
lar contextual nuances. Lions selected for proximity to natural water 
(e.g. streams, rivers), potentially a reflection of prey presence at 
these locations. As expected, lions avoided steep slopes because of 
lower energetic demands in movement (Nisi et al., 2022). Lions also 
avoided barren land and selected for shrubland during the daytime 
when exposure to anthropogenic risk is greatest. Building off this, 
lion path-selection for other vegetative variables was mixed. Gen-
eral avoidance of deciduous cover may be because this vegetation 
type is limited in the landscape and because deciduous trees typi-
cally do not offer significant understorey to camouflage lions. Selec-
tion for herbaceous cover and high VCF NTV reflects lion preference 
for thicker vegetation cover, particular at night while hunting (Elliot 
et al., 2014; Oriol-Cotterill, Valeix, et al., 2015; Schuette et al., 2013). 
However, selection and avoidance of EVI did not follow a discernible 
pattern. As a metric of general greenness, this may reflect nuances 
between locations that are similarly ‘green’ but vary in anthropo-
genic activity or risk (e.g. conservancy grassland vs. livestock grazing 
areas).

4.1  |  Synthesis and applications

Selection functions can be instrumental in informing the design of 
coexistence landscapes (Everatt et al.,  2023). Our results demon-
strate that strategies for lion conservation and human–lion coexist-
ence should recognize how spatiotemporal context drives variation 
in the impact of landscape features on lion space use.

The 50 km spatial scale at which path-selection was detected is 
conducive to the broad scale at which land management strategies 
are designed and executed. As such, we suggest that land manage-
ment focus on this home range-scale spatial approach when design-
ing, implementing and/or adaptively managing strategies to support 

free-ranging lions and long-term human–lion coexistence. This could 
include the construction or removal of fencing, road design and reg-
ulations (e.g. size and speed limitations of carriageways), and loca-
tion of wildlife crossings or corridors. Some level of lion adaptability 
within the landscape is demonstrated by path-selection which does 
not completely avoid anthropogenic and land use variables. In turn, 
scenario modelling that incorporates the quantified direction (selec-
tion or avoidance) and strength of a variable's impact on lion path-
selection can help to predict whether a specific conservation goal 
(e.g. avoidance of a high-conflict area, enhanced lion connectivity) 
would be achieved within various land management options. How-
ever, assessment of scenario modelling will need to carefully con-
sider lions' limited use of seemingly accessible land, particularly if 
the lesser-utilized northeastern corner of Laikipia is to continue to 
be considered a connectivity corridor into the neighbouring Sam-
buru ecosystem and lion population (Elliot et al., 2021; Frank, 2011, 
2023). A home range-scale approach will spatially cross private 
properties (e.g. ranches, conservancies, private properties, etc.) and 
land use types (e.g. WAs, non-WAs), thereby requiring conservation 
programs that are community engaged, if not community driven. 
This will require negotiated relationships with landowners and other 
stakeholders (Sachedina & Nelson, 2010). Land management strat-
egies this human–wildlife system must account for individual and 
collective decision-making, as well as stakeholder tolerance, that 
support wildlife-friendly properties. This propels a continued need 
to reconcile co-occurring, and sometimes opposing, landscape ac-
tivities (e.g. lion–livestock conflict on wildlife-compatible livestock 
ranches; Frank, 2011; Suraci et al., 2019).

We suggest that human–lion conflict mitigation strategies be 
sub-diurnally adaptive. Our results highlight fine-scale temporal 
variance in lion path-selection and space use, suggesting that some 
ecologically informed conservation approaches must be enacted 
sub-diurnally, rather than seasonal or annual agendas, or pre/post-
landscape change (Cushman et al., 2011; Kaszta et al., 2021; Zeller 
et al., 2018). Community-based conservation organizations already 
practice sub-diurnal conflict mitigation strategies, such as enhanced 
livestock guarding between dusk and dawn when lions move closer to 
agro-pastoral areas (Oriol-Cotterill, Macdonald, et al., 2015). These 
practices could be expanded to increase the availability of vegeta-
tive patches that act as spatiotemporal refuge within a landscape 
of fear (Palmer et al., 2022), thereby reprieving lions from daytime 
anthropogenic risk (sensu Oeser et al., 2023; Schuette et al., 2013). 
Increased vegetative cover could also bolster lion hunting success, 
potentially enhancing prey accessibility at night and lessening the 
need to consume livestock.

Seasonality is becoming increasingly irregular across Kenya, evi-
denced by prolonged droughts and intermittent rains. Seasons have 
typically been designated based on months of the year, but this is 
now unreliable and often inaccurate. Annual rainfall in Laikipia is 
patchy and can vary dramatically between properties (e.g. 400–
1200 mm; Butynski & Jong, 2014), thus the impact of seasonality 
on wildlife distribution is most acutely observed within property 
with wildlife moving between natural and artificial water sources 
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(e.g. rivers and dams). We encourage future assessments of wildlife 
resource selection in Laikipia to focus on climatic analyses at a sub-
property scale, rather than the traditional county level. The collec-
tion of such data (rainfall, water availability and temperature; e.g. 
Funk et al., 2014) will be critical to appropriately designate seasons 
or, at least, accurately describe temporal climatic conditions. This 
could bolster ecological knowledge by quantifying the effect of cli-
mate on wildlife resource selection.

We recommend that future research more intricately assess 
landscape suitability versus usage for lions, and other species. 
Understanding how landscape features affect species behaviour, 
path-selection and space use will contribute to understanding 
other aspects of species viability (e.g. dispersal and gene flow). 
Future research should parse out the behavioural patterns behind 
lion selection for or avoidance of specific landscape features and, 
in turn, how this affects frequency of space use. For example, re-
search on food-web interactions and foraging ecology may shed 
light on whether lions' preferential selection of WAs is correlated 
with livestock and/or prey accessibility. If lions select for prey ir-
respective of livestock presence (i.e. irrespective of a landscape of 
fear), then conflict mitigation strategies could focus on enhancing 
prey availability (Bauer et al., 2010; Everatt et al., 2019, 2023). If 
livestock are being selected where there is equally accessible prey, 
then lion accessibility to livestock will need to be reduced (e.g. 
enhanced landscape barriers, stronger livestock corrals, reduced 
retaliatory lion killings; Hazzah et al., 2014; Loveridge et al., 2017). 
Or, if lion path- and prey-selection stems from a landscape of fear, 
then conflict mitigation strategies could include livestock grazing 
which is centralized near landscape features that lions are known 
to avoid (Everatt et al., 2023).

Finally, our study is based upon data from pride lions—known to 
be the most risk-averse lion demographic. We encourage future re-
search to pursue similar analyses on dispersing males—known to be 
less risk-averse and subsequently more prone to human conflict (El-
liot et al., 2014)—to quantify space use for the entire species, provide 
information on suitable habitat for breeding populations, and more 
comprehensively address human–lion conflict. The persistence of 
large carnivores like lions will continue to depend on adequate space 
use, minimized conflict events and human tolerance (Kissui, 2008; 
Lichtenfeld,  2005). Understanding the spatiotemporal scales at 
which large carnivores navigate human–wildlife systems will offer 
insight into continued strategies for species resilience under contin-
ued landscape change.
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