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Abstract

1. Temporal fluctuations in cause the spatial extent of wet and dry habitats to

vary in aquatic–terrestrial riverine ecosystems, complicating their biomonitoring.

As such, biomonitoring efforts may fail to characterize the species that inhabit

such habitats, hampering assessments of their biodiversity and implementation of

evidence-informedmanagement strategies.

2. Relationships between the dynamic characteristics of aquatic–terrestrial habi-

tats and their communities are well known. Thus, habitat characteristics may

enable estimation of faunal assemblage characteristics such as taxonomic richness,

regardless of in-channel water levels.

3. We investigated whether indicators summarizing habitat survey data can predict

two metrics representing terrestrial invertebrate assemblages (e.g. taxa richness)

in two aquatic–terrestrial habitats: exposed riverine sediments and dry temporary

streams. We also compared the performance of unimetric and multimetric habitat

indicators in making predictions.

4. In exposed riverine sediments,>88% of predictions were correlated with observed

taxa richness and an index of conservation status. Values predicted by exposed

riverine sediment samples were correlated with those observed in temporary

stream channels with comparable riparian (i.e. largely agricultural) land use, but not

those observed in channels with contrasting (i.e. more urban) land use.

5. Unimetric habitat indicators performed similarly tomore complexmultimetric indi-

cators, with each explaining ≤6% of the variability in taxa richness and the index

of conservation status. The different spatial scales at which invertebrates respond

to habitat conditions and at which indicators record habitat conditions, and a more

comprehensive training dataset that incorporates a full range of habitat conditions

(i.e. land use), may improve future predictions.

6. We demonstrate that invertebrate assemblage characteristics can be predicted

regardless of in-channel water levels. Agreement between exposed riverine
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sediment predictions and temporary stream observations suggests that these pre-

dictions are transferable among a range of aquatic–terrestrial habitat types, and

could thus be widely applied to aid conservation of riverine biodiversity in dynamic

aquatic–terrestrial ecosystems.

KEYWORDS

disturbance, exposed riverine sediment, habitat survey, inundation, prediction, rarity, richness,
temporary stream

1 INTRODUCTION

Inundation by water—from gradual rewetting to major flood events—

characterizes disturbance in aquatic–terrestrial habitats. Inundation

promotes high rates of trophic exchange and high habitat heterogene-

ity at small spatial scales, fostering unique invertebrate communities

(Sabo et al., 2005; Schindler & Smits, 2017; Soininen et al., 2015),

which include rare and specialist species (Ramey & Richardson, 2017).

However, anthropogenic activities are altering the hydrological and

morphological characteristics of aquatic–terrestrial habitats, reducing

or eliminating inundation-prone areas and their associated commu-

nities (Kennedy & Turner, 2011; Paetzold et al., 2008). Effective

monitoring strategies are thus needed to characterize and protect

biodiversity within aquatic–terrestrial habitats.

Aquatic–terrestrial riverine habitats are inherently difficult to

biomonitor due to temporal variability in events such as inundation

(Bates et al., 2006; O’Callaghan, Hannah, Boomer, et al., 2013; Sarneel

et al., 2019). For example, mobile, inundation-tolerant ground beetles

(Coleoptera: Carabidae) colonize newly dry habitatswithin days (Bates

et al., 2007; O’Callaghan, Hannah, Boomer, et al., 2013). However,

less-mobile species avoid recently inundated habitats (O’Callaghan,

Hannah, Boomer, et al., 2013). Thus, the outcomeof terrestrial biomon-

itoring in disturbance-prone habitats depends on species-specific

responses to events like inundation. Additionally, unpredictable inun-

dation can render standard terrestrial sampling techniques ineffective.

For example, passive sampling devices (e.g. pitfall traps) left in aquatic–

terrestrial habitats for days-to-weeks may be lost if water levels rise.

Equally, rapid bioassessment methods (e.g. ground searching: Webb

et al., 2022) can only be used when in-channel habitats are not inun-

dated. Thus, the relative timing of inundation and sampling events

influence both sampling success and the species captured, hindering

estimation of biodiversity.

Difficulties in characterizing communitieswithin aquatic–terrestrial

riverine habitats leave them largely excluded from biomonitoring pro-

grammes (Skoulikidis et al., 2017; Stubbington et al., 2018). However,

terrestrial invertebrates respond predictably to long-term average

habitat conditions (Koivula, 2011; Rainio&Niemelä, 2003), andhabitat

survey data may thus enable estimation of assemblage characteris-

tics such as taxonomic richness, rarity and composition. Professional

habitat survey protocols (e.g. United States Environmental Protec-

tion Agency, 2017) are typically complex, requiring equipment and

extensive training to complete, which makes them unsuited to the

widespreadand frequent assessments needed to characterize aquatic–

terrestrial riverine habitats. However, simpler standardized habitat

surveys that can be conducted with limited training and equipment

have been developed for community (i.e. citizen) scientists (e.g. Shuker

et al., 2017). Such habitat survey data can be used to calculate sim-

ple, unimetric indicators that characterize key habitat features such

as water availability, or be combined into multimetric indicators that

summarize overall conditions (Gurnell et al., 2020a). Many such habi-

tat indicators represent features that influence terrestrial fauna, such

as habitat complexity, which increases both alpha and beta diversity

(Lassau et al., 2005; Lengyel et al., 2016), and could thus enable predic-

tion of invertebrate assemblage characteristics in aquatic–terrestrial

riverine habitats.

We evaluated whether habitat indicators can predict metrics char-

acterizing terrestrial invertebrate assemblages, and could thus be used

to increase their representation in biomonitoring programmes. Specif-

ically, we selected terrestrial beetles (Table S1) to represent inverte-

brate assemblages, as a ubiquitous, abundant and diverse groupwithin

aquatic–terrestrial riverine habitats (Sadler et al., 2004) which have

a wide range of well-known habitat preferences (Rainio & Niemelä,

2003; Webb et al., 2018) and which respond to multiple environ-

mental drivers (e.g. moisture, shade, temperature: Koivula, 2011). In

addition, some terrestrial beetles are specialists that rely on aquatic–

terrestrial riverine habitats for survival (Bates, 2005), many of which

are rare (Webb et al., 2018) and thus require effective monitoring and

protection.

Beetle community composition differs both spatially between and

temporally within aquatic–terrestrial habitats. We therefore selected

biotic metrics that characterize communities regardless of compo-

sitional differences (e.g. taxonomic richness), to allow application

of our predictive method beyond the habitats tested herein. We

hypothesized that habitat indicators can be used to predict beetle

assemblage taxonomic richness and conservation status (i.e. rarity) in

aquatic–terrestrial riverine habitats (H1). We tested this hypothesis

in two habitat types: exposed riverine sediments (ERS) and tem-

porary streams. ERS are fluvially deposited sediments within river

channels with perennial flow (Bates et al., 2005; Sadler et al., 2004),

whereas temporary streams are those inwhich surface sediments peri-

odically dry. Both are widespread (Datry et al., 2014; O’Callaghan,

Hannah, Williams, et al., 2013), biodiverse (Corti & Datry, 2016;
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Sadler et al., 2004) and increasingly threatenedbyanthropogenic activ-

ities (Acuña et al., 2014; Paetzold et al., 2008). We also compared

the performance of different habitat indicators, and hypothesized that

more complex multimetric indicators can characterize variability in

faunal ERSmetrics more effectively than unimetric indicators (H2).

2 MATERIALS AND METHODS

2.1 Data collection

2.1.1 ERS dataset

Weuseddata collatedbyBuglife (an invertebrate conservation charity)

and Natural England (an advisory body to the U.K. government) from

baseline surveys that aimed to characterize the beetle fauna of ERS.

The dataset comprises 91 terrestrial beetle assemblage samples col-

lected between May and July in 2003–2019 at 39 ERS sites on nine

rivers in England and Wales. All sites were rural, being surrounded

by arable land, pasture and/or semi-natural scrubland (Figure S1),

with >80% of samples collected from sites which are nationally pro-

tected for their wildlife, geomorphology or geology (Natural England,

2021).

Sampleswere collectedbypitfall trapping (n=34) or ground search-

ing (n = 57: Webb et al., 2022). Pitfall traps comprised buried plastic

cups (8 cm diameter, 10 cm height), with the cup lip level with the sedi-

ment surface. Topreservebeetles, each trap contained100ml ethylene

glycol and 5 ml detergent. At each site, seven to 10 traps set 2 m apart

were left in place for 14 days. On retrieval, all traps from a site were

pooled into one sample. Ground searches lasted 1 h, during which time

all habitats between the base of the bank and the water’s edge along

approximately 10 m of the channel were manually disturbed and all

organisms were collected using an aspirator. Terrestrial beetles were

identified to species level and recorded as present.

The Modular River Survey (MoRPh: Shuker et al., 2017) was used

to characterize the physical habitat at each site from five to 10 pho-

tographs taken by field surveyors at the time of beetle sampling to

depict bank-top land use, bank features and the beetle sampling area.

MoRPh surveys are usually conducted in the field, but the type and

extent of habitat features can be quantitatively estimated using pho-

tographs (Hill et al., 2005) and photographs are used to remotely verify

MoRPh data (Gurnell et al., 2020a). Thus, given the large number

of photographs from each site, which were taken by trained ecolo-

gists seeking to record habitat conditions, the photographs provide

an adequate record of habitat conditions from which to complete a

MoRPh survey. Minor site-specific features may have been absent or

unidentifiable from the photographs, aligning with MoRPh’s exclusion

of features covering <5% of the survey reach in the calculation of

indicators.

Three standardized indicators that represent habitats from the

water’s edge to 10 m lateral to the bank top were calculated from

the MoRPh data (see MoRPh Supporting Information for calcula-

tions). Each indicator was selected based on evidence that the habitat

conditions it characterizes can influence beetle community responses

(Table S2). Habitat complexity (hereafter,HabComplex) is a multimetric

indicator calculated from four unimetric components: (1) the type and

extent of wood habitat (Wood, e.g. fallen trees, exposed roots); (2) the

type and extent of bank-top water features (WatFeat, e.g. ponds, side

channels); (3) the type and extent of natural bank-face features (Bank

face, e.g. vegetated bars, riverine cliffs) and (4) the type and extent

of natural bank profiles (Profiles, e.g. overhanging, gentle). The other

two indicators are unimetric, characterizing the number of riparian and

bank-face vegetation morphotypes (VegMorph, i.e. short grass/herbs,

tall grass/herbs, scrub/shrubs, trees/saplings) and the type and extent

of anthropogenic land cover (AnthroCover, e.g. industrial buildings,

residential buildings, grazed land, plantation woodland). During calcu-

lation, the MoRPh method scales indicators so the probable range of

values is 0 (extremely low) to 10 (extremely high: Gurnell et al., 2020b).

2.1.2 Temporary stream dataset

Two temporary streamdatasetswere combined. The first dataset, pub-

lished in Bunting et al. (2021), was collected from five sites in one dry

stream (Candover Brook) in south central England between June and

September 2019 (Figure S2). The catchment is dominated by arable

and pastoral agriculture (51% of total catchment land use), with min-

imal urban areas (4%). Based on observations from site visits by the

Environment Agency (a regulatory body in England), sites had dried

2–181 weeks (±1 week) prior to sampling. Beetles were collected by

ground searching (n = 5) and pitfall trapping (n = 10) as described

for the ERS dataset, except pitfall traps were left in place for 7 days,

not 14 days. The second dataset was collected from one site in each

of two dry streams (the Rivers Misbourne and Ver) north of London,

England between May and September 2019 (Figure S3). These sites

werewithin or in direct proximity to urban areaswhich comprise 16%–

19%of land use, withwider catchment land uses being primarily arable

and pastoral agriculture (34%–51%). Sites had dried 1–220 weeks

before sample collection. Beetles were sampled by pitfall trapping

(n = 8) as described for the ERS dataset; no ground searching was

undertaken. For all temporary stream sites, MoRPh surveys were con-

ducted in the field at the same time as beetle sampling. Terrestrial

beetles were identified predominantly to species level (61% of indi-

viduals), except some small and ambiguous specimens which were

resolved to genus (11%) or family (28%).

2.2 Data analysis

2.2.1 Data preparation

In calculating metrics to test H1–2, pooled pitfall trap samples were

considered comparable regardless of the number of individual pitfall

traps they contained because increased sampling effort (i.e. deploy-

ing more traps) has a limited impact on capture rates (Brose, 2002;

Webb et. al., 2022). Pooled pitfall traps and ground searches can
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capture a similar number of taxa (e.g. Melbourne, 1999; Phillips &

Cobb, 2005; Privet et al., 2020; Zanetti et al., 2016), so were also

considered comparable (also seeWebb et. al., 2022).

To test H1–2, two biological metrics were calculated: taxonomic

richness (i.e. the number of taxa per sample, using the vegan package:

Oksanen et al., 2019) and the sum of species quality scores (sSQS), an

index of conservation status (Webb et al., 2018). To avoid inflation of

these biotic metrics, beetles in the temporary stream dataset identi-

fied to multiple taxonomic levels were assigned to a most likely taxon

(Cuffney et al., 2007). To calculate sSQS, a score for each species based

on their threat and rarity status was obtained from a national inver-

tebrate conservation database (Pantheon: Webb et al., 2018). Scores

range between 1 and 32, with higher values indicating rarer, more

threatened species (Table S3). Avalueof1 (commonnative species)was

assigned to unscored native species and specimens identified to genus

or family. Scores for all taxa in a samplewere summed as sSQS. Special-

ist species (e.g. wood specialists) were also identified using Pantheon,

and their method of capture was noted.

Stepwise variance inflation factor analysis (threshold = 3, using the

usdm package: Naimi et al., 2014; Zuur et al., 2010) was used to iden-

tify collinear fixed effect variables. HabComplex was collinear with

its four components, which were therefore not included in the same

models.

2.2.2 Predicting terrestrial invertebrate richness
and conservation status

To explore the ability of habitat indicators to predict taxonomic rich-

ness and conservation status in ERS, a cross-validation modelling

process was used, whereby different randomly selected parts of the

dataset were used to train and test model outcomes over 500 iter-

ations (Refaeilzadeh et al., 2009). To train the initial model, a subset

of 70 samples was randomly selected, and the remaining 21 samples

were used to verify the results. This random selection was repeated

for each iteration (i.e. 500 times) to quantify the effect of variability

within and between the training and verification subsets. Differences

(mean ± standard error) in richness and sSQS between training and

verification subsets were calculated for each iteration.

Each subset was used to train negative binomial generalized lin-

ear mixed-effect models (NB-GLMMs, using the lme4 package: Bates

et al., 2015). NB-GLMMs were used because exploratory analyses

highlighted the response variables (i.e. richness and sSQS) were non-

normally distributed and overdispersed. HabComplex, VegMorph and

AnthroCover were used as fixed effects to predict richness and sSQS.

The optimal random effect structure was determined by modelling

richness and sSQS with combinations of two potential random fac-

tors (sampling site and method: see Burnham & Anderson, 2002) and

selecting the most parsimonious structure using Akaike’s information

criterion (AIC). The final structure for both richness and sSQS training

models included only method as a random intercept.

Models derived from each of the 500 training subsets were used

to predict richness and sSQS for their respective verification subset.

To test whether habitat indicators can predict assemblage character-

istics (H1), the number of subsets with predicted richness and sSQS

values that were significantly correlated with observed values was

determined using Pearson product-moment correlations. The strength

of correlations between observed and predicted values was then sum-

marized for each subset using Pearson’s r and reduced major axis

regression (RMA, using the lmodel2 package: Legendre, 2018). RMA

was selected because observed richness and sSQS values were not

truly independent (i.e. uninfluenced by external factors, such as tem-

perature during sampling). Thus, RMA, which allows for variability in

both the observed and predicted values, wasmore appropriate to sum-

marize agreement between the two values than more widely used

regressionmethods (Harper, 2016).

Tables 1 and S4 present the minimum, maximum, mean, stan-

dard error (SE) and standard deviation (SD) (i.e. ‘summaries’) of the

strength (RMA slope, where 1 indicates perfectly correlated vari-

ables, and Pearson’s r) and significance (Pearson’s p) of correlations

over the 500 subsets. Table 1 presents summaries of RMA slope for

subsets with significant Pearson correlations, because RMA cannot

robustly summarize non-significant relationships (as tested using a

Pearson correlation: Legendre & Legendre, 2012). These summaries

encompass >88% of predictions, offer more robust estimates of the

strength of the relationship between observed and predicted val-

ues than Pearson correlations and are independent of the testing

of H1 (i.e. H1 was tested using the number of subsets with a sig-

nificant Pearson correlation, not the strength of RMA slopes from

only subsets with a significant Pearson correlation). Table S4 presents

summaries of RMA slope for subsets with non-significant Pearson cor-

relations for comparisonwith significantly correlated subsets (Table 1),

but should not be considered as evidence for assessing correlation

strength. To allow comparisons across all subsets regardless of sig-

nificance, Table S4 also includes summaries of Pearson’s r for all

subsets.

Due to the limited number of temporary stream samples (n = 23),

all ERS samples were used to train a new NB-GLMM following the

structure outlined for ERS. This training model was then used to pre-

dict richness and sSQS for all temporary stream sites and for rural

(i.e. Candover Brook) temporary stream sites only, based on their

habitat indicator values. The agreement between observed and pre-

dicted values was assessed using ranged major axis regression (RaMA:

Legendre, 2018; Legendre & Legendre, 2012), which scales variables

prior to regression, thus accounting for differences in taxonomic

resolution between ERS and temporary stream datasets.

2.2.3 Characterization of richness and sSQS by
multimetric and unimetric indicators

To test whether the multimetric habitat indicator characterized vari-

ability in ERS richness and sSQS more effectively than unimetric

indicators (H2), anNB-GLMMwasdeveloped for eachhabitat indicator

with richness or sSQSas the response variable andmethodas a random

intercept. Thehabitat indicatorbest characterizing variance in richness
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TABLE 1 Descriptive statistics summarizing significant reducedmajor axis (RMA) slopes and associated Pearson product-moment correlation
p-values assessing agreement between predicted and observed richness and sum of species quality scores (sSQS) for terrestrial beetle
assemblages sampled from exposed riverine sediments

Minimum Mean± SE Maximum SD

Richness RMA slope 0.251 0.638± 0.009 1.422 0.200

Pearson p 0.001 0.009±<0.001 0.049 0.011

sSQS RMA slope 0.258 0.629± 0.008 1.405 0.187

Pearson p 0.001 0.009± 0.001 0.049 0.011

and sSQS was identified by AIC, and models with ΔAIC < 2 were con-

sidered comparable. Marginal and conditional R2 (R2m and R2c) were

calculated to quantify the variance explained by each model (using the

MuMIn package: Bartoń, 2020).

All analyses were performed in R (R Core Team, 2020), and the

DHARMa package (Hartig, 2020) was used to check the assumptions

of all NB-GLMMs.

3 RESULTS

3.1 Habitat indicators

In ERS, all indicators except Bank face, Profiles and WatFeat occu-

pied the lower range (<5) of values, with Bank face and Profiles being

the only indicators exceeding the range of probable MoRPh values

(maximum: 12.5). In temporary streams, HabComplex, VegMorph and

AnthroCover values were comparable to those in ERS, except one

site with a VegMorph value of 4.5 (ERS VegMorph maximum + 0.5)

and another site with an AnthroCover value of 6.0 (ERS AnthroCover

maximum+ 2.0).

3.2 Assemblage composition

The ERS assemblages comprised 344 species from 22 families. Most

species were rove beetles (Staphylinidae: 43.9%) and ground beetles

(Carabidae: 28.2%), with the remaining 20 families comprising 27.9%.

Richness varied between 2 and 60 (mean ± SE: 22 ± 1.4) species

per sample. Bembidion tetracolum, Gastrophysa viridula and Paranchus

albipeswere the most common species, occurring in 53%–68% of sam-

ples. Individual species quality scores ranged from 1 (common) to 16

(Nationally Rare/Scarce and IUCN Endangered; International Union

for the Conservation of Nature, 2021; 1.6 ± 0.1), and sSQS from 2

to 66 (28 ± 1.8) per sample. Wood specialists Barynotus moerens, Glis-

chrochilus hortensis and Phyllobius glaucus each occurred in three to five

samples, across seven sites at which theWood indicator ranged from 0

to 1.4, and were only captured by pitfall trapping. These species were

not recorded at five sites with comparable or higher Wood indicator

values (0–2.9) at which only ground searching was undertaken.

Temporary stream samples contained 114 taxa from 18 families.

Most taxa were ground beetles (46.5%) and rove beetles (31.6%), with

the remaining 21.9% including 16 families. Richness varied between

2 and 27 taxa (12 ± 1.9) per sample. Individual species quality scores

ranged from 1 to 8 (Nationally Rare/Scarce and IUCN Vulnerable;

International Union for the Conservation of Nature, 2021; 1.2 ± 0.1),

and sSQS from 2 to 33 (14± 2.1) per sample.

3.3 Predicting taxonomic richness and
conservation status in ERS

Five of the 500 ERS iterations were discounted because one of the two

sampling methods was represented by insufficient samples to gener-

ate accurate estimates. Of the remaining 495 models, 444 (90%) and

438 (88%) predictions of richness and sSQS, respectively, were signif-

icantly correlated with observed values from their verification subset,

supporting H1. The maximum, mean ± SE and SD of RMA slopes were

comparable for richness and sSQS (Table 1, also see Table S4 for cor-

responding Pearson correlation summaries). Predicted richness and

sSQS were on average 0.2 ± 0.1 and 0.3 ± 0.1 lower than observed

values, respectively, with predictions of sSQS beingmore variable than

predictions of richness (SD= 14.9 and 11.3, respectively).

3.4 Predicting taxonomic richness and
conservation status in temporary streams

In temporary streams, predicted and observed values were not cor-

related for richness (RaMA: slope = −0.185, p = 0.352) or sSQS

(slope = −0.446, p = 0.267; Figure 1a,c), contrary to H1. Rural tem-

porary stream assemblages had richness values of 2–25 (mean ± SE:

14 ± 2.0) and sSQS values of 2–31 (16 ± 2.3), whereas in the more

urban assemblages, both metrics were lower, ranging from 2 to 7

(4 ± 0.7). As such, only rural temporary stream assemblages were

comparable to those in equivalent ERS samples (i.e. pitfall trap sam-

ples: richness 13–59 [31 ± 1.8], sSQS 13–66 [39 ± 2.6]). Removing

the more urban samples resulted in correlations between values pre-

dicted for rural ERS sites and observed in rural temporary stream sites,

for both richness and sSQS (richness slope = 0.906, p = 0.003, sSQS

slope = 1.007, p = 0.010; Figure 1b,d), supporting H1. Richness and

sSQS in rural temporary streams were over-predicted (richness +5,

sSQS +17; Figure 1b,d), likely due to the higher taxonomic resolution

of the ERS training samples.
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F IGURE 1 The relationship between observed and predicted taxonomic richness (a, b) and sum of species quality scores (sSQS: c, d) for
temporary streams including (a, c) and excluding (b, d) assemblages frommore urban sites. Triangles and circles represent assemblages frommore
urban and rural sites, respectively. Grey lines indicate the optimal 1:1 correlation, and solid and dashed black lines indicate the observed
correlation and 95% confidence interval

3.5 Characterization of richness and sSQS by
multimetric and unimetric indicators

Richness and sSQS responded to two habitat indicators, increasing

with both the multimetric indicator HabComplex and the unimetric

indicator WatFeat (Figure 2; Table S5). HabComplex had a 3.7× and

4.4× greater effect than WatFeat on richness and sSQS, respectively.

HabComplex and WatFeat each explained 6% of the variance in rich-

ness, with other indicators accounting for ≤2% (R2m) and method

for ≥20% (R2c). HabComplex and WatFeat explained 7% and 5% of

the variance in sSQS, respectively, with other indicators account-

ing for ≤2% (R2m) and method for ≥19% (R2c). Contrary to H2,

the unimetric WatFeat best characterized differences in taxonomic

richness, but characterizations by the multimetric HabComplex were

comparable (i.e. <2 ΔAIC from the WatFeat model). HabComplex

best characterized differences in sSQS, and was not comparable to

the WatFeat model (ΔAIC > 2), supporting H2. To assess the influ-

ence of the two samples with HabComplex values <1 (Figure 2a,c),

we reran the richness and sSQS models with these values removed.

Models with and without these values had comparable relationship

strength (change:≤0.06), significance (≤0.003), goodness of fit (≤0.01)

and relative ranking in terms of AIC. Although non-significant, Wood

and Bank face had marginally stronger relationships with sSQS (esti-

mate± SE: 0.07± 0.06 and 0.06± 0.04) than richness (0.04± 0.06 and

0.05± 0.04).

4 DISCUSSION

Aquatic–terrestrial riverine habitats support unique terrestrial biodi-

versity (Sabo et al., 2005; Schindler & Smits, 2017; Soininen et al.,

2015), but can be difficult to biomonitor due to temporally vari-

able faunal responses to environmental conditions (Bates et al., 2006;

O’Callaghan, Hannah, Boomer, et al., 2013). To address this chal-

lenge,weexplored two frequently inundated riverine habitats, ERS and

temporary streams, to evaluate whether indicators based on habitat

survey data could predict metrics characterizing terrestrial inverte-

brate assemblages. In ERS, significant correlations between observed
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F IGURE 2 The relationship between richness (a, b) and the sum of species quality scores (sSQS: c, d) and themultimetric indicator habitat
complexity (a, c) and the unimetric indicator representing the type and extent of bank-top water features (b, d) for terrestrial beetle assemblages
sampled from exposed riverine sediments

and predicted taxonomic richness and sSQS, an index of conservation

status, suggest that habitat indicators can predict these assemblage

characteristics, supporting H1. Correlations between observed and

predicted richness and sSQS in rural temporary streams also sup-

ported H1 and suggested that predicted assemblage characteristics

may enable assessment of biodiversity in a range of aquatic–terrestrial

riverine habitats, not just ERS. However, predictions including more

urban temporary streams were uncorrelated with observed rich-

ness and sSQS, suggesting that better representing human pressures

such as land use in habitat indicators could improve future predic-

tions. The effectiveness of unimetric and multimetric habitat indi-

cators (H2) differed for richness and sSQS, suggesting that both

may enable monitoring of communities in aquatic–terrestrial riverine

habitats.

4.1 Predicting characteristics of terrestrial
invertebrate assemblages

Correlations between observed and predicted values of taxonomic

richness and sSQS in both ERS and rural temporary streams suggest

that standardized habitat indicators may predict assemblage charac-

teristics in a range of frequently inundated habitats. Such correlations

reflect similar habitats in ERS and rural temporary streams (i.e. rel-

atively undisturbed semi-vegetated gravels: Figures S1 and S2), and

thus similar community characteristics. Furthermore, the capacity of

our habitat indicators (which include the 10m lateral to the channel) to

characterize ERS and rural temporary stream community characteris-

tics suggests that these in-channel communities assemble from nearby

riparian zones (Corti & Datry, 2016; Steward et al., 2011, 2022). These

similar community characteristics likely arise because ERS, dry tem-

porary streams and adjacent riparian zones have key habitat features

in common, such as exposed damp sediments and riparian vegetation

that encroaches into the channel as streams dry (Räpple et al., 2017).

Thus, biotic metrics (e.g. richness and rarity) predicted from habitat

indicators may enable assessment of terrestrial biodiversity in ERS,

temporary streams and their adjacent riparian zones by allowing infer-

ence of terrestrial community characteristics when time-restricted

sampling campaigns coincide with periods of inundation. However,

relationships require characterization in a more comprehensive range

of temporary stream habitat types and landscape settings to further

enhance predictions.
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No relationshipwas detected betweenobserved andpredicted rich-

ness or sSQS values in more urban temporary streams, likely because

(1) urban land use led to habitat conditions (e.g. compacted sediments:

Figure S3) that decreased richness relative to rural sites (Martinson &

Raupp, 2013) and (2) small-scale differences in habitat characteristics,

such as sediment composition, were not detected by the reach-scale

habitat indicators used, reducing the accuracy of predictions made

from ERS samples. Additionally, 10% and 12% of ERS richness and

sSQS predictions were uncorrelated with observed values because

their training subsets were less representative of verification subsets,

and thus could not be accurately predicted. These uncorrelated cases

highlight that trainingdatasetswhich incorporate a full rangeof habitat

conditions and species occurrences could improve prediction of biotic

metrics such as richness and sSQS.

4.2 Improving future predictions: Evaluating
characterizations of terrestrial invertebrate
assemblages

We identified positive relationships between richness and both the

multimetric HabComplex and unimetric WatFeat indicators. These

relationships align with well-known beetle responses to habitat com-

plexity (Lengyel et al., 2016; Staudacher et al., 2018) and water

availability (Lassau et al., 2005), increasing confidence that habitat

indicators can be used to represent species–habitat relationships.

However, the lackof response toVegMorph,AnthroCover,Wood,Bank

face and Profiles contrasts with established relationships between

community composition, including its taxonomic richness, and vegeta-

tion characteristics (e.g. complexity and composition:Greenwoodet al.,

1995; Rouabah et al., 2015), agriculture and urbanization (French et al.,

2001; Magura & Lövei, 2021; Martinson & Raupp, 2013), the type

and distribution of woody habitats (Hering et al., 2004; Seibold et al.,

2016) and bank face features (e.g. side bars and bank profile: Ramey

& Richardson, 2017; Sprößig et al., 2020). Thus, community responses

may have been masked by both the methods of beetle sampling and of

recording these habitat characteristics.

Contrary to H2, WatFeat characterized variability in richness more

effectively than HabComplex, but differences were slight. As the only

unimetric indicator eliciting a biotic response, WatFeat likely drove

the relationship between richness and HabComplex. The marginally

weaker performance of the multimetric indicator may thus reflect

its inclusion of three non-significant habitat indicators (Bank face,

Profiles, Wood), which obscured responses to WatFeat. In contrast,

HabComplex best characterized variability in sSQS, supporting H2,

and likely reflecting the marginally better performance of two addi-

tional components of the multimetric indicator (Wood and Bank

face). A multimetric indicator’s values depend upon each unimetric

component contributing to effects on the response variable, and iden-

tification of unimetric indicators that effectively characterize species–

habitat relationships is therefore fundamental to accurate, consistent

predictions.

Some unimetric indicators calculated using habitat data may be

too simplistic to represent species–habitat relationships. For example,

VegMorph summarizes vegetation complexity as the number of mor-

photypes (Gurnell et al., 2020b), which does not represent vegetation

cover, composition or structural diversity, all of which influence bee-

tle distributions (Brose, 2003; Schaffers et al., 2008). Additionally,

some beetles require specific habitat resources (e.g. saproxylic taxa

on decaying wood: Alexander, 2004; Fowles et al., 1999), which

were excluded from calculation of our indicators if covering <5% of

the survey area. This coarse characterization of some habitat fea-

tures may have prevented identification of relationships with biotic

communities.

We calculated indicators based on a reach-scale habitat survey,

and their detection of beetle responses may have been limited by the

differing spatial scales at which habitats are surveyed and at which

beetles respond to environmental conditions. For example, although

habitat indicators includingAnthroCover suggested that ERS andmore

urban temporary stream survey areas were comparable, catchment-

wide urban land uses may have reduced beetle richness and sSQS in

temporary streams, for example by disconnecting sites from potential

colonist sources (Niemelä & Kotze, 2009). In contrast, VegMorph rep-

resents the structural richness of plant communities within a survey

area, and was likely too coarse to detect beetle responses to variabil-

ity in plant densities and community composition within and between

habitat patches, which influence beetle movement and predation risk

(Allema et al., 2019; Heydemann, 1957).

Biotic sampling is essential in mapping assemblage responses to

environmental drivers, here represented by habitat indicators. The

biotic assemblages analysed herein were sampled using two well-

tested, widely used methods: ground searching and pitfall trapping

(Ramírez-Hernández et al., 2018; Skvarla & Dowling, 2017). However,

these methods preferentially capture different species, and species

with different conservation statuses (Bunting et al., 2021; Webb et al.,

2022), potentially hindering characterization of species–habitat rela-

tionships. For example, the wood specialists B. moerens, G. hortensis

and P. glaucus were caught only by pitfall trapping. These species

may have been absent from the five sites (where the Wood indicator

ranged from 0 to 2.9) at which only ground searching was undertaken,

or present but not sampled, reducing responsiveness to the Wood

indicator.

Over-estimation of richness and sSQS in rural temporary streams

by ERS training samples (identified to mixed and species level, respec-

tively) highlights taxonomic resolution as an additional source of

variance that can potentially hinder prediction of assemblage charac-

teristics and characterization of species–habitat relationships. There-

fore, new samples collected to improve prediction of assemblage

characteristics fromhabitat indicators should be collectedusing a stan-

dard multi-method protocol (e.g. Webb et al., 2022) and be identified

to the taxonomic resolution at which predictions are required, to avoid

introducing variability which could obscure biotic responses.

4.3 Applications and future directions

This study demonstrates that indicators calculated fromhabitat survey

data can predict terrestrial invertebrate assemblage characteristics.
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These predictions are currently sufficient to provide managers with

coarse assessments of key assemblage metrics such as richness. While

we focused on beetles as a model group, invertebrate taxa including

true bugs, true flies and ants contribute to the biodiversity of both ERS

and temporary streams (Steward et al., 2022) and respond predictably

to habitat conditions (e.g. Buczkowski &Richmond, 2012;Mulieri et al.,

2011). Thus, future biodiversity assessments that include a range of

terrestrial invertebrate taxamay be used alongside those from aquatic

monitoring programmes to provide more comprehensive assessments

of the biodiversitywithin aquatic–terrestrial riverine habitats (Bunting

et al., 2021).

Further developing our predictive approach could, for example,

enable more precise habitat-survey-based predictions of assemblage

characteristics for beetles and other invertebrate taxa, allowing pre-

liminary assessment of habitat quality by managers, researchers and

community scientists outside of invertebrate survey seasons, or when

site access is not safe or practical. Development of sufficiently accu-

rate predictive models could also enable identification sites at which

predicted richness and rarity (or other metrics) are higher or lower

than expected based on habitat conditions, informing implementation

of conservation andmanagement interventions. In practice, a large and

representative training datasetwill be required to further improvepre-

dictions. Community science initiatives have the capacity to collect

large, high-quality biological and environmental datasets (e.g. Brooks

et al., 2019; Ratnieks et al., 2016; Shuker et al., 2017) and may thus

enable both generation of this training dataset and application of pre-

dictive techniques to increase our understanding of the biodiversity

within aquatic–terrestrial riverine habitats.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

Table S1. Number of species, percent of total species and frequency of

occurrence in samples per family.

Table S2. Literature highlighting the role of habitat complexity (Hab-

Complex), no. of vegetation morphotypes (VegMorph) and anthro-

pogenic land cover (AnthroCover: equivalent to indicators 10−12 in

Gurnell et al., 2020b) in influencing beetle communities.

Table S3. Quality scores attributed to species of differing conservation

status, adapted fromWebb et al. 2018.

Table S4. Descriptive statistics of non-significant reduced major

axis regressions (RMA) and Pearson product-moment correlations

between predicted and observed richness and the sum of species

quality scores (sSQS) for terrestrial beetle assemblages sampled from

exposed riverine sediments.

Table S5. Negative binomial generalised linear mixed-effect model

results for richness and the sumof species quality scores (sSQS) as pre-

dicted by habitat complexity (HabComplex), the number of vegetation

morphotypes (VegMorph), the type and extent of anthropogenic land

cover (AnthroCover), the type and extent of bank-top water features

(WatFeat), the type and extent of natural bank-face features (Bank

face), the type and extent of wood habitat (Wood) and the type and

extent of natural bank profiles (Profiles).

Figure S1. Examples of channel characteristics and surrounding land

use at Exposed riverine sediment sampling sites, photographs courtesy

of Natural England, Bug life and StaffordshireWildlife Trust.

Figure S2. Channel characteristics and surrounding land use at rural

temporary stream sites.

Figure S3. Examples of channel characteristics and surrounding land

use at urban temporary stream sites.

Table M1. Wood habitat features and their contribution to the Wood

index when present or extensive within a surveyed reach.

Table M2. Bank-top water features and their contribution to the

WatFeat indicator when present or extensive within a surveyed reach.

Table M3. Bank face features and their contribution to the Bank face

indicator when present or extensive within a surveyed reach.

TableM4. Anthropogenic land cover types and their contribution to the

AnthroCover indicator when present or extensive within a surveyed

reach.
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