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Abstract
1.	 The abundance and diversity of flowering plant species are important indicators 

of pollinator habitat quality, but traditional field-based surveying techniques are 
time-intensive. Therefore, they are often biased due to under-sampling and are 
difficult to scale.

2.	 Aerial photography was collected across 10 sites located in and around Rouge 
National Urban Park, Toronto, Canada using a consumer-grade drone. A 
convolutional neural network (CNN) was trained to semantically segment, 
or identify and categorize, pixel clusters which represent flowers in the 
collected aerial imagery. Specifically, flowers of the dominant taxa found in the 
depauperate fall flowering plant community were surveyed. This included yellow 
flowering Solidago spp., white Symphyotrichum ericoides/lanceolatum and purple 
Symphyotrichum novae-angliae. The CNN was trained using 930 m2 of manually 
annotated data, ~1% of the mapped landscape. The trained CNN was tested on 
20% of the manually annotated data concealed during training. In addition, it was 
externally validated by comparing the predicted drone-derived floral abundance 
metrics (i.e. floral area (m2) and the number of floral patches) to the field-based 
count of floral units estimated for 34 4 m2 plots.

3.	 The CNN returned accurate multiclassification when evaluated against the 
testing data. It obtained a precision score of 0.769, a recall of 0.849, and an F1 
score of 0.807. The automated floral abundance counting yielded estimates that 
were strongly correlated with field-based manual counting. In addition, flower 
segmentation using the trained CNN was time-efficient. On average, it took 
roughly the same amount of time to segment the flowers occurring in an entire 
drone scene as it took to complete the abundance count of a single quadrat. 
However, the training process, particularly manual data annotation, was the most 
time-consuming component of the study.

4.	 Practical implication: Overall, the analysis provided valuable insights into automated 
flower classification and abundance estimation using drone imagery and machine 
learning. The results demonstrate that these tools can be used to provide 
accurate and scalable estimates of pollinator habitat quality. Further research 
should consider diverse wildflower systems to develop the generalizability of the 
methods.
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1  |  INTRODUC TION

In an era of global change, consistent, reproducible, and rigorous 
monitoring of landscapes are needed to document the impact of 
ecological pressures on biological diversity (Jetz et  al., 2019). The 
automated processing of components of ecological data streams has 
increasingly become recognized as part of the solution to the data-
deficiency crisis in ecology (Besson et al., 2022; Lürig et al., 2021; 
Tuia et al., 2022). An example of this deficiency is seen in the mapping 
of the abundance and diversity of flowering plant species, which are 
key indicators of habitat quality (Szigeti et al., 2016). Flying insects, 
such as pollinators that depend on flowering plants, operate within 
large local landscapes, and often forage in radii larger than 500 m 
(Kremen et  al., 2007). Estimates of floral abundance and diversity 
are thus generated from quadrats and extrapolated to determine 
habitat quality (Kearns & Inouye, 1993). Unfortunately, traditional 
field-based methods used to assess pollinator habitat quality are 
time-intensive, especially across large spatial extents (Breeze 
et al., 2021). Thus, assessments of habitat quality are often biased 
due to under-sampling (Breeze et al., 2021; Szigeti et al., 2016).

In precision agriculture, drones have been paired with machine 
learning algorithms to automate the mapping of environmental indi-
cators (Benos et al., 2021). Commercial drone platforms are used to 
map agricultural landscapes with multispectral and light detection 
and ranging (LiDAR) sensors (Tsouros et al., 2019). Aerial photogra-
phy captured using low altitude drone flights is orthorectified into 
sub-meter resolution scenes of entire agricultural landscapes (Sa 
et al., 2018). For example, drone orthomosaics, which are orthorec-
tified imagery datasets that are geometrically corrected for perspec-
tive and terrain effects, are used as the input to machine learning 
classifiers to automate crop classification and weed detection (Chen 
et al., 2019; Sa et al., 2018).

Artificial neural network (ANNs) techniques have caused a para-
digm shift in automation due to their applicability to a wide breadth 
of tasks including classification problems (Samek et  al.,  2021). 
Convolutional neural networks (CNNs), a class of ANN used in image 
analysis, outperform other machine learning approaches applied to 
crop management (Benos et al., 2021). These algorithms generate a 
label for each pixel in input imagery, a process called semantic seg-
mentation. To accomplish this, imagery data are resampled to differ-
ent pixel densities to first identify and then label pixel clusters based 
on abstractions of pixel properties, with sequential downsampling 
layers used to extract fine to coarse-grained features and upsam-
pling of the encoded feature space then used to predict the semantic 
segmentation. Accurate semantic segmentation, which refers to the 
categorization of pixel clusters into classes, is achieved via super-
vised learning using training data that is manually annotated with 
expert knowledge. During the cycles of training, known as training 

epochs, the algorithm iteratively adjusts the layer weights, which are 
the parameters within each layer of the neural network that deter-
mine the strength and direction of connections between neurons. 
This adjustment allows the feature extraction space to learn pixel 
properties that correspond to the user-provided target for semantic 
segmentation. To evaluate generalizability, ensuring that the model 
works well with new data, the trained classifier is then compared with 
the manual data annotation of novel testing data. In other words, the 
classifier is tested using data that it has had no prior exposure to. 
Deployed CNN classifiers are accurate, generalizable, and scalable 
when paired with drone-derived data products (Mittal et al., 2020).

In environmental management, research into the application of ma-
chine learning techniques to drone-derived data products has shown 
potential for increasing the efficiency and effectiveness of automated 
processing (Besson et al., 2022; Lürig et al., 2021). Commercial drone 
platforms which allow the collection of high-resolution multimodal 
imagery can be prohibitively expensive for applications in environ-
mental management. However, machine learning techniques have 
been successfully paired with true colour red, green, and blue (RGB) 
imagery which can be obtained from more cost-effective consumer-
grade drone platforms. This approach has been applied to automate 
the mapping of flowering plants (de Sá et al., 2018; Hicks et al., 2021; 
Hill et  al., 2017). In de Sa et  al.  (2018), the authors used a random 
forest binary classifier paired with drone orthomosaic imagery to map 
the floral cover of Acacia longifolia (Andrews) Willd. (Fabaceae), a mass 
flowering shrub that is invasive in Portuguese dunes. It was found 
that automated drone-based monitoring was more efficient than tra-
ditional methods as it took a quarter of the time required to monitor 
flowering in the field. In another example, Hicks et al. (2021) sampled 
pollinator habitat quality using a CNN object detector. The CNN was 
trained to automate the counting of floral units in ground-level pho-
tography of 1 m2 field quadrats. It was determined that the automated 
assessment took 5.5 s per quadrat compared with 3.2 min for manual 
counting, a >30× improvement in time efficiency with minimal loss in 
quality for morphologically distinct taxa.

An automated drone-based biomonitoring program should 
provide accurate estimates of foraging resource availability that 
are scalable to spatial extents appropriate to flying insects. In this 
project, we train a CNN classifier to semantically segment flowers 
using aerial photography collected from a consumer-grade drone. 
Environmental management is historically underfunded, and there-
fore the exploration of consumer-grade drone platforms to inves-
tigate low-cost solutions is essential (Anderson & Gaston,  2013). 
We map semi-natural meadows located in Rouge National Urban 
Park (RNUP) Ontario, Canada. We focus on fall flowering plants, a 
low diversity system where the mass flowering of predominantly 
Asteraceae provides key floral resources for insects that are active 
late in the season (Ginsberg, 1983; Livingstone et al., 2020). These 

K E Y W O R D S
computer vision, convolutional neural network, image segmentation, pollinators, Solidago, 
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include members of the yellow flowering Solidago L. (common: 
Goldenrod), purple Symphyotrichum novae-angliae (L.) G.L.Nesom 
(common: New England aster), as well as Symphyotrichum ericodes (L.) 
G.L.Nesom (common: White Heath Aster) and white Symphyotrichum 
lanceolatum (Willd.) G.L.Nesom (common: Lance-leaved aster).

Our first objective was to train a generalized CNN algorithm (see 
Figure  1a) for multiclassification of the focal flowering plant taxa 
using true colour RGB imagery collected with a consumer-grade 
drone. The floral classification maps predicted by the classifier can 
then be used to generate accurate drone-derived estimates of pol-
linator habitat quality across habitat patches that vary in environ-
mental context (e.g. the community composition of plants which 
compose the background in which segmented flowers occur). Our 
second objective was to explore the impact of flight altitude on the 
accuracy of CNN classifier predictions. Flight altitudes are 7, 15, and 
30 m above-ground level (AGL), which are operationally defined as 
low, mid, and high altitude, respectively. Compared with high alti-
tudes, low-altitude flights sample a small amount of area relative to 
the local landscape in which pollinators operate (Table S1). However, 
spatial resolution is high at low altitude which may allow the discrim-
ination of features not resolvable at higher altitudes. Our final ob-
jective was to compare the floral abundance estimates derived from 
field-based quadrat sampling estimates (i.e. the count of floral units) 
to automated drone predictions (i.e. floral area (m2) and the number 
of floral patches; Figure 1b).

2  |  MATERIAL S AND METHODS

2.1  |  Site description

The Rouge National Urban Park (RNUP) is located within the Greater 
Toronto Area, which is Canada's largest urban agglomeration. The 

focal flowering plant taxa are historically abundant within the re-
gion, but occupancy and abundance vary substantially among sites 
(Livingstone et  al.,  2020). In total, eight 2500 m2 sites within the 
RNUP were sampled (Figure S1 and Table S2). These sites have been 
previously surveyed to study the drivers and impacts of plant inva-
sion at the park (Livingstone et  al., 2020). An additional field site 
at the RNUP (A: 43°50′21.96″ N, 79°12′13.87″ W) and another 
at the University of Toronto Scarborough (CF: 43°47′34.76″ N, 
79°11′16.75″ W) were established to measure field-based quadrat 
sampling estimates for external validation.

2.2  |  Drone mapping

The drone image acquisition programme was completed during 2021 
between September 5 and September 13 using a consumer-grade 
drone (DJI Phantom 4 Pro V2, DJI, Shenzhen, China). The DJI Phantom 
4 Pro is equipped with a 1-inch complementary metal-oxide semicon-
ductor (CMOS) true colour RGB sensor with a resolution of 20.7 meg-
apixels (5472 × 3648 pixels) at a focal length of 8.8 mm. Imagery was 
collected using a gridded flight pattern consisting of a series of paral-
lel flight lines over the mapped area with high overlap (forward = 70% 
and side = 80%) between sites to account for field-of-view limitations 
associated with the consumer-grade sensor used here (FOV: 84° 
8.8 mm/24 mm [35 mm format equivalent]). Further, we used short 
(<20 min) programmed missions at three altitudes (7, 15, and 30 m AGL) 
and at a maximum speed of 3 m/s (Table S1). The three altitudes were 
selected through qualitative field testing to maximize the resolution 
of imagery that could be captured per flight. Flights were kept short 
to account for the draw on battery life associated with flight stabiliza-
tion in variable wind conditions. Flight speed was limited by the shutter 
speed of the consumer-grade sensor (8–1/2000 s) to reduce the effect 
of ‘motion-blur’ in the collected imagery. Each site was mapped with a 

F I G U R E  1 Flowchart of methods used 
in the study to classify flowers in drone 
photography. (a) The convolutional neural 
network was trained using the training 
and validation datasets; (b) This was 
followed with evaluation using the testing 
dataset as well as external validation using 
field-based quadrat estimates.
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flight programmed using at least one of the three altitudes (Table S1). 
According to the specifications of the sensor, imagery collected at 
the 7 m, 15 m, and 30 m flight altitudes has ground sampling distances 
(GSD) of 0.19 cm/pixel, 0.41 cm/pixel, and 0.82 cm/pixel, respectively. 
At some sites, multiple programmed flights were flown to either in-
crease spatial coverage at a single flight altitude and/or to map the lo-
cation at multiple altitudes. Orthomosaics constructed with imagery 
collected at 7 m flight altitude only covered 800 m2 which is a low spa-
tial coverage relative to the 2500 m2 site areas. Therefore, to achieve 
higher spatial coverage, two flight missions were flown at sites mapped 
at the 7 m flight altitude. This doubled flight time and resulted in at 
most 1600 m2 of spatial coverage (Table S1). At 15 m, up to 3400 m2 
could be mapped with a single flight mission which resulted in complete 
site coverage. The 30 m flight altitude mapped up to 12,400 m2, or in 
other words almost five times the site area in a single flight. All missions 
were flown between 11:45 and 14:45 h and were programmed using 
Litchi (www.​flyli​tchi.​com), a low-cost drone mission planning software. 
Imagery was orthorectified using Agisoft Metashape Professional (ver-
sion 1.8.3). The orthorectification process is seen as a crucial step in 
increasing imagery fidelity since it can help remedy distortions caused 
by topographical relief and lens distortion (Park et al., 2022).

2.3  |  Floral surveying

Field surveys were completed to validate the drone-derived metrics of 
floral abundance using field-derived metrics. Thirty-four 4 m2 quadrats 
were established across the two field sites established for this study 
(CF = 9, A = 25). The floral units of each plant species were counted 
within quadrats from September 11 to September 13. Floral units 
were defined as single flowers or inflorescences (umbels for Apiaceae 
and flower heads for Asteraceae). At the remaining sites, visual as-
sessments were completed to determine the flowering plant species 
present. Visual assessments are comparable to formal quadrat surveys 
when assessing plant species occupancy (Morrison, 2016).

Vegetative surveys previously conducted at the RNUP field sites 
have grouped Solidago spp. (Livingstone et al., 2020). Thus, during 
floral surveys and following further analysis, Solidago species were 
grouped at the genus level (i.e. Solidago spp.). An additional 10 
flowering plant taxa were identified to genus or species (Table S3). 
Quadrats were dominated by four showy mass flowering Asteraceae 
taxa: Solidago spp., Symphyotrichum ericoides, Symphyotrichum lance-
olatum, and Symphyotrichum novae-angliae. These taxa were found 
to be both locally abundant and common during visual assessments 
of sites. Crucially, each of these plant genera and species occurs at 
sizes and colour ranges that are captured within the specifications of 
the consumer-grade sensor used here when following the collection 
method described here.

2.4  |  Ground truthing

Drone orthomosaics for all altitudes were split into tiles (128 pix-
els × 128 pixels × 3 channels), 1% of which were randomly sampled. 

To produce the ground truth dataset, flowering parts of plant taxa 
in the randomly sampled tiles were segmented and labelled using 
QGIS (https://​www.​qgis.​org). Flowering parts that belonged to 
Symphyotrichum ericoides and Symphyotrichum lanceolatum were 
grouped together because they could not be distinguished from 
each other at altitudes above 7 m.

Following manual data annotation, data from all altitudes were 
split into training, validation, and testing sets with a 3:1:1 ratio 
(3563 training, 1192 validation, and 1197 testing tiles). A stratified 
approach was used where tiles from each orthomosaic were split in-
dependently and then collapsed into training, validation, and testing 
sets. Orthomosaics from all altitudes were used together for training 
as opposed to creating a series of altitude-specific CNNs to provide 
a more accurate comparison of model performance at different alti-
tudes. There was a class imbalance in the ground truth data such that 
Solidago spp. was found in 2863 image tiles while Symphyotrichum 
ericoides/lanceolatum and Symphyotrichum novae-angliae occurred in 
815 and 352, respectively.

2.5  |  Convolutional neural network (CNN)

A CNN was trained for patch-wise semantic segmentation of the 
flower taxa using the machine learning platform Tensorflow v2.10 
with the Keras v2.10 interface in Python v3.9.13 (Abadi et al., 2016). 
‘Patch-wise’ refers to the process of dividing the input image into 
smaller and manageable sections or patches and then performing 
segmentation on each patch individually rather than on the entire 
image at once. The CNN was constructed using the U-Net architec-
ture (Ronneberger et al., 2015) (details in Figure 2). RESNET-50, a 
CNN designed for image classification, was used as the encoder. A 
key strength of image classifiers is that the knowledge gained from 
being pre-trained on several hundreds of thousands of images can 
be transferred to other CNNs to improve the efficiency of model 
fitting, particularly when small datasets are used in training (Bosilj 
et al., 2020). This process is referred to as transfer learning and has 
previously been demonstrated to improve the performance of crop 
plant semantic segmentation in low-altitude drone data products 
(Bosilj et  al., 2020). In this case, the implemented RESNET-50 en-
coder was pre-trained on the ImageNet 2012 dataset (1000 classes 
and 1.28 million training images; He et  al.,  2015). The output se-
mantic segmentation had four classes: background (i.e. vegeta-
tion, bare soil, and other features in the landscape), Solidago spp., 
Symphyotrichum ericoides/lanceolatum and Symphyotrichum novae-
angliae, respectively.

The CNN was trained and deployed using a NVIDIA GeForce 
RTX 3060. The training and validation ground truth datasets were 
used to train the CNN. The CNN had a total of 32,561,694 parame-
ters, 12,467,096 of which were trainable. The classifier was trained 
for up to 300 epochs with a training and validation batch size of 32. 
An early-stopping criterion was implemented whereby training was 
halted if validation loss dropped by less than 0.0001 across epochs 
(patience = 20). The number of epochs, training and validation batch 
size and validation loss threshold were chosen through experimental 
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testing to prevent overfitting, maximize model efficiency and ensure 
stability on the hardware used. The categorical focal Jaccard loss 
(i.e. the sum of categorical focal loss and Jaccard loss) was used as 
the loss function.

Data were pre-processed using min–max scaling. In addition, 
input tiles were colour augmented and rotated during training 
and validation (Figure S2) to reduce model overfitting (Shorten & 
Khoshgoftaar,  2019). Colour augmentations were implemented 
using the ‘imgaug’ package in Python (Jung et al., 2020). Brightness, 
saturation, and temperature augmentation were applied in random 
order to simulate variation in lighting conditions.

Following training, the CNN was deployed to classify flowers 
in imagery using a patch-wise semantic segmentation approach. To 
do this, were split into overlapping tiles (128 × 128 × 3). Tiles over-
lapped by half of their length and width (i.e. 64 pixels). Semantic seg-
mentation was then completed on the overlapping tiles using the 
trained classifier. The centre of each predicted tile (64 × 64 × 1) was 
extracted. Then, the cropped tiles were stitched together to con-
struct the overall floral classification map. This approach was used 

to account for decline in quality of classification towards the edges 
of input imagery that is typically observed in semantic segmentation 
(Liu et al., 2018).

2.6  |  Model evaluation

The testing data, which were novel to the trained classifier, were 
compared with the floral classification maps to evaluate the qual-
ity of classification. The intersection over union (IoU), precision, 
recall, and F1 scores were used. Ranging from 0 to 1, the IoU score 
measures the overlap between the ground truth and prediction 
pixels divided by the union of ground truth and prediction pix-
els. The higher the value, the more similar the prediction is to 
the ground truth. The precision, recall, and F1 scores were cal-
culated from the confusion matrix comparing the testing data to 
the predicted floral classification maps. Precision is the proportion 
of pixels that were labelled positive that are true-positive where 
precision score = true-positive/(true-positive + false-positive). 

F I G U R E  2 Patch-wise semantic segmentation approach using U-Net architecture. U-Net architecture is comprised of five blocks: Input, 
encoder, bridge, decoder, and output. Drone orthomosaics are split into overlapping tiles (128 pixels × 128 pixels × 3 channels). Input tiles are 
then encoded using the RESNET-50 architecture. Input resolution is reduced by half and feature channel depth is doubled during each step 
of the contracting path. The bridge block is an encoded representation of the input tile with low resolution and high feature channel depth. 
The bridge block is fed to the decoder which doubles input resolution and halves feature channel depth during each step of the expansive 
path. During decoding, feature maps from the corresponding resolution in the contracting path are concatenated to the expansive path 
using skip connections. This improves the incorporation of coarse- to fine-grained context information. Softmax activation is applied to 
the decoded image which produces a pixel-wise prediction where feature channel depth is equal to the number of classes (128 × 128 × 4). 
Argmax is applied pixel-wise to output the class with the highest predicted probability per pixel (128 × 128 × 1). Non-overlapping sections of 
semantic segmentation tiles are joined to produce the overall flower classification map.

Input
Orthomosaic

Encoder

Decoder

Bridge

64 × 64 
64

32 × 32 
128

16 × 16 
256

8 × 8 
512

4 × 4
2048

64 × 64
32

32 × 32
64

16 × 16
128

8 × 8
256

SOFTM
AX

128 × 128
16

Pixelwise 
prediction Output

Classification map

128 × 128
4

128 × 128
4

128 × 128 × 3

128 × 128 × 1

 26888319, 2024, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12393, W

iley O
nline L

ibrary on [10/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 13  |     SOOKHAN et al.

In contrast, recall is the proportion of true-positive pixels that 
were labelled positive, where recall score = true-positive/(true-
positive + false-negative). The precision and recall scores range 
from 0 to 1 and emphasize different aspects of classification. For 
a drone orthomosaic, the precision score will be high if the flow-
ers segmented and labelled by the classifier correspond to flowers 
that occur in the mapped landscape, even if a large proportion of 
flowers were not identified by the classifier. In contrast, the re-
call score will be high if most of the flowers that occurred in the 
landscape were correctly segmented and labelled by the classifier, 
even if a large proportion of background were also misclassified 
as flowers. Finally, the F1 score is the harmonic mean of precision 
and recall.

Evaluation metrics were calculated for each flowering plant taxa 
independently. Ground truth data were grouped by flight altitude to 
explore the relationship between flight altitude and the quality of 
classification.

2.7  |  External validation

For each taxon, the drone-derived floral abundance metrics were 
calculated with the quadrats and compared with the field-based 
counts. The metrics were calculated using floral classification maps 
generated from data collected at either the 15 m or 30 m flight al-
titudes. Drone-derived floral abundance metrics include the floral 
area (m2) and the count of predicted floral patches. At the plot 
level, the field-based count of flowers was regressed on the drone-
derived metrics using linear regression. For each flight altitude, a 
separate linear regression model was fit for each flower taxa. The 
R2 was used to assess the strength of each relationship. The linear 
regression models were fitted using R v4.2.2 (R Core Team, 2022).

3  |  RESULTS

In total, it took 4 h and 59 min to complete all drone flights and an 
additional 9 h and 56 min to construct the corresponding drone 
orthomosaics which mapped 88,200 m2 across the RNUP and the 
University of Toronto Scarborough field site (Table  S2). The con-
struction of the manually annotated dataset was the most time-
consuming component of the analysis pipeline taking ~ 124 h, or 
1.25 min per tile. This was followed by model training a total of 58 
epochs which took a total time of 55 min. Finally, prediction of the 
flower classification maps took a total of 3 h and 23 min across the 
12 orthomosaics, an average of 17 min per orthomosaic. Overall, all 
steps took a total of 143 h and 13 min.

3.1  |  Flight altitude

At the 7 m flight altitude (GSD = 0.19 cm/pixel), flower morphology 
was discernable and the white flowering Symphyotrichum species, S. 

ericoides and S. lanceolatum, could be identified from each other, and 
from other white flowering plant species present (Figure 3). Spatial 
resolution decreased with flight altitude which made the determi-
nation of morphological features used to distinguish these species 
more difficult. At the 15 m (GSD = 0.41 cm/pixel) and 30 m flight alti-
tude (GSD = 0.82 cm/pixel), taxa were identifiable by spectral charac-
teristics and shape, but other morphological features were generally 
hard to distinguish (15 m: Figure S3; 30 m: Figure 4). Therefore, it was 
not possible to discriminate between the two white Symphyotrichum 
species. Solidago and Symphyotrichum novae-angliae could be reliably 
identified in aerial photography collected at any flight altitude due 
to a combination of a unique floral hue and morphology within the 
context of the landscape.

3.2  |  Model evaluation

The confusion matrix used to calculate the model evaluation metrics 
is reported in Table S4. It was found that precision, recall, and the 
F1 scores were high (Table 1). The classifier was most accurate at 
segmenting and labelling floral units belonging to Solidago (F1 = 0.82) 
this was followed by Symphyotrichum novae-angliae (F1 = 0.79) and 
Symphyotrichum ericoides/lanceolatum (F1 = 0.70; Table  1). There 
were no clear trends in classifier performance between flight alti-
tudes (see Table S5 for a breakdown by flight altitude).

The three focal taxa were generally not confused in classifica-
tion and other flowering plants were not falsely classified as any of 
the three focal taxa (Table S4). Background pixels were generally 
not misclassified as flowers vice-versa, except for Symphyotrichum 
ericoides/lanceolatum which had relatively low precision and recall, 
respectively.

3.3  |  External validation

It took a total of 8 h and 40 min to complete quadrat sampling of the 
34 plots or 15.30 min per plot. The drone-derived metrics of floral 
abundance were strongly correlated with the counts of floral units 
measured in the field using quadrat sampling at both the 15 m and 
the 30 m flight altitudes (15 m: Figure 5, 30 m: Figure S4). However, 
the relationships were weaker when fitted with the 30 m data than 
with the 15 m data where the R2 was up to 0.26 lower (Table 2).

4  |  DISCUSSION

4.1  |  Flight altitude

The spatial resolution of an orthomosaic was negatively correlated 
with drone flight altitude during the capture of aerial photogra-
phy, with the drop-off in resolution related to the pixel resolution, 
field-of-view, and focal length range of the consumer-grade sensor. 
Despite this, multiclassification performed well across the three 
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tested flight altitudes. Semi-natural meadows are complex environ-
ments where plant structural and spectral diversity is high. Complex 
backgrounds pose a challenge to accurate automated segmentation 
and labelling (Sa et al., 2018). Although this is the case, focal taxa 
which included yellow and white flowering parts, were not confused 
with senescing vegetative or reproductive plant matter. In addition, 
the increased spatial resolution had a trade-off with spatial cover-
age of mapping. At the low (7 m) flight altitude, it would be neces-
sary to complete multiple flights to achieve full spatial coverage of 
the sampled sites (2500 m2), while in contrast, at the mid (15 m) and 
high (30 m) altitude, landscape-level coverage was achieved with a 
single flight. The spatial extent of the sampled sites was designed 

to test questions relating to plant ecology (Livingstone et al., 2020) 
and does not translate to meaningful coverage of the local landscape 
within which pollinators operate (Kremen et al., 2004).

At first glance, it might be inferred that high-flight altitude is 
all-together superior to low altitude when capturing aerial pho-
tography for the estimation of pollinator habitat quality. However, 
moderate performance loss was observed in the external valida-
tion procedure which compared mid and high-altitude drone sur-
veying in terms of correlation to field counts. Furthermore, it is 
important to note that the flowering plant species pool was de-
pauperate during the time of year that the region was sampled. In 
the fall, late flowering members of the Asteraceae family produce 

F I G U R E  3 Example of drone orthomosaic and flower classification map from imagery collected at 7 m altitude. (a) Close-range view 
of drone orthomosaic; (b) Close-range view of classification map; (c) Long-range-view of drone orthomosaic, the white box denotes area 
depicted in close-range view; (d) Long-range view of classification map.
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large floral displays in southern Ontario. This is especially true of 
members of the Solidago and Symphyotrichum genera in RNUP. 
Due to the simplicity of the floral landscape, it was possible to 
sort flowers into taxonomic units. During manual data annotation, 
the coarse-grained features that could be resolved in mid and 
high-flight altitude drone orthomosaics correlated well with floral 
morphological traits that were diagnostic of the focal taxa. This 
would not be the case in a high-diversity wildflower system, where 
high-resolution taxonomic classification would require a complex 
suite of floral traits that are not resolved at the mid- and high-
flight altitude.

F I G U R E  4 Example of drone orthomosaic and flower classification map from imagery collected at 30 m altitude. (a) Close-range view 
of drone orthomosaic; (b) Close-range view of classification map; (c) Long-range view of drone orthomosaic, the white box denotes area 
depicted in close-range view; (d) Long-range view of classification map.

TA B L E  1 Metrics values evaluating CNN classifier performance.

Metric Overall SOSP SYER SYNO

Jaccard 0.677 0.697 0.541 0.646

Precision 0.769 0.776 0.709 0.800

Recall 0.849 0.872 0.696 0.770

F1 0.807 0.821 0.702 0.785

Note: The column ‘Overall’ represents the weighted metric values 
among classified taxa. The other columns are the classified taxa where 
‘SOSP’ is Solidago spp., ‘SYER’ is Symphyotrichum ericoides/lanceolatum 
and ‘SYNO’ is Symphyotrichum novae-angliae.
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    |  9 of 13SOOKHAN et al.

In practice, the CNN classifier was able to distinguish between 
Symphyotrichum ericodes/lanceolatum and Daucus carota. These 
were the only two taxa common in the landscape that have white 
flowers. The feature extraction space of the trained CNN classifier 
discriminated taxa using coarse differences in the pixel colour and 

shape of proposed segments. Floral morphology of the Apiaceae 
family, of which Daucus carota is a member, vary substantially from 
Asteraceae, for example in the arrangement and shape of inflores-
cences. In contrast, it was not possible to discriminate between 
Symphyotrichum ericodes and Symphyotrichum lanceolatum. The 

F I G U R E  5 Comparison between floral counts using quadrat sampling (y-axis) and the drone-derived floral metrics predicted by the CNN 
classifier (x-axis). The drone-derived floral metrics were calculated using drone orthomosaics collected at 15 m altitude. Each data point 
corresponds to the estimates from a sampled quadrat. ‘R2’ is goodness-of-fit of the linear regression measured as the adjusted R2 and ‘β’ is 
the effect size relating the drone-derived metric to the quadrat sampling metric. (a) Floral unit count using quadrat sampling regressed on 
drone-derived floral area for Solidago species; (b) Floral unit count regressed on drone-derived floral patch count for Solidago species; (c) 
Floral unit count regressed on floral area for Symphyotrichum ericoides/lanceolatum; (d) Floral unit count regressed on floral patch count for 
Symphyotrichum ericoides/lanceolatum; (e) Floral unit count regressed on floral area for Symphyotrichum novae-angliae; (f) Floral unit count 
regressed on floral patch count for Symphyotrichum novae-angliae.
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diagnostic floral traits required to distinguish these species, such as 
variation in the number of ray florets and the arrangement of inflo-
rescences, are not resolved at the spatial resolution provided by mid 
to high orthomosaics.

When applied to systems with a speciose flowering plant 
community, classifiers trained and deployed on high-altitude true 
colour RGB drone orthomosaics will likely, at best, perform mul-
ticlassification of flowers based on spectra instead of taxonomic 
classes. Unfortunately, floral visual cues used by pollinators are 
not strongly correlated with pollen and nectar reward quality and 
quantity (Ortiz et al., 2020). Thus, an intuitive recommendation is 
that high-altitude true colour RGB drone-derived automated flo-
ral mapping is limited to the abundance and distribution of con-
spicuous flowers and therefore has potential in the biomonitoring 
of invasive species on the landscape level (de Sá et  al.,  2018; 
Hill et al., 2017). In contrast, classifiers trained and deployed on 
low-altitude data can be used in the mapping of high-resolution 
taxonomic units that are more appropriate for the estimation of 
pollinator habitat quality.

4.2  |  Drone-derived metrics as indicators of 
pollinator habitat quality

The drone-derived metrics included floral area which is an impor-
tant visual and olfactory cue to pollinators (Chittka & Raine, 2006). 
Foraging insects utilize multiple sensor modalities when locating and 
learning efficient search paths to floral patches that occur within the 
landscape (Sprayberry, 2018). The size of a flowering patch is cor-
related with the size of the visual and olfactory stimuli that it pre-
sents, which in turn moderates forager efficacy (Sprayberry, 2018). 
In other words, in landscapes that feature high floral areas, pollina-
tors will spend less time searching and learn efficient routes to avail-
able foraging resources. Larger flowering patches are associated 
with heightened pollinator activity (for example higher visitation 
rates: Blaauw & Isaacs, 2014; Dauber et al., 2010), and therefore can 

provide insight into locations where pollinators concentrate foraging 
effort (Baldock et al., 2019).

The count of floral units is surrogate for floral resource avail-
ability in a habitat patch (Kearns & Inouye,  1993). Foraging re-
source availability can be measured with a tabulated species list 
of estimated per-floral unit foraging reward. Given a habitat patch, 
foraging resource availability is measured as the sum of reward 
estimates weighted by the floral unit abundance of species in that 
habitat patch (Hicks et  al.,  2016). As accurate abundance data 
are necessary, quadrat and transect sampling are the preferred 
methods of field collection (Szigeti et  al.,  2016). Unfortunately, 
these methods are expensive and time-consuming; for Hegland 
et al. (2010), it took a single surveyor 8 h and 40 min to complete 
the collection of data from 34 4 m2 quadrats. In their meta-analysis 
of pollination studies that estimated floral resource availability, 
Szigeti et al.  (2016) found that studies generated estimates from 
an average of 0.69% sampling coverage. While Szigeti et al. (2016) 
was unable to provide a recommendation for adequate sampling 
coverage, this value is clearly low. This is because flowering plants 
tend to occur in a clustered spatial dispersion pattern (Hatfield & 
LeBuhn,  2007) which increases the sampling effort required for 
an unbiased estimate of density used in extrapolation to the land-
scape (Aberdeen, 1958).

The machine learning techniques utilized in this study demon-
strate the potential of automating the landscape-level measure-
ment of floral resource availability. This is because the estimated 
linear models found strong correlations between the drone-
derived metrics and the field-based counts of floral units. Although 
this was the case, it would be preferable for the CNN classifier to 
complete object detection of floral units, such that floral units are 
counted and tabulated by species from the provided drone ortho-
mosaics. The CNN object detector deployed by Hicks et al. (2021) 
accomplished this task using ground-level photos of 1 m2 field 
quadrats. The trained classifier was not only able to annotate floral 
units accurately, but also label annotations to high taxonomic res-
olution, typically to species. Automated counts were multiplied by 
corresponding species-specific pollen and nectar measurements to 
estimate quadrat-level pollen and nectar availability. In this study, 
the features of floral units belonging to Asteraceae observed were 
resolved in low-altitude aerial photography. Thus, although spa-
tial coverage is low, it should be possible to replicate the method 
presented by Hicks et al.  (2021) using low-altitude orthomosaics. 
In this case, multiple drone flights can be strategically placed. This 
will allow accurate classification and adequate sampling coverage 
while reducing the time and cost of estimating pollinator habitat 
quality.

5  |  CONCLUSIONS

The results demonstrate that CNN classifiers can be deployed to ac-
curately map wildflowers using consumer-grade drone imagery. Here, 
a CNN was trained to perform on imagery collected across meadow 

TA B L E  2 Goodness-of-fit (R2) of the linear regression models 
where the floral counts using quadrat sampling were regressed on 
the drone-derived floral metrics predicted by the CNN classifier.

Taxa Drone

Altitude

15 m 30 m

SOSP Floral patches 0.84 0.74

Floral area (m2) 0.65 0.64

SYER Floral patches 0.70 0.63

Floral area (m2) 0.82 0.71

SYNO Floral patches 0.94 0.73

Floral area (m2) 0.91 0.65

Note: For each altitude, the R2 model is listed for the regression 
model fitted to each flower taxa. ‘SOSP’ is Solidago spp., ‘SYER’ is 
Symphyotrichum ericoides/lanceolatum and ‘SYNO’ is Symphyotrichum 
novae-angliae.
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habitat patches that varied in environmental conditions, specifi-
cally vegetative invasion intensity. Only moderate performance 
loss was observed with increasing flight altitude. Nevertheless, it 
was found that the automated drone-based floral monitoring cor-
related strongly with quadrat-based floral counts measured in the 
field. Crucially, this highlights that the approach can be used for the 
rapid assessment of floral resources. Standard approaches to floral 
resource estimation are time-consuming, especially across large 
spatial extents (Szigeti et al., 2016). Hence, by training with imagery 
collected at several flight altitudes, an altitude-agnostic CNN can be 
deployed to adjust automated mapping to data collection needs (e.g. 
consideration of the flight altitude-related trade-off between accu-
racy and sample coverage).

The bottleneck of this approach is the construction of a manually 
annotated dataset. This is a time-consuming but necessary process 
as high-quality ground truth data are required for training. However, 
as shown in this study, the return on initial investment will be high as 
a deployed CNN classifier can provide low-cost and rapid monitor-
ing of floral resources. This is important in applications where high 
spatio-temporal resolution is needed, such as in long-term biomoni-
toring programmes or collaborations over large study areas contain-
ing common habitat types (Besson et al., 2022; Breeze et al., 2021; 
Szigeti et al., 2016).

AUTHOR CONTRIBUTIONS
Nicholas Sookhan, Shane Sookhan, and J. Scott MacIvor designed 
the project; Nicholas Sookhan, Shane Sookhan, and Devlin Grewal 
collected data and completed manual data annotation; Nicholas 
Sookhan and Shane Sookhan analysed the data; all authors contrib-
uted to the writing and editing of the manuscript drafts and final 
version.

ACKNOWLEDG EMENTS
We thank Leonardo Cabrera at the Rouge National Urban Park for 
assisting with permission to fly the drone and collect the imagery 
(permit number: 2021-39819). We thank two undergraduate stu-
dents who were funded through TD Undergraduate Research 
Opportunity Fellowships: Tim Lee who contributed to fieldwork 
and Khadija Naeem who contributed to the preparation of training 
data. Additional funds for this project were provided by an NSERC 
Discovery grant (RGPIN-2018-05660), and an NSERC-CREATE 
(‘DESIGNLifes’, #401276521) awarded to J.S.M., and a University 
of Toronto Scarborough Centre for Environmental Research in the 
Anthropocene (CERA) graduate student award to N.S.

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflict of interest.

PEER RE VIE W
The peer review history for this article is available at https://​www.​
webof​scien​ce.​com/​api/​gatew​ay/​wos/​peer-​review/​10.​1002/​2688-​
8319.​12393​.

DATA AVAIL ABILIT Y S TATEMENT
The Python code and the data on the flowering plant taxa described 
from field measurements and derived from drone imagery are 
published on Zenodo: https://​doi.​org/​10.​5281/​zenodo.​13834747 
(Sookhan, 2024). The drone orthomosaics, predicted floral classifi-
cation maps, and the trained Tensorflow model (HDF5 format) are 
available from the Dryad repository: https://​doi.​org/​10.​5061/​dryad.​
nvx0k​6f1t (Sookhan et al., 2024).

ORCID
Nicholas Sookhan   https://orcid.org/0009-0008-0279-1375 
J. Scott MacIvor   https://orcid.org/0000-0002-2443-8192 

R E FE R E N C E S
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, 

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 
I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., 
Kudlur, M., … Zheng, X. (2016). TensorFlow: Large-scale machine 
learning on heterogeneous distributed systems. ArXiv:1603.04467 
[Cs]. http://​arxiv.​org/​abs/​1603.​04467​

Aberdeen, J. (1958). The effect of quadrat size, plant size, and plant 
distribution on frequency estimates in plant ecology. Australian 
Journal of Botany, 6(1), 47–58.

Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial ve-
hicles will revolutionize spatial ecology. Frontiers in Ecology and the 
Environment, 11(3), 138–146. https://​doi.​org/​10.​1890/​120150

Baldock, K. C. R., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, 
N., Morse, H., Osgathorpe, L. M., Potts, S. G., Robertson, K. M., Scott, 
A. V., Staniczenko, P. P. A., Stone, G. N., Vaughan, I. P., & Memmott, 
J. (2019). A systems approach reveals urban pollinator hotspots and 
conservation opportunities. Nature Ecology & Evolution, 3(3), 363–
373. https://​doi.​org/​10.​1038/​s4155​9-​018-​0769-​y

Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, 
D. (2021). Machine learning in agriculture: A comprehensive up-
dated review. Sensors, 21(11), 3758. https://​doi.​org/​10.​3390/​s2111​
3758

Besson, M., Alison, J., Bjerge, K., Gorochowski, T. E., Høye, T. T., Jucker, 
T., Mann, H. M. R., & Clements, C. F. (2022). Towards the fully au-
tomated monitoring of ecological communities. Ecology Letters, 25, 
2753–2775. https://​doi.​org/​10.​1111/​ele.​14123​

Blaauw, B. R., & Isaacs, R. (2014). Larger patches of diverse floral re-
sources increase insect pollinator density, diversity, and their 
pollination of native wildflowers. Basic and Applied Ecology, 15(8), 
701–711. https://​doi.​org/​10.​1016/j.​baae.​2014.​10.​001

Bosilj, P., Aptoula, E., Duckett, T., & Cielniak, G. (2020). Transfer learn-
ing between crop types for semantic segmentation of crops versus 
weeds in precision agriculture. Journal of Field Robotics, 37(1), 7–19. 
https://​doi.​org/​10.​1002/​rob.​21869​

Breeze, T. D., Bailey, A. P., Balcombe, K. G., Brereton, T., Comont, R., 
Edwards, M., Garratt, M. P., Harvey, M., Hawes, C., Isaac, N., Jitlal, 
M., Jones, C. M., Kunin, W. E., Lee, P., Morris, R. K. A., Musgrove, 
A., O'Connor, R. S., Peyton, J., Potts, S. G., … Carvell, C. (2021). 
Pollinator monitoring more than pays for itself. Journal of Applied 
Ecology, 58(1), 44–57. https://​doi.​org/​10.​1111/​1365-​2664.​13755​

Chen, Y., Lee, W. S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., & He, Y. 
(2019). Strawberry yield prediction based on a deep neural network 
using high-resolution aerial orthoimages. Remote Sensing, 11(13), 
1584. https://​doi.​org/​10.​3390/​rs111​31584​

Chittka, L., & Raine, N. E. (2006). Recognition of flowers by pollinators. 
Current Opinion in Plant Biology, 9(4), 428–435. https://​doi.​org/​10.​
1016/j.​pbi.​2006.​05.​002

 26888319, 2024, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12393, W

iley O
nline L

ibrary on [10/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/2688-8319.12393
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/2688-8319.12393
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/2688-8319.12393
https://doi.org/10.5281/zenodo.13834747
https://doi.org/10.5061/dryad.nvx0k6f1t
https://doi.org/10.5061/dryad.nvx0k6f1t
https://orcid.org/0009-0008-0279-1375
https://orcid.org/0009-0008-0279-1375
https://orcid.org/0000-0002-2443-8192
https://orcid.org/0000-0002-2443-8192
http://arxiv.org/abs/1603.04467
https://doi.org/10.1890/120150
https://doi.org/10.1038/s41559-018-0769-y
https://doi.org/10.3390/s21113758
https://doi.org/10.3390/s21113758
https://doi.org/10.1111/ele.14123
https://doi.org/10.1016/j.baae.2014.10.001
https://doi.org/10.1002/rob.21869
https://doi.org/10.1111/1365-2664.13755
https://doi.org/10.3390/rs11131584
https://doi.org/10.1016/j.pbi.2006.05.002
https://doi.org/10.1016/j.pbi.2006.05.002


12 of 13  |     SOOKHAN et al.

Dauber, J., Biesmeijer, J. C., Gabriel, D., Kunin, W. E., Lamborn, E., Meyer, 
B., Nielsen, A., Potts, S. G., Roberts, S. P. M., Sõber, V., Settele, J., 
Steffan-Dewenter, I., Stout, J. C., Teder, T., Tscheulin, T., Vivarelli, 
D., & Petanidou, T. (2010). Effects of patch size and density on 
flower visitation and seed set of wild plants: A pan-European ap-
proach. Journal of Ecology, 98(1), 188–196. https://​doi.​org/​10.​
1111/j.​1365-​2745.​2009.​01590.​x

de Sá, N. C., Castro, P., Carvalho, S., Marchante, E., López-Núñez, F. A., 
& Marchante, H. (2018). Mapping the flowering of an invasive plant 
using unmanned aerial vehicles: Is there potential for biocontrol 
monitoring? Frontiers in Plant Science, 9, 293. https://​doi.​org/​10.​
3389/​fpls.​2018.​00293​

Ginsberg, H. S. (1983). Foraging ecology of bees in an old field. Ecology, 
64(1), 165–175. https://​doi.​org/​10.​2307/​1937338

Hatfield, R. G., & LeBuhn, G. (2007). Patch and landscape fac-
tors shape community assemblage of bumble bees, Bombus 
spp. (Hymenoptera: Apidae), in montane meadows. Biological 
Conservation, 139(1), 150–158. https://​doi.​org/​10.​1016/j.​biocon.​
2007.​06.​019

He, K., Zhang, X., Ren, S., & Sun, J. (2015, December 10). Deep resid-
ual learning for image recognition. ArXiv.Org. https://​arxiv.​org/​abs/​
1512.​03385v1

Hegland, S. J., Dunne, J., Nielsen, A., & Memmott, J. (2010). How to mon-
itor ecological communities cost-efficiently: The example of plant–
pollinator networks. Biological Conservation, 143(9), 2092–2101. 
https://​doi.​org/​10.​1016/j.​biocon.​2010.​05.​018

Hicks, D., Baude, M., Kratz, C., Ouvrard, P., & Stone, G. (2021). Deep 
learning object detection to estimate the nectar sugar mass of flow-
ering vegetation. Ecological Solutions and Evidence, 2(3), e12099. 
https://​doi.​org/​10.​1002/​2688-​8319.​12099​

Hicks, D. M., Ouvrard, P., Baldock, K. C. R., Baude, M., Goddard, M. A., 
Kunin, W. E., Mitschunas, N., Memmott, J., Morse, H., Nikolitsi, 
M., Osgathorpe, L. M., Potts, S. G., Robertson, K. M., Scott, A. V., 
Sinclair, F., Westbury, D. B., & Stone, G. N. (2016). Food for pollina-
tors: Quantifying the nectar and pollen resources of urban flower 
meadows. PLoS One, 11(6), e0158117. https://​doi.​org/​10.​1371/​
journ​al.​pone.​0158117

Hill, D. J., Tarasoff, C., Whitworth, G. E., Baron, J., Bradshaw, J. L., 
& Church, J. S. (2017). Utility of unmanned aerial vehicles for 
mapping invasive plant species: A case study on yellow flag 
iris (Iris pseudacorus L.). International Journal of Remote Sensing, 
38(8–10), 2083–2105. https://​doi.​org/​10.​1080/​01431​161.​2016.​
1264030

Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, 
M. J., Fernandez, M., Geller, G. N., Keil, P., Merow, C., Meyer, 
C., Muller-Karger, F. E., Pereira, H. M., Regan, E. C., Schmeller, 
D. S., & Turak, E. (2019). Essential biodiversity variables for 
mapping and monitoring species populations. Nature Ecology 
& Evolution, 3(4), Article 4. https://​doi.​org/​10.​1038/​s4155​
9-​019-​0826-​1

Jung, A. B., Wada, K., Crall, J., Tanaka, S., Graving, J., Reinders, C., Yadav, 
S., Banerjee, J., Vecsei, G., Kraft, A., Rui, Z., Borovec, J., Vallentin, 
C., Zhydenko, S., Pfeiffer, K., Cook, B., Fernández, I., De Rainville, 
F.-M., Weng, C.-H., … Laporte, M. (2020). Imgaug. https://​github.​
com/​aleju/​​imgaug

Kearns, C. A., & Inouye, D. W. (1993). Techniques for pollination biologists. 
University Press of Colorado.

Kremen, C., Williams, N. M., Aizen, M. A., Gemmill-Herren, B., LeBuhn, 
G., Minckley, R., Packer, L., Potts, S. G., Roulston, T., Steffan-
Dewenter, I., Vázquez, D. P., Winfree, R., Adams, L., Crone, E. E., 
Greenleaf, S. S., Keitt, T. H., Klein, A.-M., Regetz, J., & Ricketts, T. H. 
(2007). Pollination and other ecosystem services produced by mo-
bile organisms: A conceptual framework for the effects of land-use 
change. Ecology Letters, 10(4), 299–314. https://​doi.​org/​10.​1111/j.​
1461-​0248.​2007.​01018.​x

Kremen, C., Williams, N. M., Bugg, R. L., Fay, J. P., & Thorp, R. W. (2004). 
The area requirements of an ecosystem service: Crop pollination by 
native bee communities in California. Ecology Letters, 7(11), 1109–
1119. https://​doi.​org/​10.​1111/j.​1461-​0248.​2004.​00662.​x

Liu, Y., Ren, Q., Geng, J., Ding, M., & Li, J. (2018). Efficient patch-wise 
semantic segmentation for large-scale remote sensing images. 
Sensors, 18(10), Article 10. https://​doi.​org/​10.​3390/​s1810​3232

Livingstone, S. W., Isaac, M. E., & Cadotte, M. W. (2020). Invasive dom-
inance and resident diversity: Unpacking the impact of plant inva-
sion on biodiversity and ecosystem function. Ecological Monographs, 
90(4), e01425. https://​doi.​org/​10.​1002/​ecm.​1425

Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A., & Tsuboi, M. (2021). 
Computer vision, machine learning, and the promise of phenom-
ics in ecology and evolutionary biology. Frontiers in Ecology and 
Evolution, 9, 642774. https://​www.​front​iersin.​org/​artic​les/​10.​
3389/​fevo.​2021.​642774

Mittal, P., Singh, R., & Sharma, A. (2020). Deep learning-based object 
detection in low-altitude UAV datasets: A survey. Image and Vision 
Computing, 104, 104046. https://​doi.​org/​10.​1016/j.​imavis.​2020.​
104046

Morrison, L. W. (2016). Observer error in vegetation surveys: A review. 
Journal of Plant Ecology, 9(4), 367–379. https://​doi.​org/​10.​1093/​jpe/​
rtv077

Ortiz, P. L., Fernández-Díaz, P., Pareja, D., Escudero, M., & Arista, M. 
(2020). Do visual traits honestly signal floral rewards at community 
level? Functional Ecology, 35(2), 369–383. https://​doi.​org/​10.​1111/​
1365-​2435.​13709​

Park, J., Cho, Y. K., & Kim, S. (2022). Deep learning-based UAV image 
segmentation and inpainting for generating vehicle-free ortho-
mosaic. International Journal of Applied Earth Observation and 
Geoinformation, 115, 103111. https://​doi.​org/​10.​1016/j.​jag.​2022.​
103111

R Core Team. (2022). R (4.2.2): A language and environment for statistical 
computing. R Foundation for Statistical Computing. https://​www.R-​
proje​ct.​org/​

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional 
Networks for Biomedical Image Segmentation (arXiv:1505.04597). 
arXiv. http://​arxiv.​org/​abs/​1505.​04597​

Sa, I., Popović, M., Khanna, R., Chen, Z., Lottes, P., Liebisch, F., Nieto, J., 
Stachniss, C., Walter, A., & Siegwart, R. (2018). WeedMap: A large-
scale semantic weed mapping framework using aerial multispectral 
imaging and deep neural network for precision farming. Remote 
Sensing, 10(9), Article 9. https://​doi.​org/​10.​3390/​rs100​91423​

Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Müller, K.-R. 
(2021). Explaining deep neural networks and beyond: A review of 
methods and applications. Proceedings of the IEEE, 109(3), 247–278. 
https://​doi.​org/​10.​1109/​JPROC.​2021.​3060483

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data aug-
mentation for deep learning. Journal of Big Data, 6(1), 1–48.

Sookhan, N., Sookhan, S., Grewal, D., & MacIvor, J. S. (2024). Data from: 
Automating field based floral surveys with machine learning [data-
set]. Dryad. https://​doi.​org/​10.​5061/​dryad.​nvx0k​6f1t

Sookhan, N. (2024). nsookhan/floral_segmentation: Code for: 
Automating field based floral surveys with machine learning (V1.0). 
Zenodo. https://​doi.​org/​10.​5281/​zenodo.​13834747

Sprayberry, J. D. H. (2018). The prevalence of olfactory- versus visual-
signal encounter by searching bumblebees. Scientific Reports, 8(1), 
Article 1. https://​doi.​org/​10.​1038/​s4159​8-​018-​32897​-​y

Szigeti, V., Kőrösi, Á., Harnos, A., Nagy, J., & Kis, J. (2016). Measuring 
floral resource availability for insect pollinators in temperate grass-
lands—A review. Ecological Entomology, 41(3), 231–240. https://​doi.​
org/​10.​1111/​een.​12298​

Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-
based applications for precision agriculture. Information, 10(11), 
349.

 26888319, 2024, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12393, W

iley O
nline L

ibrary on [10/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/j.1365-2745.2009.01590.x
https://doi.org/10.1111/j.1365-2745.2009.01590.x
https://doi.org/10.3389/fpls.2018.00293
https://doi.org/10.3389/fpls.2018.00293
https://doi.org/10.2307/1937338
https://doi.org/10.1016/j.biocon.2007.06.019
https://doi.org/10.1016/j.biocon.2007.06.019
https://arxiv.org/abs/1512.03385v1
https://arxiv.org/abs/1512.03385v1
https://doi.org/10.1016/j.biocon.2010.05.018
https://doi.org/10.1002/2688-8319.12099
https://doi.org/10.1371/journal.pone.0158117
https://doi.org/10.1371/journal.pone.0158117
https://doi.org/10.1080/01431161.2016.1264030
https://doi.org/10.1080/01431161.2016.1264030
https://doi.org/10.1038/s41559-019-0826-1
https://doi.org/10.1038/s41559-019-0826-1
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://doi.org/10.1111/j.1461-0248.2007.01018.x
https://doi.org/10.1111/j.1461-0248.2007.01018.x
https://doi.org/10.1111/j.1461-0248.2004.00662.x
https://doi.org/10.3390/s18103232
https://doi.org/10.1002/ecm.1425
https://www.frontiersin.org/articles/10.3389/fevo.2021.642774
https://www.frontiersin.org/articles/10.3389/fevo.2021.642774
https://doi.org/10.1016/j.imavis.2020.104046
https://doi.org/10.1016/j.imavis.2020.104046
https://doi.org/10.1093/jpe/rtv077
https://doi.org/10.1093/jpe/rtv077
https://doi.org/10.1111/1365-2435.13709
https://doi.org/10.1111/1365-2435.13709
https://doi.org/10.1016/j.jag.2022.103111
https://doi.org/10.1016/j.jag.2022.103111
https://www.r-project.org/
https://www.r-project.org/
http://arxiv.org/abs/1505.04597
https://doi.org/10.3390/rs10091423
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.5061/dryad.nvx0k6f1t
https://doi.org/10.5281/zenodo.13834747
https://doi.org/10.1038/s41598-018-32897-y
https://doi.org/10.1111/een.12298
https://doi.org/10.1111/een.12298


    |  13 of 13SOOKHAN et al.

Tuia, D., Kellenberger, B., Beery, S., Costelloe, B. R., Zuffi, S., Risse, B., 
Mathis, A., Mathis, M. W., van Langevelde, F., Burghardt, T., Kays, 
R., Klinck, H., Wikelski, M., Couzin, I. D., van Horn, G., Crofoot, M. 
C., Stewart, C. V., & Berger-Wolf, T. (2022). Perspectives in machine 
learning for wildlife conservation. Nature Communications, 13(1), 
Article 1. https://​doi.​org/​10.​1038/​s4146​7-​022-​27980​-​y

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table  S1. Flight altitude versus spatial coverage (m2), flight speed 
(m/s) and ground sampling distance (GSD) (i.e. spatial resolution).
Table  S2. Site coordinates, drone mapping and orthomosaic 
parameters, and ground truth breakdown by site.
Table  S3. Forbs in flower that were observed during September 
ground truthing of sites at Rouge National Urban Park.
Table S4. A confusion matrix comparing the trained CNN classifier to 
the ground truth testing dataset.
Table  S5. Metric values evaluating CNN classifier performance by 
flight altitude and classified taxa.

Figure S1. Locations of meadow field sites at Rouge National Urban 
Park. The size of red bounding boxes depicts the area sampled.
Figure S2. Data augmentation pipeline applied to input images 
(128 × 128 × 3) during training and validation of classifier.
Figure S3. Example of drone orthomosaic and flower classification 
map from imagery collected at 15m altitude.
Figure S4. Comparison between floral counts using quadrat sampling 
(y-axis) and the drone-derived floral metrics predicted by the CNN 
classifier (x-axis).
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