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Abstract
1. The abundance and diversity of flowering plant species are important indicators 

of pollinator habitat quality, but traditional field- based surveying techniques are 
time- intensive. Therefore, they are often biased due to under- sampling and are 
difficult to scale.

2.	 Aerial	photography	was	collected	across	10	sites	 located	 in	and	around	Rouge	
National	 Urban	 Park,	 Toronto,	 Canada	 using	 a	 consumer-	grade	 drone.	 A	
convolutional	 neural	 network	 (CNN)	 was	 trained	 to	 semantically	 segment,	
or identify and categorize, pixel clusters which represent flowers in the 
collected	aerial	imagery.	Specifically,	flowers	of	the	dominant	taxa	found	in	the	
depauperate fall flowering plant community were surveyed. This included yellow 
flowering Solidago spp., white Symphyotrichum ericoides/lanceolatum and purple 
Symphyotrichum novae- angliae.	 The	CNN	was	 trained	using	930 m2 of manually 
annotated data, ~1% of the mapped landscape. The trained CNN was tested on 
20% of the manually annotated data concealed during training. In addition, it was 
externally validated by comparing the predicted drone- derived floral abundance 
metrics	(i.e.	floral	area	(m2)	and	the	number	of	floral	patches)	to	the	field-	based	
count	of	floral	units	estimated	for	34	4 m2 plots.

3. The CNN returned accurate multiclassification when evaluated against the 
testing	data.	It	obtained	a	precision	score	of	0.769,	a	recall	of	0.849,	and	an	F1	
score	of	0.807.	The	automated	floral	abundance	counting	yielded	estimates	that	
were strongly correlated with field- based manual counting. In addition, flower 
segmentation using the trained CNN was time- efficient. On average, it took 
roughly the same amount of time to segment the flowers occurring in an entire 
drone scene as it took to complete the abundance count of a single quadrat. 
However, the training process, particularly manual data annotation, was the most 
time- consuming component of the study.

4. Practical implication: Overall, the analysis provided valuable insights into automated 
flower classification and abundance estimation using drone imagery and machine 
learning. The results demonstrate that these tools can be used to provide 
accurate	 and	 scalable	 estimates	 of	 pollinator	 habitat	 quality.	 Further	 research	
should consider diverse wildflower systems to develop the generalizability of the 
methods.
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1  |  INTRODUC TION

In an era of global change, consistent, reproducible, and rigorous 
monitoring of landscapes are needed to document the impact of 
ecological	 pressures	on	biological	 diversity	 (Jetz	 et	 al.,	2019).	 The	
automated processing of components of ecological data streams has 
increasingly become recognized as part of the solution to the data- 
deficiency	crisis	 in	ecology	 (Besson	et	al.,	2022; Lürig et al., 2021; 
Tuia et al., 2022).	An	example	of	this	deficiency	is	seen	in	the	mapping	
of the abundance and diversity of flowering plant species, which are 
key	indicators	of	habitat	quality	(Szigeti	et	al.,	2016).	Flying	insects,	
such as pollinators that depend on flowering plants, operate within 
large	 local	 landscapes,	 and	often	 forage	 in	 radii	 larger	 than	500 m	
(Kremen	et	 al.,	2007).	Estimates	of	 floral	 abundance	and	diversity	
are thus generated from quadrats and extrapolated to determine 
habitat	 quality	 (Kearns	&	 Inouye,	1993).	Unfortunately,	 traditional	
field- based methods used to assess pollinator habitat quality are 
time-	intensive,	 especially	 across	 large	 spatial	 extents	 (Breeze	
et al., 2021).	Thus,	assessments	of	habitat	quality	are	often	biased	
due	to	under-	sampling	(Breeze	et	al.,	2021;	Szigeti	et	al.,	2016).

In precision agriculture, drones have been paired with machine 
learning algorithms to automate the mapping of environmental indi-
cators	(Benos	et	al.,	2021).	Commercial	drone	platforms	are	used	to	
map agricultural landscapes with multispectral and light detection 
and	ranging	(LiDAR)	sensors	(Tsouros	et	al.,	2019).	Aerial	photogra-
phy captured using low altitude drone flights is orthorectified into 
sub-	meter	 resolution	 scenes	 of	 entire	 agricultural	 landscapes	 (Sa	
et al., 2018).	For	example,	drone	orthomosaics,	which	are	orthorec-
tified imagery datasets that are geometrically corrected for perspec-
tive and terrain effects, are used as the input to machine learning 
classifiers	to	automate	crop	classification	and	weed	detection	(Chen	
et al., 2019;	Sa	et	al.,	2018).

Artificial	neural	network	(ANNs)	techniques	have	caused	a	para-
digm shift in automation due to their applicability to a wide breadth 
of	 tasks	 including	 classification	 problems	 (Samek	 et	 al.,	 2021).	
Convolutional	neural	networks	(CNNs),	a	class	of	ANN	used	in	image	
analysis, outperform other machine learning approaches applied to 
crop	management	(Benos	et	al.,	2021).	These	algorithms	generate	a	
label for each pixel in input imagery, a process called semantic seg-
mentation. To accomplish this, imagery data are resampled to differ-
ent pixel densities to first identify and then label pixel clusters based 
on abstractions of pixel properties, with sequential downsampling 
layers used to extract fine to coarse- grained features and upsam-
pling of the encoded feature space then used to predict the semantic 
segmentation.	Accurate	semantic	segmentation,	which	refers	to	the	
categorization of pixel clusters into classes, is achieved via super-
vised learning using training data that is manually annotated with 
expert knowledge. During the cycles of training, known as training 

epochs, the algorithm iteratively adjusts the layer weights, which are 
the parameters within each layer of the neural network that deter-
mine the strength and direction of connections between neurons. 
This adjustment allows the feature extraction space to learn pixel 
properties that correspond to the user- provided target for semantic 
segmentation. To evaluate generalizability, ensuring that the model 
works well with new data, the trained classifier is then compared with 
the manual data annotation of novel testing data. In other words, the 
classifier is tested using data that it has had no prior exposure to. 
Deployed CNN classifiers are accurate, generalizable, and scalable 
when	paired	with	drone-	derived	data	products	(Mittal	et	al.,	2020).

In environmental management, research into the application of ma-
chine learning techniques to drone- derived data products has shown 
potential for increasing the efficiency and effectiveness of automated 
processing	(Besson	et	al.,	2022; Lürig et al., 2021).	Commercial	drone	
platforms which allow the collection of high- resolution multimodal 
imagery can be prohibitively expensive for applications in environ-
mental management. However, machine learning techniques have 
been	successfully	paired	with	true	colour	red,	green,	and	blue	(RGB)	
imagery which can be obtained from more cost- effective consumer- 
grade drone platforms. This approach has been applied to automate 
the	mapping	of	flowering	plants	(de	Sá	et	al.,	2018; Hicks et al., 2021; 
Hill et al., 2017).	 In	de	Sa	et	 al.	 (2018),	 the	authors	used	a	 random	
forest binary classifier paired with drone orthomosaic imagery to map 
the floral cover of Acacia longifolia	(Andrews)	Willd.	(Fabaceae),	a	mass	
flowering shrub that is invasive in Portuguese dunes. It was found 
that automated drone- based monitoring was more efficient than tra-
ditional methods as it took a quarter of the time required to monitor 
flowering	in	the	field.	In	another	example,	Hicks	et	al.	(2021)	sampled	
pollinator habitat quality using a CNN object detector. The CNN was 
trained to automate the counting of floral units in ground- level pho-
tography	of	1 m2 field quadrats. It was determined that the automated 
assessment	took	5.5 s	per	quadrat	compared	with	3.2 min	for	manual	
counting, a >30× improvement in time efficiency with minimal loss in 
quality for morphologically distinct taxa.

An	 automated	 drone-	based	 biomonitoring	 program	 should	
provide accurate estimates of foraging resource availability that 
are scalable to spatial extents appropriate to flying insects. In this 
project, we train a CNN classifier to semantically segment flowers 
using aerial photography collected from a consumer- grade drone. 
Environmental	management	is	historically	underfunded,	and	there-
fore the exploration of consumer- grade drone platforms to inves-
tigate	 low-	cost	 solutions	 is	 essential	 (Anderson	 &	 Gaston,	 2013).	
We	map	 semi-	natural	 meadows	 located	 in	 Rouge	 National	 Urban	
Park	(RNUP)	Ontario,	Canada.	We	focus	on	fall	flowering	plants,	a	
low diversity system where the mass flowering of predominantly 
Asteraceae	provides	key	floral	resources	for	insects	that	are	active	
late	in	the	season	(Ginsberg,	1983; Livingstone et al., 2020).	These	

K E Y W O R D S
computer vision, convolutional neural network, image segmentation, pollinators, Solidago, 
Symphyotrichum, unmanned aerial vehicle, vegetation survey
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include members of the yellow flowering Solidago	 L.	 (common:	
Goldenrod),	 purple	 Symphyotrichum novae- angliae	 (L.)	 G.L.Nesom	
(common:	New	England	aster),	as	well	as	Symphyotrichum ericodes	(L.)	
G.L.Nesom	(common:	White	Heath	Aster)	and	white	Symphyotrichum 
lanceolatum	(Willd.)	G.L.Nesom	(common:	Lance-	leaved	aster).

Our	first	objective	was	to	train	a	generalized	CNN	algorithm	(see	
Figure 1a)	 for	multiclassification	 of	 the	 focal	 flowering	 plant	 taxa	
using	 true	 colour	 RGB	 imagery	 collected	 with	 a	 consumer-	grade	
drone. The floral classification maps predicted by the classifier can 
then be used to generate accurate drone- derived estimates of pol-
linator habitat quality across habitat patches that vary in environ-
mental	 context	 (e.g.	 the	 community	 composition	 of	 plants	 which	
compose	 the	background	 in	which	segmented	 flowers	occur).	Our	
second objective was to explore the impact of flight altitude on the 
accuracy	of	CNN	classifier	predictions.	Flight	altitudes	are	7,	15,	and	
30 m	above-	ground	level	 (AGL),	which	are	operationally	defined	as	
low, mid, and high altitude, respectively. Compared with high alti-
tudes, low- altitude flights sample a small amount of area relative to 
the	local	landscape	in	which	pollinators	operate	(Table S1).	However,	
spatial resolution is high at low altitude which may allow the discrim-
ination of features not resolvable at higher altitudes. Our final ob-
jective was to compare the floral abundance estimates derived from 
field-	based	quadrat	sampling	estimates	(i.e.	the	count	of	floral	units)	
to	automated	drone	predictions	(i.e.	floral	area	(m2)	and	the	number	
of floral patches; Figure 1b).

2  |  MATERIAL S AND METHODS

2.1  |  Site description

The	Rouge	National	Urban	Park	(RNUP)	is	located	within	the	Greater	
Toronto	Area,	which	 is	Canada's	 largest	urban	agglomeration.	The	

focal flowering plant taxa are historically abundant within the re-
gion, but occupancy and abundance vary substantially among sites 
(Livingstone	 et	 al.,	 2020).	 In	 total,	 eight	 2500 m2 sites within the 
RNUP	were	sampled	(Figure S1 and Table S2).	These	sites	have	been	
previously surveyed to study the drivers and impacts of plant inva-
sion	 at	 the	 park	 (Livingstone	 et	 al.,	2020).	 An	 additional	 field	 site	
at	 the	 RNUP	 (A:	 43°50′21.96″ N,	 79°12′13.87″ W)	 and	 another	
at	 the	 University	 of	 Toronto	 Scarborough	 (CF:	 43°47′34.76″ N,	
79°11′16.75″ W)	were	 established	 to	measure	 field-	based	 quadrat	
sampling estimates for external validation.

2.2  |  Drone mapping

The drone image acquisition programme was completed during 2021 
between	 September	 5	 and	 September	 13	 using	 a	 consumer-	grade	
drone	(DJI	Phantom	4	Pro	V2,	DJI,	Shenzhen,	China).	The	DJI	Phantom	
4 Pro is equipped with a 1- inch complementary metal- oxide semicon-
ductor	(CMOS)	true	colour	RGB	sensor	with	a	resolution	of	20.7	meg-
apixels	(5472 × 3648	pixels)	at	a	focal	length	of	8.8 mm.	Imagery	was	
collected using a gridded flight pattern consisting of a series of paral-
lel	flight	lines	over	the	mapped	area	with	high	overlap	(forward = 70%	
and	side = 80%)	between	sites	to	account	for	field-	of-	view	limitations	
associated	 with	 the	 consumer-	grade	 sensor	 used	 here	 (FOV:	 84°	
8.8 mm/24 mm	 [35 mm	 format	 equivalent]).	 Further,	 we	 used	 short	
(<20 min)	programmed	missions	at	three	altitudes	(7,	15,	and	30 m	AGL)	
and	at	a	maximum	speed	of	3 m/s	(Table S1).	The	three	altitudes	were	
selected through qualitative field testing to maximize the resolution 
of	imagery	that	could	be	captured	per	flight.	Flights	were	kept	short	
to account for the draw on battery life associated with flight stabiliza-
tion	in	variable	wind	conditions.	Flight	speed	was	limited	by	the	shutter	
speed	of	the	consumer-	grade	sensor	(8–1/2000 s)	to	reduce	the	effect	
of	‘motion-	blur’	in	the	collected	imagery.	Each	site	was	mapped	with	a	

F I G U R E  1 Flowchart	of	methods	used	
in the study to classify flowers in drone 
photography.	(a)	The	convolutional	neural	
network was trained using the training 
and	validation	datasets;	(b)	This	was	
followed with evaluation using the testing 
dataset as well as external validation using 
field- based quadrat estimates.

Drone data collection

Orthomosaic (RGB)

Tile data (128 x 128 x 3)

Manual data annotation

Convolutional Neural Network

Testing (20%) Flower 
classification 

map

Training (60%)/ 
Validation (20%)

Evaluation Linear regression

Field 
sampling of 

quadrats

Floral area / 
patches

Floral 
units

(Table 1, S4, S5) (Figure 3, 4, S3) (Table 2 & Figure 5, S4)

(Figure S1 & Table S1, S2)

(Figure S2)

(Figure 2)

Flower 
classification 

map

(a) (b)
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flight	programmed	using	at	least	one	of	the	three	altitudes	(Table S1).	
According	 to	 the	 specifications	 of	 the	 sensor,	 imagery	 collected	 at	
the	7 m,	15 m,	and	30 m	flight	altitudes	has	ground	sampling	distances	
(GSD)	of	0.19 cm/pixel,	0.41 cm/pixel,	and	0.82 cm/pixel,	respectively.	
At	 some	sites,	multiple	programmed	 flights	were	 flown	 to	either	 in-
crease spatial coverage at a single flight altitude and/or to map the lo-
cation at multiple altitudes. Orthomosaics constructed with imagery 
collected	at	7 m	flight	altitude	only	covered	800	m2 which is a low spa-
tial	coverage	relative	to	the	2500 m2 site areas. Therefore, to achieve 
higher spatial coverage, two flight missions were flown at sites mapped 
at	 the	7 m	 flight	altitude.	This	doubled	 flight	 time	and	 resulted	 in	at	
most	1600 m2	of	spatial	coverage	(Table S1).	At	15 m,	up	to	3400 m2 
could be mapped with a single flight mission which resulted in complete 
site	coverage.	The	30 m	flight	altitude	mapped	up	to	12,400 m2, or in 
other	words	almost	five	times	the	site	area	in	a	single	flight.	All	missions	
were	flown	between	11:45	and	14:45 h	and	were	programmed	using	
Litchi	(www. flyli tchi. com),	a	low-	cost	drone	mission	planning	software.	
Imagery	was	orthorectified	using	Agisoft	Metashape	Professional	(ver-
sion	1.8.3).	The	orthorectification	process	is	seen	as	a	crucial	step	in	
increasing imagery fidelity since it can help remedy distortions caused 
by	topographical	relief	and	lens	distortion	(Park	et	al.,	2022).

2.3  |  Floral surveying

Field	surveys	were	completed	to	validate	the	drone-	derived	metrics	of	
floral	abundance	using	field-	derived	metrics.	Thirty-	four	4 m2 quadrats 
were established across the two field sites established for this study 
(CF = 9,	 A = 25).	 The	 floral	 units	 of	 each	 plant	 species	were	 counted	
within	 quadrats	 from	 September	 11	 to	 September	 13.	 Floral	 units	
were	defined	as	single	flowers	or	inflorescences	(umbels	for	Apiaceae	
and	 flower	 heads	 for	 Asteraceae).	 At	 the	 remaining	 sites,	 visual	 as-
sessments were completed to determine the flowering plant species 
present.	Visual	assessments	are	comparable	to	formal	quadrat	surveys	
when	assessing	plant	species	occupancy	(Morrison,	2016).

Vegetative	surveys	previously	conducted	at	the	RNUP	field	sites	
have grouped Solidago	 spp.	 (Livingstone	et	al.,	2020).	Thus,	during	
floral surveys and following further analysis, Solidago species were 
grouped	 at	 the	 genus	 level	 (i.e.	 Solidago	 spp.).	 An	 additional	 10	
flowering	plant	taxa	were	identified	to	genus	or	species	(Table S3).	
Quadrats	were	dominated	by	four	showy	mass	flowering	Asteraceae	
taxa: Solidago spp., Symphyotrichum ericoides, Symphyotrichum lance-
olatum, and Symphyotrichum novae- angliae. These taxa were found 
to be both locally abundant and common during visual assessments 
of sites. Crucially, each of these plant genera and species occurs at 
sizes and colour ranges that are captured within the specifications of 
the consumer- grade sensor used here when following the collection 
method described here.

2.4  |  Ground truthing

Drone	orthomosaics	 for	 all	 altitudes	were	 split	 into	 tiles	 (128	pix-
els × 128	pixels × 3	channels),	1%	of	which	were	randomly	sampled.	

To produce the ground truth dataset, flowering parts of plant taxa 
in the randomly sampled tiles were segmented and labelled using 
QGIS	 (https:// www. qgis. org).	 Flowering	 parts	 that	 belonged	 to	
Symphyotrichum ericoides and Symphyotrichum lanceolatum were 
grouped together because they could not be distinguished from 
each	other	at	altitudes	above	7 m.

Following	manual	data	annotation,	data	from	all	altitudes	were	
split into training, validation, and testing sets with a 3:1:1 ratio 
(3563	training,	1192	validation,	and	1197	testing	tiles).	A	stratified	
approach was used where tiles from each orthomosaic were split in-
dependently and then collapsed into training, validation, and testing 
sets. Orthomosaics from all altitudes were used together for training 
as opposed to creating a series of altitude- specific CNNs to provide 
a more accurate comparison of model performance at different alti-
tudes. There was a class imbalance in the ground truth data such that 
Solidago spp. was found in 2863 image tiles while Symphyotrichum 
ericoides/lanceolatum and Symphyotrichum novae- angliae occurred in 
815 and 352, respectively.

2.5  |  Convolutional neural network (CNN)

A	CNN	was	 trained	 for	 patch-	wise	 semantic	 segmentation	 of	 the	
flower taxa using the machine learning platform Tensorflow v2.10 
with	the	Keras	v2.10	interface	in	Python	v3.9.13	(Abadi	et	al.,	2016).	
‘Patch- wise’ refers to the process of dividing the input image into 
smaller and manageable sections or patches and then performing 
segmentation on each patch individually rather than on the entire 
image at once. The CNN was constructed using the U- Net architec-
ture	 (Ronneberger	et	al.,	2015)	 (details	 in	Figure 2).	RESNET-	50,	a	
CNN	designed	for	image	classification,	was	used	as	the	encoder.	A	
key strength of image classifiers is that the knowledge gained from 
being pre- trained on several hundreds of thousands of images can 
be transferred to other CNNs to improve the efficiency of model 
fitting,	particularly	when	small	datasets	are	used	 in	training	 (Bosilj	
et al., 2020).	This	process	is	referred	to	as	transfer	learning	and	has	
previously been demonstrated to improve the performance of crop 
plant semantic segmentation in low- altitude drone data products 
(Bosilj	 et	 al.,	2020).	 In	 this	 case,	 the	 implemented	RESNET-	50	en-
coder	was	pre-	trained	on	the	ImageNet	2012	dataset	(1000	classes	
and 1.28 million training images; He et al., 2015).	 The	 output	 se-
mantic	 segmentation	 had	 four	 classes:	 background	 (i.e.	 vegeta-
tion,	 bare	 soil,	 and	other	 features	 in	 the	 landscape),	Solidago spp., 
Symphyotrichum ericoides/lanceolatum and Symphyotrichum novae- 
angliae, respectively.

The	 CNN	was	 trained	 and	 deployed	 using	 a	 NVIDIA	 GeForce	
RTX 3060. The training and validation ground truth datasets were 
used to train the CNN. The CNN had a total of 32,561,694 parame-
ters,	12,467,096	of	which	were	trainable.	The	classifier	was	trained	
for up to 300 epochs with a training and validation batch size of 32. 
An	early-	stopping	criterion	was	implemented	whereby	training	was	
halted if validation loss dropped by less than 0.0001 across epochs 
(patience = 20).	The	number	of	epochs,	training	and	validation	batch	
size and validation loss threshold were chosen through experimental 

 26888319, 2024, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12393, W

iley O
nline L

ibrary on [10/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.flylitchi.com/
https://www.qgis.org/en/site/


    |  5 of 13SOOKHAN et al.

testing to prevent overfitting, maximize model efficiency and ensure 
stability	 on	 the	 hardware	 used.	 The	 categorical	 focal	 Jaccard	 loss	
(i.e.	the	sum	of	categorical	focal	loss	and	Jaccard	loss)	was	used	as	
the loss function.

Data	 were	 pre-	processed	 using	 min–max	 scaling.	 In	 addition,	
input tiles were colour augmented and rotated during training 
and	 validation	 (Figure S2)	 to	 reduce	model	 overfitting	 (Shorten	&	
Khoshgoftaar,	 2019).	 Colour	 augmentations	 were	 implemented	
using	the	‘imgaug’	package	in	Python	(Jung	et	al.,	2020).	Brightness,	
saturation, and temperature augmentation were applied in random 
order to simulate variation in lighting conditions.

Following	 training,	 the	 CNN	was	 deployed	 to	 classify	 flowers	
in imagery using a patch- wise semantic segmentation approach. To 
do	this,	were	split	 into	overlapping	 tiles	 (128 × 128 × 3).	Tiles	over-
lapped	by	half	of	their	length	and	width	(i.e.	64	pixels).	Semantic	seg-
mentation was then completed on the overlapping tiles using the 
trained	classifier.	The	centre	of	each	predicted	tile	(64 × 64 × 1)	was	
extracted. Then, the cropped tiles were stitched together to con-
struct the overall floral classification map. This approach was used 

to account for decline in quality of classification towards the edges 
of input imagery that is typically observed in semantic segmentation 
(Liu	et	al.,	2018).

2.6  |  Model evaluation

The testing data, which were novel to the trained classifier, were 
compared with the floral classification maps to evaluate the qual-
ity	of	 classification.	The	 intersection	over	union	 (IoU),	precision,	
recall,	and	F1	scores	were	used.	Ranging	from	0	to	1,	the	IoU	score	
measures the overlap between the ground truth and prediction 
pixels divided by the union of ground truth and prediction pix-
els. The higher the value, the more similar the prediction is to 
the	 ground	 truth.	 The	 precision,	 recall,	 and	 F1	 scores	were	 cal-
culated from the confusion matrix comparing the testing data to 
the predicted floral classification maps. Precision is the proportion 
of pixels that were labelled positive that are true- positive where 
precision	 score = true-	positive/(true-	positive + false-	positive).	

F I G U R E  2 Patch-	wise	semantic	segmentation	approach	using	U-	Net	architecture.	U-	Net	architecture	is	comprised	of	five	blocks:	Input,	
encoder,	bridge,	decoder,	and	output.	Drone	orthomosaics	are	split	into	overlapping	tiles	(128	pixels × 128	pixels × 3	channels).	Input	tiles	are	
then	encoded	using	the	RESNET-	50	architecture.	Input	resolution	is	reduced	by	half	and	feature	channel	depth	is	doubled	during	each	step	
of the contracting path. The bridge block is an encoded representation of the input tile with low resolution and high feature channel depth. 
The bridge block is fed to the decoder which doubles input resolution and halves feature channel depth during each step of the expansive 
path. During decoding, feature maps from the corresponding resolution in the contracting path are concatenated to the expansive path 
using	skip	connections.	This	improves	the	incorporation	of	coarse-		to	fine-	grained	context	information.	Softmax	activation	is	applied	to	
the	decoded	image	which	produces	a	pixel-	wise	prediction	where	feature	channel	depth	is	equal	to	the	number	of	classes	(128 × 128 × 4).	
Argmax	is	applied	pixel-	wise	to	output	the	class	with	the	highest	predicted	probability	per	pixel	(128 × 128 × 1).	Non-	overlapping	sections	of	
semantic segmentation tiles are joined to produce the overall flower classification map.
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6 of 13  |     SOOKHAN et al.

In contrast, recall is the proportion of true- positive pixels that 
were	 labelled	 positive,	 where	 recall	 score = true-	positive/(true-	
positive + false-	negative).	 The	 precision	 and	 recall	 scores	 range	
from	0	to	1	and	emphasize	different	aspects	of	classification.	For	
a drone orthomosaic, the precision score will be high if the flow-
ers segmented and labelled by the classifier correspond to flowers 
that occur in the mapped landscape, even if a large proportion of 
flowers were not identified by the classifier. In contrast, the re-
call score will be high if most of the flowers that occurred in the 
landscape were correctly segmented and labelled by the classifier, 
even if a large proportion of background were also misclassified 
as	flowers.	Finally,	the	F1 score is the harmonic mean of precision 
and recall.

Evaluation	metrics	were	calculated	for	each	flowering	plant	taxa	
independently. Ground truth data were grouped by flight altitude to 
explore the relationship between flight altitude and the quality of 
classification.

2.7  |  External validation

For	each	taxon,	the	drone-	derived	floral	abundance	metrics	were	
calculated with the quadrats and compared with the field- based 
counts. The metrics were calculated using floral classification maps 
generated	from	data	collected	at	either	the	15 m	or	30 m	flight	al-
titudes. Drone- derived floral abundance metrics include the floral 
area	 (m2)	 and	 the	 count	 of	 predicted	 floral	 patches.	 At	 the	 plot	
level, the field- based count of flowers was regressed on the drone- 
derived	metrics	using	 linear	regression.	For	each	flight	altitude,	a	
separate linear regression model was fit for each flower taxa. The 
R2 was used to assess the strength of each relationship. The linear 
regression	models	were	fitted	using	R	v4.2.2	(R	Core	Team,	2022).

3  |  RESULTS

In	total,	 it	took	4 h	and	59 min	to	complete	all	drone	flights	and	an	
additional	 9 h	 and	 56 min	 to	 construct	 the	 corresponding	 drone	
orthomosaics	which	mapped	88,200 m2 across the RNUP and the 
University	 of	 Toronto	 Scarborough	 field	 site	 (Table S2).	 The	 con-
struction of the manually annotated dataset was the most time- 
consuming component of the analysis pipeline taking ~ 124 h,	 or	
1.25 min	per	tile.	This	was	followed	by	model	training	a	total	of	58	
epochs	which	took	a	total	time	of	55 min.	Finally,	prediction	of	the	
flower	classification	maps	took	a	total	of	3 h	and	23 min	across	the	
12	orthomosaics,	an	average	of	17 min	per	orthomosaic.	Overall,	all	
steps	took	a	total	of	143 h	and	13 min.

3.1  |  Flight altitude

At	the	7 m	flight	altitude	 (GSD = 0.19 cm/pixel),	 flower	morphology	
was discernable and the white flowering Symphyotrichum species, S. 

ericoides and S. lanceolatum, could be identified from each other, and 
from	other	white	flowering	plant	species	present	(Figure 3).	Spatial	
resolution decreased with flight altitude which made the determi-
nation of morphological features used to distinguish these species 
more	difficult.	At	the	15 m	(GSD = 0.41 cm/pixel)	and	30 m	flight	alti-
tude	(GSD = 0.82 cm/pixel),	taxa	were	identifiable	by	spectral	charac-
teristics and shape, but other morphological features were generally 
hard	to	distinguish	(15 m:	Figure S3;	30 m:	Figure 4).	Therefore,	it	was	
not possible to discriminate between the two white Symphyotrichum 
species. Solidago and Symphyotrichum novae- angliae could be reliably 
identified in aerial photography collected at any flight altitude due 
to a combination of a unique floral hue and morphology within the 
context of the landscape.

3.2  |  Model evaluation

The confusion matrix used to calculate the model evaluation metrics 
is reported in Table S4. It was found that precision, recall, and the 
F1	scores	were	high	 (Table 1).	The	classifier	was	most	accurate	at	
segmenting and labelling floral units belonging to Solidago	(F1 = 0.82)	
this was followed by Symphyotrichum novae- angliae	 (F1 = 0.79)	 and	
Symphyotrichum ericoides/lanceolatum	 (F1 = 0.70;	 Table 1).	 There	
were no clear trends in classifier performance between flight alti-
tudes	(see	Table S5	for	a	breakdown	by	flight	altitude).

The three focal taxa were generally not confused in classifica-
tion and other flowering plants were not falsely classified as any of 
the	 three	 focal	 taxa	 (Table S4).	 Background	 pixels	were	 generally	
not misclassified as flowers vice- versa, except for Symphyotrichum 
ericoides/lanceolatum which had relatively low precision and recall, 
respectively.

3.3  |  External validation

It	took	a	total	of	8 h	and	40 min	to	complete	quadrat	sampling	of	the	
34	plots	or	15.30 min	per	plot.	The	drone-	derived	metrics	of	floral	
abundance were strongly correlated with the counts of floral units 
measured	in	the	field	using	quadrat	sampling	at	both	the	15 m	and	
the	30 m	flight	altitudes	(15 m:	Figure 5,	30 m:	Figure S4).	However,	
the	relationships	were	weaker	when	fitted	with	the	30 m	data	than	
with	the	15 m	data	where	the	R2	was	up	to	0.26	lower	(Table 2).

4  |  DISCUSSION

4.1  |  Flight altitude

The spatial resolution of an orthomosaic was negatively correlated 
with drone flight altitude during the capture of aerial photogra-
phy, with the drop- off in resolution related to the pixel resolution, 
field- of- view, and focal length range of the consumer- grade sensor. 
Despite this, multiclassification performed well across the three 
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    |  7 of 13SOOKHAN et al.

tested	flight	altitudes.	Semi-	natural	meadows	are	complex	environ-
ments where plant structural and spectral diversity is high. Complex 
backgrounds pose a challenge to accurate automated segmentation 
and	 labelling	 (Sa	et	al.,	2018).	Although	this	 is	 the	case,	 focal	 taxa	
which included yellow and white flowering parts, were not confused 
with senescing vegetative or reproductive plant matter. In addition, 
the increased spatial resolution had a trade- off with spatial cover-
age	of	mapping.	At	the	low	(7 m)	flight	altitude,	 it	would	be	neces-
sary to complete multiple flights to achieve full spatial coverage of 
the	sampled	sites	(2500 m2),	while	in	contrast,	at	the	mid	(15 m)	and	
high	 (30 m)	altitude,	 landscape-	level	coverage	was	achieved	with	a	
single flight. The spatial extent of the sampled sites was designed 

to	test	questions	relating	to	plant	ecology	(Livingstone	et	al.,	2020)	
and does not translate to meaningful coverage of the local landscape 
within	which	pollinators	operate	(Kremen	et	al.,	2004).

At	first	glance,	 it	might	be	 inferred	that	high-	flight	altitude	 is	
all- together superior to low altitude when capturing aerial pho-
tography for the estimation of pollinator habitat quality. However, 
moderate performance loss was observed in the external valida-
tion procedure which compared mid and high- altitude drone sur-
veying	 in	 terms	of	 correlation	 to	 field	 counts.	 Furthermore,	 it	 is	
important to note that the flowering plant species pool was de-
pauperate during the time of year that the region was sampled. In 
the	fall,	late	flowering	members	of	the	Asteraceae	family	produce	

F I G U R E  3 Example	of	drone	orthomosaic	and	flower	classification	map	from	imagery	collected	at	7 m	altitude.	(a)	Close-	range	view	
of	drone	orthomosaic;	(b)	Close-	range	view	of	classification	map;	(c)	Long-	range-	view	of	drone	orthomosaic,	the	white	box	denotes	area	
depicted	in	close-	range	view;	(d)	Long-	range	view	of	classification	map.
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8 of 13  |     SOOKHAN et al.

large floral displays in southern Ontario. This is especially true of 
members of the Solidago and Symphyotrichum genera in RNUP. 
Due to the simplicity of the floral landscape, it was possible to 
sort flowers into taxonomic units. During manual data annotation, 
the coarse- grained features that could be resolved in mid and 
high- flight altitude drone orthomosaics correlated well with floral 
morphological traits that were diagnostic of the focal taxa. This 
would not be the case in a high- diversity wildflower system, where 
high- resolution taxonomic classification would require a complex 
suite of floral traits that are not resolved at the mid-  and high- 
flight altitude.

F I G U R E  4 Example	of	drone	orthomosaic	and	flower	classification	map	from	imagery	collected	at	30 m	altitude.	(a)	Close-	range	view	
of	drone	orthomosaic;	(b)	Close-	range	view	of	classification	map;	(c)	Long-	range	view	of	drone	orthomosaic,	the	white	box	denotes	area	
depicted	in	close-	range	view;	(d)	Long-	range	view	of	classification	map.

TA B L E  1 Metrics	values	evaluating	CNN	classifier	performance.

Metric Overall SOSP SYER SYNO

Jaccard 0.677 0.697 0.541 0.646

Precision 0.769 0.776 0.709 0.800

Recall 0.849 0.872 0.696 0.770

F1 0.807 0.821 0.702 0.785

Note: The column ‘Overall’ represents the weighted metric values 
among classified taxa. The other columns are the classified taxa where 
‘SOSP’	is	Solidago	spp.,	‘SYER’	is	Symphyotrichum ericoides/lanceolatum 
and	‘SYNO’	is	Symphyotrichum novae- angliae.
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    |  9 of 13SOOKHAN et al.

In practice, the CNN classifier was able to distinguish between 
Symphyotrichum ericodes/lanceolatum and Daucus carota. These 
were the only two taxa common in the landscape that have white 
flowers. The feature extraction space of the trained CNN classifier 
discriminated taxa using coarse differences in the pixel colour and 

shape	 of	 proposed	 segments.	 Floral	 morphology	 of	 the	 Apiaceae	
family, of which Daucus carota is a member, vary substantially from 
Asteraceae,	for	example	in	the	arrangement	and	shape	of	inflores-
cences. In contrast, it was not possible to discriminate between 
Symphyotrichum ericodes and Symphyotrichum lanceolatum. The 

F I G U R E  5 Comparison	between	floral	counts	using	quadrat	sampling	(y-	axis)	and	the	drone-	derived	floral	metrics	predicted	by	the	CNN	
classifier	(x-	axis).	The	drone-	derived	floral	metrics	were	calculated	using	drone	orthomosaics	collected	at	15 m	altitude.	Each	data	point	
corresponds to the estimates from a sampled quadrat. ‘R2’ is goodness- of- fit of the linear regression measured as the adjusted R2 and ‘β’ is 
the	effect	size	relating	the	drone-	derived	metric	to	the	quadrat	sampling	metric.	(a)	Floral	unit	count	using	quadrat	sampling	regressed	on	
drone- derived floral area for Solidago	species;	(b)	Floral	unit	count	regressed	on	drone-	derived	floral	patch	count	for	Solidago	species;	(c)	
Floral	unit	count	regressed	on	floral	area	for	Symphyotrichum ericoides/lanceolatum;	(d)	Floral	unit	count	regressed	on	floral	patch	count	for	
Symphyotrichum ericoides/lanceolatum;	(e)	Floral	unit	count	regressed	on	floral	area	for	Symphyotrichum novae- angliae;	(f)	Floral	unit	count	
regressed on floral patch count for Symphyotrichum novae- angliae.
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10 of 13  |     SOOKHAN et al.

diagnostic floral traits required to distinguish these species, such as 
variation in the number of ray florets and the arrangement of inflo-
rescences, are not resolved at the spatial resolution provided by mid 
to high orthomosaics.

When	 applied	 to	 systems	 with	 a	 speciose	 flowering	 plant	
community, classifiers trained and deployed on high- altitude true 
colour	RGB	drone	orthomosaics	will	 likely,	at	best,	perform	mul-
ticlassification of flowers based on spectra instead of taxonomic 
classes. Unfortunately, floral visual cues used by pollinators are 
not strongly correlated with pollen and nectar reward quality and 
quantity	(Ortiz	et	al.,	2020).	Thus,	an	intuitive	recommendation	is	
that	high-	altitude	true	colour	RGB	drone-	derived	automated	flo-
ral mapping is limited to the abundance and distribution of con-
spicuous flowers and therefore has potential in the biomonitoring 
of	 invasive	 species	 on	 the	 landscape	 level	 (de	 Sá	 et	 al.,	 2018; 
Hill et al., 2017).	 In	contrast,	classifiers	 trained	and	deployed	on	
low- altitude data can be used in the mapping of high- resolution 
taxonomic units that are more appropriate for the estimation of 
pollinator habitat quality.

4.2  |  Drone- derived metrics as indicators of 
pollinator habitat quality

The drone- derived metrics included floral area which is an impor-
tant	visual	and	olfactory	cue	to	pollinators	(Chittka	&	Raine,	2006).	
Foraging	insects	utilize	multiple	sensor	modalities	when	locating	and	
learning efficient search paths to floral patches that occur within the 
landscape	 (Sprayberry,	2018).	The	size	of	a	 flowering	patch	 is	cor-
related with the size of the visual and olfactory stimuli that it pre-
sents,	which	in	turn	moderates	forager	efficacy	(Sprayberry,	2018).	
In other words, in landscapes that feature high floral areas, pollina-
tors will spend less time searching and learn efficient routes to avail-
able foraging resources. Larger flowering patches are associated 
with	 heightened	 pollinator	 activity	 (for	 example	 higher	 visitation	
rates:	Blaauw	&	Isaacs,	2014; Dauber et al., 2010),	and	therefore	can	

provide insight into locations where pollinators concentrate foraging 
effort	(Baldock	et	al.,	2019).

The count of floral units is surrogate for floral resource avail-
ability	 in	 a	 habitat	 patch	 (Kearns	 &	 Inouye,	 1993).	 Foraging	 re-
source availability can be measured with a tabulated species list 
of estimated per- floral unit foraging reward. Given a habitat patch, 
foraging resource availability is measured as the sum of reward 
estimates weighted by the floral unit abundance of species in that 
habitat	 patch	 (Hicks	 et	 al.,	 2016).	 As	 accurate	 abundance	 data	
are necessary, quadrat and transect sampling are the preferred 
methods	 of	 field	 collection	 (Szigeti	 et	 al.,	 2016).	 Unfortunately,	
these methods are expensive and time- consuming; for Hegland 
et	al.	(2010),	it	took	a	single	surveyor	8 h	and	40 min	to	complete	
the	collection	of	data	from	34	4 m2 quadrats. In their meta- analysis 
of pollination studies that estimated floral resource availability, 
Szigeti	et	al.	 (2016)	 found	that	studies	generated	estimates	from	
an	average	of	0.69%	sampling	coverage.	While	Szigeti	et	al.	(2016)	
was unable to provide a recommendation for adequate sampling 
coverage, this value is clearly low. This is because flowering plants 
tend	to	occur	in	a	clustered	spatial	dispersion	pattern	(Hatfield	&	
LeBuhn,	 2007)	which	 increases	 the	 sampling	 effort	 required	 for	
an unbiased estimate of density used in extrapolation to the land-
scape	(Aberdeen,	1958).

The machine learning techniques utilized in this study demon-
strate the potential of automating the landscape- level measure-
ment of floral resource availability. This is because the estimated 
linear models found strong correlations between the drone- 
derived	metrics	and	the	field-	based	counts	of	floral	units.	Although	
this was the case, it would be preferable for the CNN classifier to 
complete object detection of floral units, such that floral units are 
counted and tabulated by species from the provided drone ortho-
mosaics.	The	CNN	object	detector	deployed	by	Hicks	et	al.	(2021)	
accomplished	 this	 task	 using	 ground-	level	 photos	 of	 1 m2 field 
quadrats. The trained classifier was not only able to annotate floral 
units accurately, but also label annotations to high taxonomic res-
olution,	typically	to	species.	Automated	counts	were	multiplied	by	
corresponding species- specific pollen and nectar measurements to 
estimate quadrat- level pollen and nectar availability. In this study, 
the	features	of	floral	units	belonging	to	Asteraceae	observed	were	
resolved in low- altitude aerial photography. Thus, although spa-
tial coverage is low, it should be possible to replicate the method 
presented	by	Hicks	et	al.	 (2021)	using	low-	altitude	orthomosaics.	
In this case, multiple drone flights can be strategically placed. This 
will allow accurate classification and adequate sampling coverage 
while reducing the time and cost of estimating pollinator habitat 
quality.

5  |  CONCLUSIONS

The results demonstrate that CNN classifiers can be deployed to ac-
curately map wildflowers using consumer- grade drone imagery. Here, 
a CNN was trained to perform on imagery collected across meadow 

TA B L E  2 Goodness-	of-	fit	(R2)	of	the	linear	regression	models	
where the floral counts using quadrat sampling were regressed on 
the drone- derived floral metrics predicted by the CNN classifier.

Taxa Drone

Altitude

15 m 30 m

SOSP Floral	patches 0.84 0.74

Floral	area	(m2) 0.65 0.64

SYER Floral	patches 0.70 0.63

Floral	area	(m2) 0.82 0.71

SYNO Floral	patches 0.94 0.73

Floral	area	(m2) 0.91 0.65

Note:	For	each	altitude,	the	R2 model is listed for the regression 
model	fitted	to	each	flower	taxa.	‘SOSP’	is	Solidago	spp.,	‘SYER’	is	
Symphyotrichum ericoides/lanceolatum	and	‘SYNO’	is	Symphyotrichum 
novae- angliae.
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    |  11 of 13SOOKHAN et al.

habitat patches that varied in environmental conditions, specifi-
cally vegetative invasion intensity. Only moderate performance 
loss was observed with increasing flight altitude. Nevertheless, it 
was found that the automated drone- based floral monitoring cor-
related strongly with quadrat- based floral counts measured in the 
field. Crucially, this highlights that the approach can be used for the 
rapid	assessment	of	floral	resources.	Standard	approaches	to	floral	
resource estimation are time- consuming, especially across large 
spatial	extents	(Szigeti	et	al.,	2016).	Hence,	by	training	with	imagery	
collected at several flight altitudes, an altitude- agnostic CNN can be 
deployed	to	adjust	automated	mapping	to	data	collection	needs	(e.g.	
consideration of the flight altitude- related trade- off between accu-
racy	and	sample	coverage).

The bottleneck of this approach is the construction of a manually 
annotated dataset. This is a time- consuming but necessary process 
as high- quality ground truth data are required for training. However, 
as shown in this study, the return on initial investment will be high as 
a deployed CNN classifier can provide low- cost and rapid monitor-
ing of floral resources. This is important in applications where high 
spatio- temporal resolution is needed, such as in long- term biomoni-
toring programmes or collaborations over large study areas contain-
ing	common	habitat	types	(Besson	et	al.,	2022;	Breeze	et	al.,	2021; 
Szigeti	et	al.,	2016).
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SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.
Table S1.	 Flight	 altitude	 versus	 spatial	 coverage	 (m2),	 flight	 speed	
(m/s)	and	ground	sampling	distance	(GSD)	(i.e.	spatial	resolution).
Table S2.	 Site	 coordinates,	 drone	 mapping	 and	 orthomosaic	
parameters, and ground truth breakdown by site.
Table S3.	 Forbs	 in	 flower	 that	 were	 observed	 during	 September	
ground truthing of sites at Rouge National Urban Park.
Table S4.	A	confusion	matrix	comparing	the	trained	CNN	classifier	to	
the ground truth testing dataset.
Table S5.	Metric	 values	evaluating	CNN	classifier	performance	by	
flight altitude and classified taxa.

Figure S1. Locations of meadow field sites at Rouge National Urban 
Park. The size of red bounding boxes depicts the area sampled.
Figure S2. Data augmentation pipeline applied to input images 
(128 × 128 × 3)	during	training	and	validation	of	classifier.
Figure S3.	Example	of	drone	orthomosaic	and	flower	classification	
map from imagery collected at 15m altitude.
Figure S4. Comparison between floral counts using quadrat sampling 
(y-	axis)	and	the	drone-	derived	floral	metrics	predicted	by	the	CNN	
classifier	(x-	axis).
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