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Abstract
1. Effective monitoring of wildlife species requires thorough planning and devel-

opment of survey programmes that can address management and conservation 
objectives. Decisions about monitoring programmes include where to survey, 
survey design and how much effort to allocate at survey sites are typically predi-
cated on limited budgets and available resources. When the scope of inference 
requires monitoring on a broad spatial scale, predictions of habitat distribution or 
suitability may be useful for identifying potential survey sites.

2. We focused on a threatened but widely distributed shorebird, the piping plover 
(Charadrius melodus), which is actively monitored across some, but not all of its 
range. Our objective was to use piping plover habitat distribution maps, which 
vary annually, to assess the effectiveness of multiple monitoring programme sce-
narios and their associated costs.

3. In the breeding range, efforts to improve productivity for species of conservation 
concern often focus on improving probabilities of nest survival. Consequently, 
collecting adequate nesting data is crucial for obtaining accurate and precise es-
timates of nest survival and for evaluating the effectiveness of management ac-
tions. By simulating the nest monitoring process, we evaluated how much area, 
where and how often to survey each site when estimating nest survival and de-
tecting effects of potential management actions.

4.	 As	expected,	precision	 increased	and	bias	decreased	around	nest	survival	esti-
mates with greater survey coverage and nest visit frequency. We also identified 
monitoring programmes with negative net values where survey costs outweighed 
statistical benefits.

5.	 Although	we	applied	our	simulation	framework	to	evaluate	nest	monitoring	de-
signs	for	piping	plovers,	it	could	be	extended	to	assess	whether	different	mon-
itoring programmes can detect changes in the distribution of other species or 
occupancy of habitats over time.
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1  |  INTRODUC TION

Wildlife monitoring programmes can effectively inform manage-
ment decisions or measure the outcomes of management actions if 
the data collected have adequate accuracy and precision to resolve 
underlying scientific questions (Field et al., 2005; Lindenmayer & 
Likens, 2010; Reynolds et al., 2011). Forethought and planning are 
critical for the success of monitoring programmes because failure 
can result from imprecise objectives, faulty sampling designs or poor 
data quality (Legg & Nagy, 2006; Sherfy et al., 2011). These issues 
may result in misguided management and conservation decisions or 
the loss of institutional support and they may reduce the availabil-
ity of resources for other research activities or management actions 
(Reynolds et al., 2011). Funding for wildlife management and conser-
vation biology is increasingly limited, necessitating that monitoring 
programmes provide the most reliable scientific information for the 
lowest cost (Reynolds et al., 2011).

Because ecological processes are typically observed incom-
pletely and data are collected as a sample, uncertainty in informa-
tion derived from data can arise from multiple sources including 
process stochasticity and observational error (Cressie et al., 2009; 
Harwood & Stokes, 2003). Process stochasticity may emerge from 
natural variation in the system, whereas the choice of monitoring 
and data collection strategies can contribute to observational error. 
Optimizing monitoring programmes to minimize observational error 
is therefore useful to reduce data uncertainty and provide more reli-
able ecological signals. Initial decisions when developing monitoring 
programmes include where to survey and the amount of resources 
to	 allocate.	 Additionally,	 when	 scientific	 questions	 of	 interest	 re-
quire repeated visits to monitoring sites (e.g. to estimate detection 
or survival probabilities), researchers encounter a trade- off between 
the number of sites to monitor and the number of repeated surveys 
at each site (Bailey et al., 2007; MacKenzie & Royle, 2005). To ad-
dress	 such	 monitoring	 design	 questions,	 the	 expected	 ‘statistical	
power’ (i.e. the ability to detect ecological signals with a given level 
of confidence) can be compared from different combinations of sur-
vey effort and frequency. Decisions about survey designs can then 
be made by specifying tolerable amounts of data uncertainty and 
associated survey costs.

Previous studies have evaluated monitoring design effects on 
various population metrics (e.g. Bailey et al., 2007; Lieury et al., 2017; 
Lindberg, 2012; Nuno et al., 2013; Reynolds et al., 2011; Southwell 
et al., 2022). However, evaluations of monitoring programmes de-
signed to collect avian nesting data are lacking. Nest survival is a 
key parameter contributing to avian productivity and is commonly 
estimated from field studies. Nest survival is typically defined as 
the probability that at least one egg hatches (precocial species) or 
at least one chick fledges (altricial species) from a nest. Substantial 

management efforts often go towards providing adequate nest-
ing habitat and reducing nest losses (e.g. from flooding, predation 
or human disturbances). Management and conservation efforts to 
improve avian productivity for species of concern often focus on 
increasing probabilities of nest survival including through nest pred-
ator removal (Dinsmore et al., 2014; Garrettson & Rohwer, 2001; 
Pieron & Rohwer, 2010),	nest	protection	using	predator	exclosures	
(Anteau	et	al.,	2022; Bailey & Bonter, 2017; Dinsmore et al., 2014) 
or habitat modifications (Doherty et al., 2014; Dunn et al., 2016). 
Therefore, collecting adequate nesting data is crucial for obtaining 
accurate and precise estimates of nest survival and evaluating the 
effectiveness of management actions.

We developed a generalized simulation framework to evaluate 
where and how much to survey when estimating nest survival and 
detecting effects of potential management actions. We applied this 
simulation framework to assess the performance of multiple moni-
toring options across a large geographic area, the U.S. Prairie Pothole 
Region (PPR), for a rare and U.S. federally listed shorebird (piping 
plover; Charadrius melodus). This species breeds on unvegetated 
shorelines of wetlands in the PPR and the locations and amount of 
nesting habitat are intra-  and interannually dynamic and sensitive 
to	 changes	 in	 water	 levels	 and	 vegetation	 density	 (Ellis,	 Anteau,	
MacDonald, Swift, Ring, Toy, Sherfy, et al., 2023). Therefore, effec-
tive monitoring programmes for piping plovers in the PPR must also 
be dynamic to respond to changing habitat conditions (McCauley 
et al., 2016). The ability to detect effects of management actions 
or changes in breeding productivity that may trigger management 
actions will lead to more effective recovery efforts for this species.

Our objectives were to evaluate (1) the accuracy and preci-
sion of nest survival estimates and (2) the survey costs associated 
with multiple monitoring scenarios. We varied the spatial coverage 
of nest monitoring surveys and the frequency of repeated visits 
within each proposed monitoring scenario. We simulated the ef-
fect of a hypothetical management action and assessed the sta-
tistical power of each proposed programme by quantifying our 
ability to detect an effect of management actions on nest survival. 
We predicted that monitoring scenarios with higher levels of ef-
fort (survey coverage and/or frequency) would have greater sta-
tistical power, but these gains may be offset by higher costs, and 
therefore, intermediate levels of effort may balance this trade- off. 
A	potential	benefit	of	using	a	framework	like	ours	to	design	a	mon-
itoring programme is that relying on remotely sensed habitat in-
formation can lead to more dynamic identification of survey sites 
and allow for the updating of habitat availability estimates with 
limited field effort. Lastly, we report the outcomes of one pilot 
demonstration using remotely sensed habitat predictions to direct 
a single- season field effort and we compared the costs associated 
with this field effort and our simulated monitoring programmes. 

K E Y W O R D S
community science, cost analysis, management actions, nest survival, piping plover, statistical 
power, survey design
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Although	we	 applied	our	 simulation	 framework	 to	 evaluate	nest	
monitoring programmes for piping plovers in the PPR, a similar ap-
proach could be adapted to inform study designs for large- scale 
nest monitoring programmes where nest survival or breeding bird 
occupancy are parameters of interest.

2  |  MATERIAL S AND METHODS

2.1  |  Simulation strategy

We based our simulation framework on predictions of nesting habi-
tat and breeding intensity for piping plovers in the PPR generated 
from	 a	 habitat	 selection	 model	 (Ellis,	 Anteau,	 MacDonald,	 Swift,	
Ring, Toy, Sherfy, et al., 2023). This model was informed by inte-
grating piping plover nesting data collected over a 20- year period 
(2000–2019) and observations of piping plovers from eBird, an on-
line database of global bird observations collected by community 
scientists (Sullivan et al., 2009). Based on temporally dynamic maps 
of predicted breeding distribution of piping plovers across the PPR, 
we simulated survey efforts under multiple monitoring scenarios 
by identifying potential nesting areas from spatial predictions. We 
simulated plausible nest locations that could have occurred based 
on annual changes in habitat availability. We simulated the nest 
monitoring process to investigate the precision and accuracy of nest 
survival estimates resulting from multiple monitoring scenarios. The 
simulation framework was divided into four steps: (1) using spatially 
explicit	predictions	of	nesting	habitat	to	identify	high	priority	areas	
to survey based on the predicted relative density of nests; (2) simu-
lating an observation model, which represented the discovery and 
monitoring of simulated nests based on multiple monitoring sce-
narios; (3) analysing the survival of nests from simulated monitoring 
data; and (4) assessing bias and precision of nest survival estimates, 
statistical power and survey costs (Figure 1).

The simulation was primarily based on repeated visits to multiple 
sites (i.e. survey cells) to search for and monitor the fate of nests. We 

designed multiple scenarios for a monitoring programme by varying 
three components of survey effort that collectively represent 18 
possible monitoring scenarios:

2.1.1  |  Number	of	survey	cells

The number of survey cells visited in a single breeding season had 
three possibilities (100, 200 or 400).

2.1.2  |  Size	of	surveys

The	size,	or	coverage,	of	each	survey	had	three	possibilities	 (3 × 3,	
6 × 6	 or	 9 × 9-	km	 survey	 cells—hereafter	 referred	 to	 as	 3-	,	 6-		 and	
9-	km	survey	cells).	We	selected	these	sizes	based	on	the	approximate	
maximum	distance	a	single	surveyor	could	cover	in	an	8-	hr	working	
day	 (≈9 km).	We	based	 this	 decision	on	our	 own	 field	 experiences	
and with an assumption that nesting habitat would occur along lin-
ear shorelines (not distributed throughout an entire cell) and habitat 
suitability for nesting within survey areas would be heterogeneous.

2.1.3  |  Survey	frequency

Survey frequency represented the rate of return to each survey cell 
in a single season to monitor the fate of nests. We set two possibili-
ties	for	survey	frequency	(1	or	2 days/week).

2.2  |  Nesting habitat predictions

We	 used	 results	 from	 Ellis,	 Anteau,	MacDonald,	 Swift,	 Ring,	 Toy,	
Sherfy, et al. (2023), which included annual (2000–2021) spatial pre-
dictions of piping plover nesting habitat in the PPR at a 30- m reso-
lution. These predictions were generated using an integrated point 

F I G U R E  1 Conceptual	diagram	of	
simulation procedures and assessment of 
different monitoring scenarios.

1. Predicted nesting 
habitat

Annual predictions 
(2000–2021)  
incorporate: 
- Remotely-sensed 

landscape 
characteristics

- Nest and eBird point 
density

- Spatiotemporal 
autocorrelation

Simulate nest locations and 
true nest survival from 

predicted habitat at time t

Simulate survey cells from 
predicted habitat at time t – 1

2. Observation model

Based on variable monitoring 
scenario components:
- Number, size, and 

frequency of surveys

3. Nest survival 
estimation

Incorporates effects of:
- Management action

4. Assessment of 
monitoring scenarios

- Estimate bias, 
precision, statistical 
power, and cost for 
each scenario

- Sensitivity analysis
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process model (Isaac et al., 2020) informed by piping plover nesting 
locations and eBird observations. Point process models can be used 
to evaluate the patterns of habitat selection and to estimate an in-
tensity surface of the density of observations within an area (Renner 
et al., 2015). In our case, continuous values of the intensity surface 
characterized the predicted intensity of breeding piping plovers in 
each	30 m	pixel	based	on	underlying	landscape	features.

The integrated point process model used to develop the habi-
tat predictions incorporated effects of landscape characteristics 
that changed annually (vegetation coverage, surface water levels 
and land cover composition) and characteristics that remain rela-
tively static over time (slope and distance to wetland basins, roads 
or	 human	 settlements;	 Ellis,	Anteau,	MacDonald,	 Swift,	 Ring,	 Toy,	
Sherfy, et al., 2023). Further details about the modelling process, 
including data collection, the study area, spatial scales and mea-
surement of landscape predictor variables, model development and 
model	validation,	are	 in	Ellis,	Anteau,	MacDonald,	Swift,	Ring,	Toy,	
Sherfy, et al. (2023).	To	identify	pixels	with	habitat	conditions	that	
could support nesting and have high predicted intensities of breed-
ing piping plovers, which would be of high priority to survey, we iden-
tified a suitability threshold value from continuous prediction layers 
(Ellis,	Anteau,	MacDonald,	Swift,	Ring,	Toy,	Sherfy,	et	al.,	2023). The 
suitability	 threshold	 was	 identified	 using	 the	 symmetric	 extremal	
dependence	 index	 (Ferro	&	Stephenson,	2011), which is similar to 
the true skill statistic and can be used to test how well species dis-
tribution	models	separate	true	presences	from	absences	(Allouche	
et al., 2006).

2.3  |  Simulating surveys

The first step in the simulation process was to randomly select a 
year of interest. When simulating the survey effort, we used the 
prior year's nesting habitat prediction to replicate what may occur 
in real- world situations. Remotely sensed data layers and imagery 
describing habitat conditions are often acquired after a breeding 
season and surveys would be directed towards high priority areas 
identified from the conditions in the previous year. Therefore, the 
possible years to simulate survey efforts were 2001–2021. We ag-
gregated	30 m	pixels	 to	3,	 6	or	 9 km	 cells	 using	 the	maximum	cell	
value	(i.e.	if	larger	cells	contained	any	30 m	pixels	with	high	predicted	
intensities of breeding piping plovers) and then, depending on the 
monitoring scenario, randomly selected 100, 200 or 400 of these 
cells to be surveyed. This aggregation strategy prevented survey 
cells from overlapping.

2.4  |  Simulating nest survival and nest 
monitoring histories

We placed 300 nest locations within suitable nesting areas based 
upon nesting habitat predictions generated from the intensity sur-
face from the year of interest. The mean number of piping plover 

nests found in the PPR between 2000 and 2019 was 231 per year 
(S.D. = 74.4;	 Ellis,	 Anteau,	 MacDonald,	 Swift,	 Ring,	 Toy,	 Sherfy,	
et al., 2023). Therefore, we simulated a sample of 300 nests to ac-
count for nests that were likely present but never found during 
surveys.	We	 assumed	 a	 122-	day	 nesting	 season	 (e.g.	 April	 15	 to	
August	15)	and	simulated	nest	initiation	dates	for	each	nest	using	a	
normal distribution with day- of- season 42 as the mean (e.g. May 27 
with	April	15	as	day	1),	and	standard	deviation	of	12 days	 (Anteau	
et al., 2022).	We	assumed	a	35-	day	exposure	period	from	nest	initia-
tion	to	hatch	(Anteau	et	al.,	2022).

We considered two possibilities when setting cumulative nest 
survival probabilities (probability that at least one egg hatches) and 
ran all monitoring scenarios twice with either a high (0.6) or low 
(0.3) survival probability as the intercept. We also included nest- 
specific random noise to incorporate unmodelled variability on daily 
nest	survival	 (normally	distributed	with	mean = 0,	S.D. = 0.2	on	the	
logit scale; mean and 95% quantiles of variability on the probability 
scale = 0.5,	0.4–0.6).	Additionally,	we	simulated	the	effect	of	a	hypo-
thetical management action (in practice, actions often involve nest 
protection	efforts	such	as	predator	exclosures;	Anteau	et	al.,	2022) 
where each discovered nest had a 50% chance of receiving the 
action and the action had a positive effect on daily nest survival 
probabilities (�manage = 0.2	on	the	logit	scale).	To	account	for	poten-
tial survey bias from nests that may be more likely to fail late in the 
nesting season or soon after initiation, we included a positive effect 
of nest age (�age = 0.1	on	the	logit	scale)	and	a	negative	effect	of	nest	
initiation date (�date = −0.1	on	the	logit	scale)	on	daily	survival	prob-
abilities	(Anteau	et	al.,	2022).	We	simulated	nest	exposure	histories	
using binomial trials with nest- specific daily survival probabilities 
using an approach similar to Weiser (2021).

We overlayed nest points on survey cells to determine which 
nests would be available to be detected and which nests would be 
outside of survey cells. We assumed that each survey cell would be 
visited either once or twice per week during the 122- day nesting 
season.	We	matched	 survey	visits	with	nest	 exposure	histories	 to	
identify nests that would be active in each survey cell during vis-
its and to generate nest monitoring histories. We considered that 
initial nest detection would be imperfect and set the probability 
of detecting each nest using a beta probability distribution to con-
strain values between 0 and 1 with shape parameters α = 30	 and	
β = 30	 (mean = 0.50,	 S.D. = 0.064).	 Nest	 detection	 probabilities	 for	
piping plovers nesting on river habitats range from 0.41 to 0.65 
(Shaffer et al., 2013), compared to other ground- nesting shorebird 
species nesting on wetlands that range from 0.21 to 0.64 (Smith 
et al., 2009).	After	the	first	detection,	the	probability	of	relocating	
a nest was set to 1. Because we assumed imperfect detection and 
one or two survey visits per week, a portion of the simulated nests 
may have failed or hatched without being located. We used R 4.1.3 
(R Core Team, 2021) to simulate data and the sp (Bivand et al., 2013; 
Pebesma & Bivand, 2005) and raster (Hijmans, 2022) packages to in-
tegrate	spatial	data.	Annual	(2000–2021)	spatial	predictions	of	pip-
ing plover nesting habitat are available as a USGS data release (Ellis, 
Anteau,	MacDonald,	Swift,	Ring,	Toy,	&	Sherfy,	2023).
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2.5  |  Effectiveness of monitoring plans analysis

We	used	a	logistic-	exposure	model	(Shaffer,	2004) to analyse each 
simulated nest monitoring data set and included a binary covariate 
indicating if nests received the management action to test for the ef-
fect	of	that	action	on	nest	survival.	We	applied	the	logistic	exposure	
model	 in	a	Bayesian	framework	using	JAGS	4.3.0	 (Plummer,	2003) 
with the jagsUI package (Kellner, 2019) in R. We used uninformative 
normal	priors	(mean = 0,	S.D. = 2	on	the	logit	scale)	for	the	intercept,	
�manage, �age and �date (Northrup & Gerber, 2018). For each simula-
tion, we generated four chains of 1000 iterations and discarded 
the first 500 and did not thin, resulting in 2000 saved iterations to 
generate posterior distributions of parameters. These settings were 
sufficient for model convergence (Gelman- Rubin diagnostic <1.10 
and	visual	inspection	of	mixing	of	chains	from	traceplots;	Gelman	&	
Rubin, 1992).

We ran 500 replicates for each of the 18 monitoring scenar-
ios under both high and low nest survival probabilities (36 total 
scenarios). In each replicate, we recorded (1) the bias of estimated 
nest survival (absolute difference between estimated and true 
mean nest survival probabilities), (2) the imprecision of estimated 
nest survival (coefficient of variation: CV), (3) the proportion of 
�manage posterior distribution (effect of management action) that 
was positive, (4) the percentage of nests that fell outside of survey 
cells, (5) the percentage of nests within survey cells that were not 
detected, (6) the total cost of the surveys and (7) the randomly 
selected sampling year (to assess interannual variability). We con-
sidered that a replicate successfully detected the effect of the 
management action if >85% of the �manage posterior distribution 
was positive and we counted the proportion of successful repli-
cates in each monitoring plan scenario as the statistical power to 
detect effects of management actions. We calculated the cost of 
each 3- , 6-  and 9- km survey cell as 1/3, 2/3 and one 8- h work-
ing day (assuming a linear walking survey) so that the total cost 
was the sum of survey visits multiplied by the number of per-
son working days required to survey each cell. In practice, field 
crews may discontinue survey visits or reduce the amount of time 
spent in cells when no birds are observed throughout a nesting 
season. Therefore, we assumed that unoccupied survey cells (no 
nest points located within its boundaries within a nesting sea-
son) would require less effort after the first visit when calculating 
costs. For unoccupied survey cells, we reduced the survey costs 
for revisits (not the first survey) within a single nesting season by 
1/2. Estimates of the number of required working days represent 
relative, not absolute, costs of survey designs.

We used linear models to evaluate how the three components of 
monitoring design (number, size and frequency of surveys) affected 
four performance metrics: proportion of replicates in which a sig-
nificant positive effect of management action was detected, the 
bias and imprecision of estimates of nest survival, and monitoring 
costs. We assessed the relative contributions of monitoring scenario 
components (number, size and frequency of surveys) to changes in 
the four performance metrics above. We scaled monitoring plan 

components to have a mean of zero and standard deviation of one 
to estimate unit- less effect sizes that we used to infer the relative 
importance of monitoring scenario components on the four per-
formance metrics. We normalized statistical power (Δpower = the	
difference between the statistical power of a given monitoring sce-
nario and the minimum power across all scenarios divided by the dif-
ference	between	the	maximum	power	across	all	scenarios	and	the	
minimum power across all scenarios) and costs (Δcost calculated the 
same as Δpower) to estimate the net value of each monitoring sce-
nario. Therefore, the net value of each monitoring scenario was cal-
culated as Δpower – Δcost, such that negative values indicate that 
the costs of a monitoring scenario outweighed its statistical power.

Lastly, we considered the cost and effectiveness of each mon-
itoring plan if repeated visits did not occur (therefore, estimating 
nest survival would not be possible) to simulate counting breeding 
adult piping plovers. We assumed that if a nest was present at some 
point during the nesting season within a survey area, the probabil-
ity of detecting a breeding adult would be 1, with the assumption 
that breeding adults would remain near nesting sites throughout the 
breeding season. Surveys to count breeding adult piping plovers can 
be sensitive to survey timing and estimates that do not incorporate 
counts of broods and fledglings can be biased (Baasch et al., 2015; 
Shaffer et al., 2013). Therefore, we used the percentage of nests that 
fell	outside	of	survey	cells	to	approximate	the	effectiveness	of	single	
survey visits. We calculated the cost of single- visit surveys as the 
total number of survey points multiplied by the effort at each survey 
(1/3,	2/3	and	1	for	3,	6	and	9 km	cells,	respectively).

2.6  |  Pilot demonstration

We tested the feasibility of our framework to inform a field effort 
in	2021.	We	aggregated	30 m	pixels	 to	300 m	resolution	using	the	
maximum	 30 m	 pixel	 value,	 creating	 a	 grid	 of	 300 m	 survey	 cells	
across the PPR. We used a stratified random sampling approach 
to ensure surveys were conducted where piping plovers had been 
observed previously and in previously unsurveyed locations where 
habitat predictions indicated nesting habitats were suitable. We cat-
egorized	pixels	as	‘known’	or	‘unknown’	based	on	whether	they	fell	
within	either	10 km	of	a	known	nesting	location	or	an	eBird	record.	
We randomly placed 400 survey starting points in survey cells with 
high predicted breeding intensity (>90th	 percentile	 of	 300 m	 cell	
values) and placed 200 points in known cells and 200 in unknown 
cells. Given logistical constraints (e.g. land ownership and access), 
we	attempted	to	survey	known	and	unknown	cells	equally.	At	each	
cell, surveyors recorded their start and end time, habitat conditions 
in the cell and any piping plover observations (counts of adults and 
juvenile as well as adult behaviours). We did not focus on monitoring 
nests as the primary goal of the pilot demonstration was to assess 
the	minimum	cost	to	visit	each	site	once.	A	complete	standard	op-
erating procedure, including steps to create survey cells and survey 
starting points as well as field procedures for nest searching and 
monitoring, can be found in the Supporting Information.
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3  |  RESULTS

Survey costs were negatively correlated with percent of nests 
outside of survey cells and percent of nests within survey cells 
that hatched or failed prior to detection (r = −0.81	and	−0.77,	re-
spectively). CV (i.e. imprecision) was positively correlated with 
percent of undetected nests within survey cells (r = 0.78)	 and	
moderately correlated with percent of nests within survey cells 
(r = 0.56)	and	survey	cost	(r = −0.51).	Other	combinations	of	met-
rics that we used to assess the performance of monitoring plans 
were uncorrelated (r < |0.5|).	 Survey	 year	 contributed	minimally	
to	 variation	 in	 CV	 (overall	 mean = 0.163,	 annual	 range = 0.160–
0.167), bias (0.054, 0.051–0.056), power to detect management 
effects (0.77, 0.75–0.79), percent of nests outside of survey cells 
(65%, 64%–67%) and percent of undetected nests within survey 
cells (20%, 19%–21%).

Precision of nest survival probabilities, bias of nest survival 
probabilities, proportion of �manage posterior distributions that were 
positive, and survey costs were all sensitive to changes in moni-
toring scenario components, although the magnitude of the effect 
and relative importance of these components varied (Table 1). The 
mean CV for estimates of overall nest survival across all monitoring 
scenarios when survival probabilities were low was 0.21 (95% quan-
tiles = 0.12–0.39)	 and	 0.12	 (0.07–0.22)	when	 survival	 probabilities	
were high (Table 1, Figure 2). When survival probabilities were low, 
CV	was	most	sensitive	to	visit	frequency	(relative	importance = 0.45),	
whereas when survival probabilities were high, CV was most sen-
sitive	 to	 the	 number	 of	 survey	 cells	 (relative	 importance = 0.41;	
Table 1). Bias was similar between high and low nest survival sce-
narios and was most sensitive to the number of survey cells (Table 1, 
Figure 2). When 100 surveys were conducted, mean bias was 0.071 
(95%	quantiles = 0.002–0.209)	and	0.004	 (0.002–0.113)	when	400	
surveys were conducted (Figure 2).

The effect of the management action on nest survival was de-
tected in >50% of simulations when survival probabilities were 
low, but not when survival probabilities were high (proportion of 
simulations where >85% of �manage posterior distributions were 
positive = 0.56	and	0.46,	 respectively;	Figure 3). Similar to CV, the 
proportion of �manage posterior distributions that were positive was 
most sensitive to visit frequency when survival probabilities were 
low but was most sensitive to the number of surveys when survival 
probabilities were high (Table 1, Figure 3). Survey costs increased 
at a higher rate when the number or size of surveys increased than 
when the visit frequency increased (Table 1, Figure 3).

The mean percent of nests within survey cells that were un-
detected (failed or hatched without being detected) was greater 
when	 the	 visit	 frequency	was	 1 day/week	 (27%,	 95%	 quantiles	 of	
9000	 replicates = 12%–44%;	 2 days/week = 13%,	 3%–26%)	 and	
when survival probabilities were low (25%, 10%–44%; high sur-
vival	probabilities = 14%,	4%–30%;	Figure 4). The mean percent of 
nests outside of survey cells ranged between 20% and 73% when 
varying the number and size of surveys (Figure 3). The lowest cost 
monitoring scenario where most nests were within survey cells used 

400,	3-	km	surveys	(mean	cost	for	1	visit/week = 780	person	work-
ing	days,	mean	cost	for	2	visits/week = 1560	person	working	days;	
Figure 3). The monitoring scenario with the greatest net Δpower – 
Δcost across all nest survival and visit frequency scenarios was 400, 
3- km surveys (Figure 5). Two scenarios resulted in a negative net  
Δpower – Δcost, indicating that the proportional gain in statis-
tical	 power	 did	 not	 exceed	 the	 proportional	 gain	 in	 survey	 costs	
(Figure 5). Single- visit costs ranged from 33 working days (100, 3- km 
surveys) to 400 working days (400, 9- km surveys; Figure 6) and the 
lowest cost monitoring option where >50% of nests were within 
survey cells was 400, 3- km surveys.

3.1  |  Pilot demonstration

In	2021,	we	conducted	single	visit	surveys	at	400,	300 m	cells	dis-
tributed across the PPR in North Dakota, South Dakota and Montana 
that included 170 cells in unknown piping plover areas and 230 in 
known areas. Most sites were surveyed as a cluster with adjacent 
cells (91%), and joining these clustered cells resulted in 158, 3- km 
surveys; 145, 6- km surveys; and 136, 9- km surveys. We observed 83 
piping plovers, including 73 adults and 10 juveniles across 36- person 
working days, which is consistent with our simulated estimates for 
single- visit surveys (Figure 6).

4  |  DISCUSSION

We used a simulation framework to investigate the performance of 
a set of 18 nest monitoring scenarios for piping plovers under two 
nest survival probabilities (36 total comparisons). This framework 
allowed us to predict differences among monitoring scenarios 
without	the	need	to	implement	numerous,	expensive	field	studies.	
We also provide information for decision makers so they can bet-
ter understand trade- offs associated with different survey options 
and choose the most appropriate monitoring scenario based on 
their goals and constraints. We identified a monitoring scenario 
that consistently had the highest net value under both high and 
low nest survival conditions and visit frequencies (400, 3- km sur-
veys). This scenario includes less time in terms of working days at 
more survey sites which should lead to proportionally more nests 
being	monitored	at	a	comparable	cost	 to	other	scenarios.	As	ex-
pected, bias increased and precision decreased as the size or num-
ber of surveys were reduced, more nests were missed and when 
nests	were	visited	less	frequently.	Even	under	the	most	extensive	
and costly monitoring scenario, some nests were missed or unde-
tected, indicating that a complete census was not possible from 
the scenarios we considered (Shaffer et al., 2013).	 Additionally,	
we identified monitoring scenarios where the survey costs out-
weighed the benefits of statistical power. When the strengths 
and limitations of different methods for monitoring the focal spe-
cies' productivity are understood, varying levels of survey effort 
can continue to produce reasonable estimates of abundance and 
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    |  7 of 13ELLIS et al.

productivity (Farrell & Baasch, 2020). Piping plover habitats in the 
PPR	cover	more	than	700,000 km2	of	the	North	American	midcon-
tinent and monitoring resources are often limited and our results 

indicate that monitoring designs for this sensitive species can be 
flexible	 according	 to	 available	 budgets,	while	 providing	 similarly	
accurate estimates of productivity.

Parameter
Coefficient 
estimate 2.50% 97.50%

Relative 
importance

Coefficient of variation

Nest	survival = 0.3

Intercept 0.21 0.21 0.21

Size −0.02 −0.03 −0.02 0.25

Number −0.03 −0.03 −0.03 0.30

Visit frequency −0.04 −0.04 −0.04 0.45

Nest	survival = 0.6

Intercept 0.12 0.12 0.12

Size −0.01 −0.01 −0.01 0.26

Number −0.02 −0.02 −0.02 0.41

Visit frequency −0.02 −0.02 −0.02 0.33

Absolute difference from true value

Nest	survival = 0.3

Intercept 0.05 0.05 0.05

Size −0.01 −0.01 −0.01 0.27

Number −0.01 −0.01 −0.01 0.38

Visit frequency −0.01 −0.01 −0.01 0.35

Nest	survival = 0.6

Intercept 0.06 0.05 0.06

Size −0.01 −0.01 −0.01 0.24

Number −0.01 −0.01 −0.01 0.47

Visit frequency −0.01 −0.01 −0.01 0.29

Proportion of �manage that was positive

Nest	survival = 0.3

Intercept 0.79 0.79 0.80

Size 0.03 0.02 0.03 0.26

Number 0.03 0.03 0.04 0.31

Visit frequency 0.04 0.04 0.05 0.43

Nest	survival = 0.6

Intercept 0.74 0.74 0.75

Size 0.03 0.02 0.03 0.27

Number 0.04 0.03 0.04 0.40

Visit frequency 0.03 0.03 0.04 0.33

Person working days

Nest	survival = 0.3

Intercept 1342.04 1332.96 1351.15

Size 546.73 537.72 555.74 0.32

Number 723.28 714.27 732.29 0.42

Visit frequency 448.03 439.02 457.04 0.26

Nest	survival = 0.6

Intercept 1384.75 1375.51 1394.00

Size 567.26 558.02 576.51 0.32

Number 742.29 733.05 751.54 0.42

Visit frequency 461.36 452.11 470.60 0.26

TA B L E  1 Estimates,	95%	quantiles	
and relative importance of four metrics 
used to assess the performance of 
multiple monitoring options across a large 
geographic area, the U.S. Prairie Pothole 
Region, for a U.S. federally listed shorebird 
(piping plover; Charadrius melodus). We fit 
linear models to imprecision (coefficient 
of variation), bias (absolute difference 
between true and estimated nest survival 
probabilities), the effect of management 
action (proportion of �manage posterior 
distributions that were positive) and 
survey costs (person working days) from 
18,000 replicates (500 per scenario) 
to compare the sensitivity of these 
performance metrics to components of 
the monitoring scenarios under both high 
and low nest survival probabilities. Survey 
size	(3,	6	and	9 km),	number	(100,	200	or	
400),	visit	frequency	(1	or	2 days/week)	
and mean nest survival probabilities (0.3 
and 0.6) varied depending on the scenario. 
All	components	of	the	monitoring	
scenario	were	scaled	(mean = 0,	standard	
deviation = 1)	for	comparative	purposes.

 26888319, 2024, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12308, W

iley O
nline L

ibrary on [11/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 13  |     ELLIS et al.

Our simulation analysis indicated that visit frequency had a 
consistent effect on the bias and precision of nest survival esti-
mates and the power to detect effects of management actions, 
particularly when nest survival was low. Increasing the frequency 
of survey visits can reduce the uncertainty associated with the 
timing of nest completion and assignment of nest fate and reduce 
detection biases towards successful nests (Shaffer et al., 2013). 
However, the frequency of repeated visits was not the most influ-
ential component on survey costs of the monitoring scenarios we 
tested. These results suggest that minimizing survey costs by re-
ducing the frequency of nest visits to once a week may provide less 
of a cost benefit and incur a greater consequence on parameter 
estimation	than	if	the	number	or	size	of	surveys	were	reduced.	An	
alternative motivation for reducing visit frequency may be to min-
imize investigator disturbances around nest sites (Götmark, 1992), 
particularly if these disturbances lead to reduced reproductive 
success (Mayer- Gross et al., 1997;	Meixell	&	Flint,	2017). In these 
instances, nest temperature data loggers (Stephenson et al., 2021) 
or	nest	cameras	 (Andes	et	al.,	2019; Ellis et al., 2018; McKinnon 
& Bêty, 2009) may be beneficial for monitoring nests and reduc-
ing investigator visit frequencies. The added costs of such devices 
may be offset by reducing investigator time in the field and uncer-
tainty in assignments of nest fate (Ellis et al., 2018) or the timing 
of nest failure.

We found that the relative importance of monitoring sce-
nario components varied based on overall nest survival rates. For 

example,	 visit	 frequency	 had	 the	 greatest	 influence	 on	 precision	
and statistical power when nest survival was low, but the number 
of surveys had the greatest influence on precision and statistical 
power when nest survival was high. These findings indicate that 
there may be benefits to implementing adaptive monitoring designs, 
such that monitoring designs evolve in response to changing envi-
ronmental conditions, management objectives or monitoring tools 
(Lindenmayer & Likens, 2009). Based on our findings, visit frequency 
could be prioritized when more nests are anticipated to fail (e.g. 
early in the breeding season, in certain years or in certain regions 
within a study area) and survey coverage could be prioritized when 
nest	survival	is	expected	to	be	highest.

Most monitoring programmes are designed according to avail-
able staff or budgetary resources, without assessing precision 
around parameter estimates or statistical power to detect changes 
in estimates that may result (Legg & Nagy, 2006). Management de-
cisions influencing nest survival will be most effective if changes in 
survival from threats or management actions are detected as soon 
as possible. We found that half (49%) of our simulations failed to de-
tect the positive effect of the management action after one season. 
Failing to detect a positive effect of management actions will poten-
tially lead to a loss of support for such actions and missed conserva-
tion opportunities, particularly when those actions carry additional 
implementation costs (Legg & Nagy, 2006). Therefore, understand-
ing the statistical power of a monitoring programme up front can 
help to clarify the monitoring effort and length of study necessary 

F I G U R E  2 Bias	(absolute	difference	
between estimated and true mean nest 
survival probabilities) and imprecision 
(coefficient of variation of nest survival 
probabilities) of replicates under each 
monitoring scenario for a threatened 
shorebird (piping plover; Charadrius 
melodus). Points show the mean from 
simulations with 95% quantiles as 
error bars.
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    |  9 of 13ELLIS et al.

for resolving underlying scientific questions such as whether a man-
agement action is effective (Reynolds et al., 2011).

Predicted distributions of piping plover nesting habitat used as 
the basis for simulation in our study were informed by both nest-
ing	and	eBird	locations	(Ellis,	Anteau,	MacDonald,	Swift,	Ring,	Toy,	
Sherfy, et al., 2023). The increasing use of publicly available, com-
munity science data (inclusive of any volunteer participant; Cooper 
et al., 2021) in ecological studies warrants an assessment of survey 
designs that may be informed by this type of data, particularly if 
a goal is to inform conservation or management decisions (Stuber 
et al., 2022; Sullivan et al., 2017). Community science data are typ-
ically abundant and species observations outside of established 
monitoring sites may entice researchers to allocate study resources 
confirming new observations. We provided a case study to show 
how predicted habitat distributions based on data collected during 
targeted nesting surveys, which were limited in spatial scope, and 
community science data, which filled critical spatial gaps, could be 
used to inform a more statistically designed monitoring programme. 
The use of community science data for management decisions or 
policymaking has so far been limited, likely due to uncertainties 

F I G U R E  3 Statistical	power	
(proportion of replicates out of 500 where 
>85% of �manage was positive) and the 
percentage of nests outside of survey 
cells by survey costs (number of person 
working days) under each monitoring 
scenario for a threatened shorebird 
(piping plover; Charadrius melodus). Visit 
frequency refers to days/week. Black lines 
connect points with the same survey size. 
Points show the mean from simulations 
with 95% quantiles as error bars.
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F I G U R E  4 Percentage	of	undetected	nests	(nests	within	
survey cells that failed or hatched without detection, therefore, 
percentages were invariant across the size and number of surveys) 
when surveys were conducted one or two times per week, under 
high and low nest survival scenarios for a threatened shorebird 
(piping plover; Charadrius melodus). Points show the mean from 
simulations with 95% quantiles as error bars.
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about the scientific rigour of these data. However, community 
science data have been validated against targeted biological mon-
itoring programmes and can provide comparable information at re-
gional or national scales (Stuber et al., 2022).

The optimal monitoring scenario in our simulation analysis was 
dependent on assumptions of our simulation and study system; 
therefore, our results may change if costs were calculated differently 
or in systems where the spatial configuration of nesting habitats 

differs from ours. Given that we considered costs to be relative, not 
absolute, and we considered survey time but not travel time to sur-
vey sites when calculating costs, actual costs would be greater, and 
therefore, net values for some monitoring plans could become nega-
tive if travel costs were included, particularly across our large study 
area. Depending on the spatial configurations of survey cells and 
field crews and the number of surveyors in field crews, travel times 
could vary widely. Piping plover habitats are widely distributed in the 
PPR,	but	nests	are	often	concentrated	within	‘hotspots’	(Ellis,	Anteau,	
MacDonald, Swift, Ring, Toy, Sherfy, et al., 2023). This type of aggre-
gation of nests across space is common for species that use patches of 
habitat	distributed	across	large	areas,	for	species	exhibiting	colonial	or	
semi- colonial nesting behaviours (Dardenne et al., 2013; Gibbs, 1991; 
Patrick, 2013), and where social cues or community interactions con-
tribute to the spatial pattern of nests, in addition to habitat conditions 
(Cunningham et al., 2016; Samplonius & Both, 2017; Swift et al., 2017, 
2023). Therefore, precision and bias will likely differ with varying ag-
gregation and spatiotemporal autocorrelation of nest patterns and 
available habitats (Blanchard et al., 2008).

Designing effective landscape- scale monitoring programmes 
requires cooperation between decision makers and researchers to 
formulate study objectives and information needs while simultane-
ously understanding trade- offs between possible information loss, 
error rates and costs (Reynolds et al., 2016). Our research provides 
insights into how it is possible to improve nest monitoring plans and 
implement informed management actions while taking into consider-
ation observation error and monitoring uncertainties. The simulation 
framework from our case study could be used in a range of ecologi-
cal systems, if sufficient predictions of species distributions, habitat 
use or habitat suitability across a region of interest were available. 
Preliminary	indices	of	habitat	suitability	using	expert	knowledge	or	
maps based on community science data (e.g. eBird Status and Trends 

F I G U R E  5 Net	values	of	statistical	
power minus survey costs for each 
monitoring scenario for a threatened 
shorebird (piping plover; Charadrius 
melodus). Statistical power and survey 
costs were normalized (ranging between 
0 and 1) and negative values indicate 
scenarios where survey costs outweigh 
statistical power. The dotted grey line 
delineates 0, where survey costs and 
statistical power are balanced. Black lines 
connect points with the same survey size. 
Visit frequency refers to days/week.
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F I G U R E  6 Percentage	of	nests	outside	of	survey	cells	by	the	costs	
(number of person working days) when visiting each survey cell once 
(and not monitoring nest fates) for each monitoring scenario for a 
threatened shorebird (piping plover; Charadrius melodus). Black lines 
connect points with the same survey size. Points show the mean from 
simulations with 95% quantiles as error bars.
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    |  11 of 13ELLIS et al.

abundance maps; Fink et al., 2021) could be used and updated as 
targeted data are collected (Southwell et al., 2022). While we did not 
use our study to assess whether different monitoring plans could 
detect changes in the distribution or occupancy of nesting habitats 
over	time,	our	simulation	framework	could	be	extended	to	apply	sim-
ulated nests that were detected in habitat use or occupancy analyses 
rather than nest survival analyses as we did here.
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