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1  |  INTRODUC TION

Dung beetles (Coleoptera: Scarabaeidae) are among the most 
recognizable of the dung fauna. Dung beetles occur globally (Frank 
et  al.,  2018) and contribute to important ecosystem functions 
(Thomas, 2001) but are facing multiple threats (Tocco et al., 2021). 
Despite their importance, very little attention has been paid to the 
restoration of these charismatic insects where they have been lost.

Dung beetles can be classified into functional groups by how 
they utilize dung for breeding and feeding. These functional groups 
are endocoprids (dwellers), paracoprids (tunnelers), and telecoprids 
(rollers) (Halffter & Edmonds,  1982; Hanski & Cambefort,  2014). 

Each of these functional groups is comprised of multiple spe-
cies. Dwellers use dung as their primary habitat and for breeding 
(Figure 1). Tunnelers live in soil under dung and transfer small quan-
tities of dung into the soil for breeding. Rollers move balls of dung 
a distance away from the original deposition site and bury them in 
the soil for feeding and breeding. These functional groups accelerate 
decomposition by creating pores or channels throughout the dung 
and increasing fungal and bacterial decomposition (Doube,  1990; 
Figure 1).

Dung beetles are ubiquitous in many ecosystems and environ-
mental factors such as soil texture, temperature, cover and land 
use affect the abundance and activity of dung beetles. Dung beetle 
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Abstract
1.	 Dung beetles have key roles in ecosystems including accelerating dung decompo-

sition, improving nutrient cycling and influencing physical (such as structure) and 
chemical (such as pH and available nutrients) soil properties. Without dung bee-
tles, dung decomposition slows, nutrient cycling is impaired, and water infiltration 
decreases.

2.	 Dung beetles face various threats, including climate change, anthropogenic 
chemicals and habitat degradation. However, there is limited information on the 
restoration of dung beetles in areas where they have been lost.

3.	 The restoration framework utilized in this review considers three primary facets: 
environmental conditions, which encompass crucial abiotic features; biotic char-
acteristics, which involve all other species; and focal species, which denote all na-
tive functional groups of species that require reintroduction or re-establishment.

4.	 This review aims to examine the ecosystem services provided by dung beetles, 
highlight the threats they face and conceptualize a restoration framework for 
these crucial organisms.
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abundance and activity are higher in sandy soils (von Hoermann 
et al., 2020); in warmer temperatures (Gotcha et al., 2021), and at 
lower latitudes (Hortal et al., 2011). Moreover, smaller dung beetles 
are more abundant in grasslands compared with forests (Korasaki 
et al., 2013). Grazing by cattle positively affects the abundance of 
dung beetles and species richness (Wagner et al., 2021).

Dung beetles are currently facing numerous threats, and their 
potential loss will have significant impacts on ecosystem function 
(Beynon et  al.,  2012), thereby reducing ecosystem sustainability 
(Nervo et al., 2017). Due to their significance, it is crucial to incorpo-
rate dung beetles into restoration planning (Buse & Entling, 2020).

2  |  ECOSYSTEM SERVICES PROVIDED BY 
DUNG BEETLES

Dung beetles play a significant role in many functions and com-
ponents of ecosystems (Jones et  al.,  2018) from soil (Beynon 
et al., 2015; Evans et al., 2019), to biological pests including path-
ogens and parasites (Milotić et  al.,  2017), and plant communities 
(Griffiths et al., 2015). The effectiveness and efficiency of dung bee-
tles in providing ecosystem functions is linked to their diversity and 
abundance (Davies et al., 2020). Maintaining high species richness 
is crucial for sustaining ecosystem functions (Reich et  al.,  2001). 
Cumulatively, the ecosystem services provided by dung beetles 
have considerable economic value estimated annually at $5.9 bil-
lion (2005 US dollars) in the United States (Losey & Vaughan, 2006) 
and $425.9 million (2014 US dollars) in the United Kingdom (Beynon 
et al., 2015).

Dung beetles play a significant role in soil dynamics, impacting 
nutrient cycling and greenhouse gas fluxes. They accelerate the 

decomposition of dung pats (Davies et al., 2020; Ortega-Martínez 
et al., 2020) and transport nutrients from pats into soil (Menéndez 
et  al.,  2016). For example, dwellers increase organic matter and 
phosphorus concentrations at the soil surface by 50%, rollers in-
crease NH4

+ in deep soils by 60%, and tunnelers increase organic 
matter, total nitrogen and phosphorus throughout the soil profile by 
50% in a semiarid pasture (Maldonado et al., 2019). Through their 
activities, dung beetles can reduce the emission of CO2 by 7%, N2O 
by 2%, and CH4 by 14.5% from dung pats during the grazing season 
(Iwasa et al., 2015; Piccini et al., 2017; Slade et al., 2016) which can 
scale up to substantial pasture-level impacts (Slade et al., 2016).

Dung beetle activity leads to a substantial reduction in pests 
affecting livestock and wildlife, including approximately 70% of 
flies (Ix-Balam et al., 2018), 60%–90% of nematodes (Bryan, 1976; 
English,  1979; Fincher,  1975) and protozoa (Nichols et  al.,  2008) 
through the reduction of dung on the landscape. Dung beetles re-
duce these pests during feeding activities that incidentally ingest 
pest eggs and larvae present in dung (Holter & Scholtz,  2007). 
Furthermore, rollers bury dung balls and pest larvae emerging 
from the ball cannot return to the surface following hatch (Gregory 
et al., 2015).

Water infiltration is improved through biopedturbation by 
dung beetles (Brown et  al.,  2010). Biopedturbation by dung bee-
tles arises from their tunneling and digging activities (Hanski & 
Cambefort, 2014). These actions decrease the bulk density of soil 
(Nichols et al., 2008), enhance soil porosity that increases infiltration 
by up to 300% (Keller et al., 2022), and reduce surface water runoff. 
Tunnels act as channels allowing water to move directly into deeper 
layers of the soil profile (Manning et al., 2016). Moving water into 
deeper layers of soil can increase soil moisture by 20% at 0%–30 cm 
depth (Brown et al., 2010). The enhanced threefold increase in water 

F I G U R E  1 Different functional groups of dung beetles including tunnelers (live in the soil under the dung pats and use the dung for 
brooding), dwellers (use the dung for living and nesting) and rollers (live in the soil and use the dung for brooding) and their effects on 
different ecosystem services such as improving chemical and physical properties of soil, altering microbial community, promoting plant 
growth and reproduction and reducing greenhouse gas emissions.
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infiltration rates into soils and improved hydrological functioning 
through the action of dung beetles influence nutrient cycling and 
plant productivity (Keller et al., 2022).

Plant growth can also be affected by dung beetle activity 
through several mechanisms including changes to water and soil 
nutrients and through seed dispersal and germination. Plants have 
been observed to respond to dung beetle-driven changes to soil 
(Santos-Heredia et al., 2016; Yoshihara & Sato, 2015) as evidenced 
by an increase in leaf tissue N and C content (Johnson et al., 2016). 
Plants respond to higher moisture in soils due to dung beetle ac-
tivity through increases in plant growth (280%), leaf emergence 
(30%) and plant height (200%) under drought conditions in humid 
subtropical native pasture (Johnson et al., 2016). Moreover, dung 
beetles have a secondary role in vertical and horizontal seed dis-
persal of many plant species (Santos-Heredia et al., 2011) which 
reduces spatial clumping of seeds (Urrea-Galeano et al., 2019) and 
allows endozoochoric seeds access to a wider variety of safe sites 
for germination. Furthermore, dung beetles can enhance the ger-
mination of seeds inside dung pats by accelerating the decompo-
sition rate of dung that acts as physical barrier for germination 
(Ishikawa, 2011).

3  |  THRE ATS TO DUNG BEETLES

There are several major threats to dung beetles including climate 
change (changing temperature and precipitation as well as in-
creasing CO2), habitat fragmentation and anthropogenic chemical 
use. Understanding these threats may help improve restoration 
outcomes.

Climate change can negatively impact dung beetle species rich-
ness and abundance (Maldaner et al., 2021) by altering temperature 
(Sheldon et  al.,  2020), precipitation (Liberal et  al.,  2011), biogeo-
chemical cycles (Seddon et al., 2016) and phenology (Forrest, 2016). 
Dung beetles may respond to increasing temperatures with in-
creased feeding rates (Sheldon et al., 2020) and shrinking body size 
and overall metabolism to conserve energy (Fleming et  al.,  2021). 
These physiological changes can impact dung beetles' abundance 
by decreasing their reproduction. For instance, within a tempera-
ture range of 22–30°C, with a diurnal increase of 2°C and 4°C, the 
number of broods decreases by 36% and 30%, while dung burial de-
creases by 25% and 30%, respectively (Holley & Andrew, 2020). The 
response of the dung beetle community to climate change can also 
depend on latitude. In northern areas, rising temperatures enhance 
dung removal and seed dispersal rates by dung beetles (Milotić 
et al., 2019). But in southern latitudes increasing variability in precip-
itation may result in lower species richness, abundance and biomass 
of dung beetles (França et al., 2020).

Increased CO2 levels above 600 ppm directly impact dung bee-
tles by increasing mortality rates, decreasing adult size and impair-
ing larval development and survival. Additionally, elevated CO2 
levels within dung brood balls decreased larval performance (Tocco 
et al., 2021). Indirectly, increasing CO2 levels can lead to an increase 

in nonstructural carbohydrates and a decrease in N and P in plants 
(Loranger et al., 2004; Poorter et al., 1997) that negatively impacts 
the quality of dung pats and dung beetle abundance (Gittings & 
Giller, 1998). Moreover, rising CO2 levels contribute to woody en-
croachment, which decreases the quality of both food and habitat 
for dung beetles. In the early stages, when shrub cover is less than 
10% of the area, shrubs can enhance habitat quality for beetles. 
However, if encroachment exceeds 10% of shrub cover, it decreases 
beetle diversity (Hering et al., 2019).

Dung beetles are able, to some extent, to respond to changing 
climate. For example, dung beetles have the potential to adjust to 
climate change through their seasonal activity and responses to 
disturbances (Cuesta et  al.,  2021; Menéndez & Gutiérrez,  2004). 
For instance, dung beetle phenology can shift towards earlier sea-
sonal activity or prolonged activity periods, which can help to com-
pensate for adverse changes in their environment (Forrest,  2016). 
Furthermore, dung beetle ranges may shift northward in response to 
climate change, and this could lead to an increase in species richness 
at higher latitudes (Dortel et al., 2013).

Anthropogenic activities such as fragmentation and chemical 
use have adverse effects on dung beetles' abundance and richness 
(Lumaret et  al.,  2022; Martello et  al.,  2016). In many areas of the 
world, habitats are becoming increasingly fragmented (Fahrig, 2003), 
and when fragmentation leads to habitats becoming isolated dung 
beetles can be impacted (Mbora & Mutua,  2023). The isolation 
may result in a failure to sustain large mammal populations (Larsen 
et al., 2008), potentially leading to a decrease in dung beetle rich-
ness, density and biomass (Storck-Tonon et al., 2020). Dung beetles 
have high dispersal potential and can fly up to 16 km (Thomas, 2001). 
Thus, fragmentation may be a more serious issue for populations 
that are more than 16 km apart.

Anthropogenic land-use changes impact dung beetle popula-
tions differently based on the disturbance type, extent and species 
characteristics (Raine & Slade, 2019). Cattle grazing and high wild-
life populations benefit abundance and richness of dung beetles 
(Andresen & Laurance, 2007; Correa et  al.,  2020). Conversely, re-
moval of wildlife and cattle reduces beetle abundance, community 
diversity and richness (Fuzessy et  al.,  2021). In forested areas, di-
versity of dung beetles is typically lower in logged forests compared 
with primary forests, and the abundance of dung beetles decreases 
with canopy openness (Beiroz et al., 2019; Davis et al., 2001). In gen-
eral, extensive disturbances tend to have negative effects on all di-
mensions of dung beetle diversity, although certain aspects, such as 
functional and phylogenetic richness, may be more strongly affected 
(Rivera et al., 2023).

Anthropogenic chemicals negatively affect dung beetles. 
Residual parasiticide products in dung decrease the abundance and 
diversity of dung-associated insects (Pérez-Cogollo et  al.,  2015) 
and lead to high adult and larval mortality, low female fertility and 
a reduction in body size (Lumaret et al., 2022). One common para-
siticide, ivermectin, impairs the olfactory and locomotor capacities 
of dung beetles (Verdú et al., 2015) and affects dung beetle colo-
nization, emigration and biomass (Verdú et al., 2018). In a western 

 26888319, 2024, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.12297, W

iley O
nline L

ibrary on [11/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 10  |     TORABIAN et al.

South Dakota rangeland, experimental addition of ivermectin to cat-
tle dung resulted in high mortality of beetles colonizing dung pats 
(Torabian, unpublished data). The negative impacts of chemicals on 
dung beetles can lead to losses of ecosystem functions they provide 
(Kavanaugh & Manning, 2020).

4  |  RESTOR ATION TRIANGLE FOR DUNG 
BEETLES

A global decline in dung beetles, particularly in the past 30 years, 
has been documented highlighting the importance of dung beetle 
restoration (Lumaret et al., 2022; Nichols et al., 2007). A key first 
step in restoration planning is to identify high-priority habitats and 
species (Gann et al., 2019). Dung beetle species richness, diversity, 
and ecological function can serve as important criteria for site selec-
tion. Areas with low dung beetle species richness or impaired eco-
logical functions (such as poor dung decomposition and field fouling) 
are prime candidates for restoration efforts (Sarmiento-Garces & 
Hernández, 2021).

To conceptualize dung beetle restoration, we propose a resto-
ration triangle framework encompassing environmental conditions, 
biotic characteristics and focal restoration species (Figure 2: Perkins 
& Leffler,  2018). Environmental conditions are physical properties 
of the site that can influence restoration, like soil structure and 
moisture. Biotic characteristics involve other organisms present at 
a site, which can aid or impede restoration, including plants, insects 
and herbivores. Additionally, restoration planning should account 
for the requirements and traits of focal restoration species (dung 
beetles), such as seasonal activity and dispersal abilities (Perkins & 
Leffler,  2018). Whereas the triangle describes the conditions and 
characteristics of the site, external influences arising from outside 
the restoration site such as fragmentation and disturbance can also 
influence restoration success (Perkins et al., 2011). Understanding 
these factors is crucial for successful restoration.

4.1  |  Environmental conditions

The environmental conditions of a degraded site play a crucial role 
in dung beetle restoration (Pessôa et al., 2021). As dung beetles are, 
in some life stages, soil organisms, the soil abiotic environment is 
critical (Beiroz et  al.,  2019). Soil characteristics have an influence 
on dung beetle abundance (Almeida et al., 2022) owing to their im-
pact on habitat and food sources (Farias & Hernández, 2017). For 
instance, an increase in soil compaction results in higher penetra-
tion resistance, and a rise in penetration resistance from 2000 to 
5000 kpa can lead to approximately a 15% reduction in brood ball 
depth, alongside increased energy consumption by the beetles 
(Dabrowski et al., 2019). Restoring soil quality may require phyto-
 or mechanical-remediation (Farrell et  al.,  2020). Well-drained soil 
increases dung beetle survival, therefore enhancing soil drainage is a 
suitable approach (Heneghan et al., 2008; Lal, 2020).

Anthropogenic chemicals, particularly those used to control pest 
insects, can hinder restoration success due to their broad efficacy 
and off-target effects (Sánchez-Bayo,  2021). Monitoring and con-
trolling chemicals (Verdú et al., 2018) and minimizing the need for 
pesticides (Jacobs & Scholtz, 2015) can reduce their impact on non-
target species such as dung beetles. Implementing integrated pest 
management principles, which recommend limited pesticide use and 
a range of methods to mitigate harm to insects (Stenberg, 2017), is 
suggested for landscapes where complete pesticide elimination is 
not feasible due to economic constraints or stakeholder interests. If 
the landscape is grazed by livestock, minimizing the use of parasiti-
cides such as ivermectin is especially important as these compounds 
affect dung beetles (Sands & Wall, 2018; Tovar et al., 2023).

4.2  |  Biotic characteristics

The presence of other organisms at the restoration site has a signifi-
cant influence on dung beetle restoration. Primarily for dung beetle 

F I G U R E  2 Restoration triangle with 
three principal factors involved in the 
restoration of dung beetles (adapted from 
Perkins & Leffler, 2018).
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restoration, attention should be paid to mammals. Mammals, as the 
providers of dung, directly influence dung beetle abundance and in-
directly benefit dung beetles by improving habitats and food sources 
for herbivores.

Re-establishment of native mammals is one effective ap-
proach to restoring native dung beetles. Mammal dung is the 
primary habitat for dung beetles, and native dung beetles pre-
fer native mammal dung (Gigliotti et  al.,  2023). Without suffi-
cient providers of this habitat, the abundance and richness of 
dung beetles will be low (Buse et al., 2021). Dung beetle species 
richness is positively correlated with mammal biomass (Culot 
et al., 2013), and high diversity of native mammals enhances the 
resilience of dung beetle–mammal networks (Chiew et al., 2022), 
leading to increased abundance, richness and diversity of dung 
beetles (Amézquita & Favila, 2010; Buse et  al.,  2021; Nependa 
et al., 2021). Additionally, the abundance of dung beetles may be 
related to native burrowing mammals (Lindtner et al., 2019) due 
to their effects on soil structure and interspecies facilitative or 
commensal relationships.

Dung beetles also utilize livestock dung. Dung beetles 
can benefit from a combination of game and cattle ranching 
(Tocco et  al.,  2020), cattle grazing (Verdú et  al.,  2007) and re-
establishment of large native mammals like bison in grasslands 
(Barber et al., 2019). In such settings, the presence of both wild 
game (big herbivorous such as deer and bison) and domesticated 
cattle results in a diverse range of dung sources, providing dung 
beetles with a variety of food options. This diversity in dung types 
can support diverse dung beetle communities, contributing to the 
overall health of the ecosystem. However, it is important to con-
sider the effect of anthropogenic chemicals that may be present 
in livestock dung (see discussion above). If the only dung available 
has levels of chemicals that negatively impact dung beetles, live-
stock dung could be an ecological trap (Manning et al., 2017) that 
hinders rather than helps restoration.

Restoration strategies such as revegetation enhance habitats 
and native dung beetle abundance (Gardner et al., 2008). Although 
the specific mechanisms by which native plants influence dung 
beetles are not well-documented, alterations in microclimates are 
one possible explanation (Gollan et  al.,  2011). Moreover, native 
plants associated with native mammals contribute to the functional 
diversity of dung beetles, potentially through the positive effects 
of native plants on the quality of mammal dung (Guerra Alonso 
et al., 2022).

Furthermore, reintroducing different functional groups of native 
dung beetles can mitigate the negative impacts of invasive dung 
beetles (Filho et al., 2018). Invasive dung beetles have adverse im-
pacts on native dung beetle populations, including reduced diversity, 
decreased population size and occasional local extinctions (Génier 
& Davis, 2017). The invasive dung beetles have a competitive edge 
over native dung beetles with similar nesting behaviours and phe-
nology. Consequently, these invasions have altered the proportion 
of different functional groups (Filho et al., 2018).

4.3  |  Focal restoration of dung beetles

Dung beetles will either naturally recolonize or will need to be 
reintroduced to the restoration site. Natural recolonization de-
pends on landscape context and fragmentation (discussed above; 
Collinge, 2000). Dung beetles can fly almost 16 km (Thomas, 2001) 
and therefore may naturally recolonize many areas. However, in 
isolated habitats assisted colonization can be considered (Rivera 
et al., 2021). Reintroduction can be accomplished either by relocat-
ing dung pats containing beetles after ensuring the quality of dung 
(with no pests, chemical contamination, or seeds of invasive species) 
or by releasing commercially available dung beetles. Commercially 
available dung beetles are intentionally bred and marketed for spe-
cific purposes. These beetles are obtained from diverse locations, 
where they are collected from their natural habitats and subse-
quently reared in captivity for commercial sale. Dung beetle breed-
ing procedure entails housing the dung beetles within a spacious, 
enclosed container filled with soil, and providing them with an ample 
supply of manure until their population expands. Assisted recoloni-
zation has been undertaken to serve goals such as pest control in 
grazing systems (Hosler et al., 2021) although care must be taken to 
consider the physiological requirements of species (Giménez Gómez 
et al., 2020), investigate species distribution and genetic diversity, 
determine appropriate release timing and season and conduct post-
monitoring (Pokhrel et  al.,  2021) especially given the potentially 
negative impacts of non-native dung beetles on native communities 
described above.

The goal of restoration is to produce a dung beetle community 
that is similar to that of a reference site. Therefore, both functional 
diversity and overall dung beetle abundance should be the focus of 
restoration efforts. Functional diversity improves population sta-
bility. High functional diversity can improve population stability, 
enhance resilience against disturbances (Nelson et al., 2021; Slade 
et al., 2011) and contribute to the diversity of ecosystem functions, 
ensuring long-term maintenance of ecosystem processes despite 
abiotic variation (Gagic et al., 2015). Therefore, postmonitoring and 
reintroduction measures of diversity and composition are necessary 
for long-term success.

Finally, in habitat restoration projects for other species (not 
specifically dung beetles), the recolonization or presence of 
dung beetles serves as an indicator of success (Gelviz-Gelvez 
et  al.,  2023). Dung beetles can be considered an indicator spe-
cies that respond to habitat restoration and faunal recovery 
even within a relatively short monitoring period (Gelviz-Gelvez 
et al., 2023). For example, dung beetles have been examined in re-
sponse to vegetation restoration (Díaz-García et al., 2022; Gelviz-
Gelvez et al., 2023; González-Tokman et al., 2018). The premise of 
using dung beetles as indicators of successful restoration is that 
the habitat (vegetation) has been sufficiently restored to support 
fauna in enough abundance to attract dung beetles. Conversely, 
the same restoration that would benefit dung beetles should ben-
efit other members of the ecosystem.
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5  |  E X TERNAL INFLUENCES

External influences are transient dynamics that are not inherent 
in a site but can impact restoration (Perkins et al., 2011). For dung 
beetle restoration, these external influences include disturbance 
and fragmentation. Prior to attempting restoration, it is essential 
to address stressors and mitigate severe and frequent disturbances 
impacting the dung beetle community (Barbero et al., 1999; Barnes 
et al., 2014). Disturbances occurring too frequently compared with 
historical patterns can decrease functional evenness and dispersion 
of dung beetles (Mouillot et  al.,  2013). For example, if fires occur 
too frequently due to human intervention or climate change, it can 
disrupt the dung beetle community (Blanche et  al.,  2001; Smith 
et al., 2019). Conversely, prolonged periods without disturbance or 
infrequent disturbances can also negatively affect beetle diversity 
and evenness, as well as the broader dung fauna (Hosler et al., 2021). 
For example, in a forest ecosystem, if logging activities cease en-
tirely, it might initially seem beneficial for the ecosystem. However, 
without occasional disturbances that mimic natural events, the bee-
tle community may become dominated by a few species that are par-
ticularly well-adapted to stable conditions. This can lead to reduced 
overall diversity and potentially disrupt the ecosystem's functioning 
(Edwards et al., 2017). Therefore, maintaining a balance between the 
frequency and intensity of disturbances is crucial for preserving the 
health and diversity of the dung beetle community.

Landscape fragmentation poses a threat to dung beetles and may 
limit their ability to naturally recolonize a site (Rivera et al., 2022). 
Creating and restoring corridors between isolated patches (Williams 
& Snyder,  2005) and establishing buffer zones (420–970 m wide; 
Deere et  al.,  2022) are effective strategies to mitigate fragmen-
tation impacts. Corridors facilitate movement through otherwise 
unsuitable habitat (Christie & Knowles,  2015). Corridors also pro-
mote large-scale metapopulations, sustaining gene flow amid rapid 
environmental changes (Samways et al., 2020). Although corridors 
improve habitat connectivity, this connectivity may be less criti-
cal for dung beetles that can disperse considerable distance than 
less mobile species. Dung beetles are able to disperse up to 16 km 
(Thomas, 2001), so corridors can be envisioned as diffuse patches 
of suitable habitat between existing populations and the restoration 
area. Corridors might be especially useful in areas impacted or sepa-
rated by urbanization (Salomão et al., 2019).

6  |  CONCLUSION

In this review, we illustrated the importance of dung beetles in eco-
system services, discussed threats to dung beetles and elucidated 
a restoration framework. Dung beetles are associated with dif-
ferent ecosystem functions that provide vital services and goods 
for humans, animals and plants. The decomposition process is the 
primary service dung beetles provide. This service not only clears 
pastures from dung but also enhances nutrient cycling. Improved 

nutrient cycling boosts ecosystem productivity which is beneficial 
for humans. Human activities and ecosystem changes have affected 
the dung beetle community. Increasing usage of chemicals, climate 
change and land-use change negatively affect dung beetles and re-
lated ecosystem functions, so it is essential to find ways to solve the 
problem. The conservation and preservation of endemic dung beetle 
species and native habitats are required to maintain ecosystem func-
tions. Note that conservation can protect populations and commu-
nities of dung beetles against land-use change and climate change 
leading to more sustainable human activities, when conservation is 
not sufficient restoration is required. To ensure effective restora-
tion practices, we must carefully consider environmental conditions, 
biotic characteristics and focal restoration and focus on precise res-
toration methods.
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