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derstand patterns and drivers of environmental and biological phenomena at dif-

Handling Editor: Mark O'Connell 2. Here we address the concept of secondary data, which refers to additional in-
formation unintentionally captured in species records, especially in multimedia-
based citizen science reports. We argue that secondary data can provide a wealth
of ecologically relevant information, the utilisation of which can enhance our un-
derstanding of traits and interactions among individual organisms, populations
and biodiversity dynamics in general.

3. We explore the possibilities offered by secondary data and describe their main
types and sources. An overview of research in this field provides a synthesis of
the results already achieved using secondary data and different approaches to
information extraction.

4. Finally, we discuss challenges to the widespread use of secondary data, such as
biases, licensing issues, use of metadata and lack of awareness of this trove of
data due to a missing common terminology, as well as possible solutions to over-
come these barriers.

5. Although the exploration and use of secondary data is only emerging, the many
opportunities identified show how these data can enrich biodiversity research

and monitoring.
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1 | THE UNTAPPED INFORMATION IN
EXISTING BIODIVERSITY DATA

Citizen science contributes enormously to biodiversity monitor-
ing (Chandler et al.,, 2017) by providing data that are potentially
as useful as those collected by professional scientists, especially
for research over large spatial and temporal extents (Callaghan
et al., 2020). However, there are still major gaps in the taxonomic,
temporal and spatial coverage of biodiversity data to track changes
in species' abundance and distribution (Amano et al., 2016; Feldman
et al,, 2021; Wetzel et al., 2018). Furthermore, biodiversity encom-
passes not only the diversity of organisms but also the diversity of
interactions between them and with their environment, which has
been given scant attention by citizen science (Chandler et al., 2017;
Groom et al., 2021). Ecological interactions are the foundation of
ecology and the architecture of ecosystems, but observing these
relationships is challenging (Jordano, 2016). The sheer amount and
complexity of interactions as well as the detection probability in the
field limits studies with respect to number of species, locations and
time periods that can be studied.

However, both occurrence and interaction data are needed to
understand, address and mitigate the consequences of the five
major drivers of biodiversity loss (Diaz et al., 2019). For instance,
land-use change may affect host-vector dynamics (Spence Beaulieu
et al., 2019), pollution may lead to adaptations in species traits (Rech
et al., 2022), climate change can affect trophic cascades and dis-
tribution shifts (van Gils et al., 2016), overexploitation may change
former mutualisms (Speziale et al., 2018) and biological invasions
can result in novel plant-pollinator networks (Parra-Tabla & Arceo-
Gomez, 2021). The variety of direct and indirect effects of biotic and
abiotic interactions are difficult to study, which poses a challenge
that can only be addressed through global collective effort (Diaz
et al, 2019).

To achieve more accurate and reliable monitoring and inter-
action data, we need to improve and integrate current methods
(Besson et al., 2022; Kuhl et al., 2020; van Klink et al., 2022), to bet-
ter analyse existing data (Probert et al., 2022), and to extract more
information from already collected data (Johnston et al., 2022).
In the latter case, one untapped source of abundant data is the
corpus of digital images and other media, generated and shared
on citizen science platforms. As of May 2023, four such websites
alone (Artportalen, iNaturalist, Observation.org, and Pl@ntNet)
had collectively published over 78 million images through the
Global Biodiversity Information Facility (GBIF). Almost all these
photos were taken of organisms or signs of their presence in situ
(i.e. nests, faeces, tracks, etc.) and thus may capture ecologically
relevant information as a by-product. This type of additional infor-
mation has been termed ‘secondary data’ (Callaghan et al., 2021,
see Box 1 for details). Having recognised the potential, a grow-
ing number of studies have examined ecological questions using
incidentally captured information. Yet, so far, the scientific com-

munity has been relatively blind to the opportunities to extend

BOX 1 What are secondary data?

Secondary data in the context of citizen science in biodi-
versity research, as we define it, refers to a subset of infor-
mation that is unintentionally captured alongside primary
data. Primary citizen science data collected for a specific
research focus, such as monitoring the distribution of a
species, provide information on the location and date of
record of the species in addition to evidence of its occur-
rence. This primary data of ‘what?’, ‘when?’ and ‘where?’
are the intended focus of many ad hoc observing portals. In
contrast, secondary data are ancillary details that are also
present in the materials collected but were not the intended
subject of the study. Indeed, the observer may have been

unaware of the secondary information they evidenced.

Secondary data can offer valuable opportunities for addi-
tional research and analysis, enriching our understanding
of ecosystems' functioning, population dynamics, natural
behaviours and environmental conditions. They represent
any retrievable pieces of information that can be seen on
an image or in a video, heard on an acoustic recording or be
included in a descriptive text. The information they con-
tain may relate to features of individuals or populations,
biotic interactions (including human-nature interactions),
landscape and environmental conditions, or any other bi-
otic or abiotic features or their combination (Figure 1). We
recognise, of course, that the subject of investigation may
be something other than the mere detection of species. In
complex citizen science programmes, the primary data can
only be separated from secondary data with reference to
the objectives of the project. For example, in the COASST
project (Parrish et al., 2017), citizen scientists record bird
carcasses on beaches, providing not only an image but also
record a wealth of information about the morphology of
the carcass and the state of the environment. In addition
to the primary information collected, the images of dead
birds may contain even more information than the research
project anticipated, such as the presence of necrophagous
species. Thus, secondary data are data that the methodol-
ogy was not intended to capture, though there are no sharp
demarcation lines.

our knowledge of biodiversity from secondary data. Therefore, we
assume a ‘biodiversity blindness’, drawing on the concept to de-
scribe the public's lack of attention to the presence and diversity
of plant and animal life (Moscoe & Hanes, 2019).

Following our definition of secondary data (Box 1), we do not
explicitly refer to the metadata (e.g. timestamp or geolocation) as-
sociated with the occurrence record, though they also represent

potential secondary data sources and play a major role in selecting
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FIGURE 1 Examples of secondary data captured in images vouchering for species occurrences. (a) background habitat of a fire
salamander (Salamandra salamandra), and the unintended record of another species (the fungus) (b) the interaction between human and

red fox (Vulpes vulpes), (c) interaction between a leaf miner and the host plant, (d) predation by the Mexican grass-carrying wasp Isodontia
mexicana. Image copyrights: © https://www.inaturalist.org/photos/251871116, http://creativecommons.org/publicdomain/zero/1.0/ (a) ©
juniper_likethetree https://www.inaturalist.org/observations/155228701, https://creativecommons.org/licenses/by/4.0/ (b) ©ahabo https://
www.inaturalist.org/photos/257468598, https://creativecommons.org/licenses/by/4.0/ (c) © Mattia Menchetti https://www.inaturalist.org/
observations/129293402, https://creativecommons.org/licenses/by/4.0/ (d).

datasets and their analyses. An important element in utilising sec-
ondary data is the explorative character of this research method, as
the nature of this unintentionally recorded information may be un-
clear. The additional information may document biotic interactions
and co-occurrences, which could provide not only important ecolog-
ical information of the observed species but also records of the by-
catch for respective monitoring programmes. Secondary data may
also include details on morphology, behaviour, habitat and various
other aspects of a species' traits and ecology.

This paper explores the opportunities and pitfalls of extracting
secondary data from multimedia records of biodiversity. We also
examine how advances in artificial intelligence can and might accel-
erate data extraction. Our goal is to illuminate the hidden treasure
of biodiversity data contained in citizen science multimedia records
and available openly to the scientific community. While the efforts
to explore and exploit the realm of secondary data are still in their
infancy, they already demonstrate numerous opportunities to enrich

and inform biodiversity research.

2 | RESEARCH OPPORTUNITIES AND
TYPES OF SECONDARY DATA

Extracting secondary data from existing citizen science sources
helps to address universal challenges of biodiversity research, such

as taxonomic bias, detectability of species and their interactions,
and recognition of spatio-temporal dynamics.

Taxonomic bias towards charismatic or well-known species in
citizen science data poses a challenge for researchers and limits
the possibilities of launching projects that deal with less popular,
cryptic or under-researched species. In addition, although simple,
unstructured programmes generate high numbers of citizen science
observations, information that is more complex to record, such as an
individual's health condition, is not purposefully collected and there-
fore not formally documented. Similarly, studies that are less engag-
ing, such as those that are time-consuming, physically challenging or
in less attractive localities are discriminated against. Extracting sec-
ondary data from existing observations could be fruitful to fill such
data needs. For example, diurnal or seasonal activity patterns or
vocal characteristics of rare species could be retrieved from sound-
scapes or the background of audio recordings of focal species. From
images, occurrences of less charismatic arthropods or pathogenic
fungi living on photographed plants could be extracted. In the latter
case, in 2010, citizen scientists monitored and scored leaf damage on
horse-chestnut trees (Aesculus hippocastanum) caused by the leaf-
miner Cameraria ohridella in Great Britain (Pocock & Evans, 2014).
Today, the infestation could also be detected as secondary data in
images on which horse-chestnut trees are the primary observation,
thereby improving the data situation at low additional costs and re-
source expenditure.
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Using secondary data to take advantage of the taxonomic
bias towards well-documented species also brings additional re-
search opportunities. When observations for a given species are
widely available, one can extract data on multiple aspects of in-
terest, such as morphological traits or biotic interactions, without
spending time and resources on launching and running a new raw
data collection campaign. For example, Putman et al. (2021) used
images of the secretive but thoroughly documented lizard Elgaria
multicarinata that were primarily collected for determining the
species' distribution in Southern California. From the images, the
authors assessed predation pressure and health condition by mea-
suring the lizards' tails and by looking for ectoparasites in the an-
imal ear regions. Likewise, citizen science photos have been used
to identify subtle morphological differences between two very
similar species of grasshopper and to establish their distributions
(Pélissié et al., 2023).

Coincidental evidence can mitigate low detection probabili-
ties. By identifying a rare species in primary observations of other
species, whether that is through biotic interaction or an incidental
co-occurrence, the pool of observations can be enlarged. A citi-
zen science project in Australia has shown that co-occurrence of
a common and rare possum species can lead to more detections
of the latter (Steven et al., 2021). Aside from potentially increas-
ing sample sizes of monitoring data for the benefit of statistical
analyses, we can improve our understanding of ecological impacts
on other species, including people. We envisage application in
pollination dynamics, invasion impact or climate change research.
For example, we can potentially study the preferred flower spe-
cies and colour in a network of native and exotic bumblebees and
host plants (Catron et al., 2023; Fonturbel et al., 2023). Another
example is hair loss in moose (Alces alces) and wapiti (Cervus

canadensis) caused by the expanding distribution of winter tick

Location

Primary species

E Date and time
i

(Dermacentor albipictus) due to climate warming in Yukon, Canada
(Chenery, 2023). Serendipity is a factor as well to reveal ecological
interactions; Rosa et al. (2022) not only found new and supposedly
extinct species as primary observations, but also novel predatory
interactions that were accidentally captured in the iNaturalist
images of marine snails. Such chance discoveries based on the
background information could be especially useful in invasion sci-
ence, where secondary data may reveal new or hidden invasions
or previously undocumented ecological processes that facilitate
or hinder invasions.

Extracting secondary data from a series of observations across
space and time can also support efforts to move from a mere
single-species snapshot (an occurrence record) to spatio-temporal
biodiversity dynamics. Using timestamps and geolocation meta-
data of citizen science observations to investigate spatial and tem-
poral dynamics has been successfully applied before (e.g. Feldman
et al., 2021; Newson et al., 2016). Given a sufficient temporal span
and frequency of observations, we suggest linking secondary data to
such a stamp to obtain a variety of observable dynamics. For exam-
ple, a series of landscape images would not only contribute to mon-
itoring data (e.g. the abundance and distribution of species on the
images), but can also be useful for studying phenological dynamics
at the community level (Hofmeester et al., 2020).

Figure 2 illustrates how secondary data can add contextual
dimensions to primary species observations, thereby mitigating
‘biodiversity blindness’ by expanding on the information in citizen
science multimedia records beyond geographical locations and time.
This context applies to different scales and scopes of consideration,
specifically on the level of individuals, populations, communities,
the surrounding environment and the human dimension. For each
of these levels, Table 1 gives extensive lists of types of information

contained in secondary data.

2 Secondary data

@ HA Observer-wildlife interaction
H
p HA Features of the individual

Biotic interactions and
co-occurrence

Features of the population
and community

Environmental features

FIGURE 2 lllustrative relationship between primary and secondary data as sources for different types of information. Image copyright: ©
zilpzalp17, https://www.inaturalist.org/observations/148103702, https://creativecommons.org/licenses/by-nc/4.0/.
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3 | SECONDARY DATA ARE SLOWLY
DIFFUSING INTO THE SCIENTIFIC

Studies using secondary data (Table 1) have mostly focused on the
extraction of morphological information, such as the pigmentation
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TABLE 1

Source and extraction method?®

Study example

Extracted data

Data element

iNaturalist, Facebook, Twitter; manual extraction of coat pattern

Decline of introduced llama population in Italy

Population size

Quantification and

and age (by body size) by visual inspection

estimated by recognition of individuals on

images

identification

images of MantaMatcher (citizen science) combined with YouTube,

Sex ratio and proportion of life stages of manta

Sex ratio, age groups

Quantification and

Facebook, Instagram, Flickr and Vimeo and private collections;

extraction of sex and life stages by visual inspection

rays

identification

Environmental features

iNaturalist; manual extraction and classification of biotic habitats by

Classification of marine biotic habitats from

Habitat type

Interpretation of photo

visual inspection

image background and evaluating results

with professional reef life survey

iNaturalist project dedicated to bird mortality

Correlating weather and catastrophic events

Cause of death

Interpretation of photo

with images of dead birds

iNaturalist, fieldwork and literature; manual extraction of the

Substrate choices of native oyster species

Substrate

Interpretation of photo and

substrate information by visual inspection of images in
combination with observer notes and Google Earth

Ostrea lurida

location

20nly the sources and methods used to obtain secondary data whose data type was the subject of the study (feature, interaction, etc.) are listed. In most cases, the analyses also used geo-locations, dates

and metadata that were part of the primary observation.

on wings of Calopterygidae damselflies (Drury et al., 2019), colora-
tion patterns of grass snakes (Fritz & Ihlow, 2022), and intra- and
interspecific variabilities in coloration of birds and plants (Laitly
et al.,, 2021). Some studies also used secondary data to assess
human-nature interactions such as bat handling during the COVID
crisis (Van der Jeucht et al., 2021), to classify marine habitats using
image backgrounds (Bolt et al., 2022), and to identify plants visited
by hummingbirds (Marin-Gémez et al., 2022). Secondary data from
citizen science are often combined with iEcology or culturomics data
sources (Jari¢ et al., 2020) or museum collections (Box 2). Examples
include a dietary study of African snakes (Maritz & Maritz, 2020),
arthropod parasitism by hairworms (Doherty et al., 2021) and the
distribution of anther-smut disease in the Caryophyllaceae plant fam-
ily (Kido & Hood, 2020).

Citizen science has already proven useful in mapping and track-
ing biological invasions (Encarnacéo et al., 2021). The additional in-
formation that comes with secondary data could reveal even more
aspects of the invasion process, thereby supporting invasive spe-
cies management. For example, first approaches explored the host
plants of introduced pollinators (Bila Dubaic et al., 2022; Guariento
et al., 2019; Pernat et al., 2022) and cavity occupancy by wild honey
bees (Apis mellifera) in Australia (Saunders et al., 2021).

Reanalysis of images has also been used for trait-based studies
to characterise, for example particulate matter in the global oceans
(Trudnowska et al., 2021) and the feeding habits of marine copepods

BOX 2 Secondary data, conservation culturomics
and iEcology—What is the difference?

The use of secondary data in research is similar to the
emerging areas of conservation culturomics and iEcol-
ogy (Jari¢ et al., 2020). Culturomics seeks to understand
human culture through the quantitative analysis of changes
in word frequencies in large bodies of digital texts (Michel
et al., 2011). In the context of biodiversity, the emergent
area of ‘conservation culturomics’ focuses on the rela-
tionship between people and nature (Ladle et al., 2016),
informed by contents of various types of online data. iE-
cology, on the other hand, is an umbrella term for analys-
ing various types of digital data generated or collected for
purposes other than ecological research to obtain insights
into ecological questions. In contrast, in citizen science
projects, people consciously contribute to the goal of a
particular activity, such as biodiversity monitoring or inva-
sive species detection (Marchante et al., 2023).
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(Vilgrain et al., 2021), although these studies did not use citizen sci-
ence data. The potential for extracting functional traits from images,
either directly measured or inferred by combining visible features
with context metrics from the metadata, has been thoroughly con-
sidered for plankton (Orenstein et al., 2022).

4 | SECONDARY DATA EXTRACTION
COULD BE ACHIEVED ALONG A GRADIENT
OF HUMAN AND ARTIFICIAL INTELLIGENCE

As approaches to obtain secondary data are just emerging, such
data are still mainly extracted manually. This can be challenging
when thousands of images need to be interpreted and evaluated.
For example, the aforementioned study of anther-smut infection
within the Caryophyllaceae examined 79,801 iNaturalist images
(Kido & Hood, 2020). There is much to be gained from automation
that could scale up the process to millions of images, particularly
for pre-selecting images and recognising relevant image features.
For example, computer vision could be used to extract and analyse
information on colour in images, for example, greenness of plants
(Yuke, 2019), and deep learning models to detect, count and classify
specific features of interest (Bjerge et al., 2023; Mann et al., 2022).
Likewise, algorithms and pretrained dictionaries in Natural Language
Processing could leverage the use of textual content, such as image
captions, commentaries and tags in secondary data. Automated sys-
tems would also facilitate real-time analysis of biodiversity dynam-
ics, making them particularly useful for informing decision-makers
regarding effects of conservation efforts or as early warning tools
(van Klink et al., 2022).

Despite the obvious appeal of machine learning for automatic
data extraction from citizen science sources, several obstacles lie
before its full potential can be realised. Developing robust models
that effectively handle diverse and noisy datasets is challenging
and resource-intensive. Nevertheless, for some tasks, existing
tools may be customised or applied directly. Multiple trained deep
learning models to screen multimedia for human or natural objects
are freely available. For instance, object detection models, which
are often pretrained and benchmarked on the COCO dataset (Lin
et al., 2014) containing 80 different object categories (including
birds and other animals), may already provide relevant secondary
data output. Moreover, models exist for specific groups of organ-
isms and data types: Merlin Bird ID and BirdNET (Kahl et al., 2021)
for bird detection based on sound (the former can identify species
also from images), Pl@ntNet API for plants, Bjerge et al. (2023)
created a test dataset for insects, FishID for fish species in images;
MegaDetector or TrapTagger for animals in camera trap photos;
and BatDetect2 and BatNet for bats (Aodha et al., 2022; Krivek
et al., 2023) in sound recordings. Additionally, customised mod-
els can be trained on open datasets, for example, FathomNet for
marine organisms (Katija et al., 2022), Pl@ntNet for plants and
iNaturalist for a range of different species. Importantly, even
with readily available models, manual resources and expertise are

required to ensure the anticipated model behaviour and perfor-
mance on new data.

In other cases, models and analysis pipelines may need to be de-
veloped from scratch. Where models or training data are not avail-
able, the cost-benefit ratio of developing new artificial intelligence
models should be weighed against the use of human-mediated ap-
proaches. For example, Mann et al. (2022) developed an approach
to automatically detect flowering plants in images, which were then
examined by citizen scientists for the rare presence of insects.

Efficient processing is relevant when dealing with large amounts
of data, but itis critical to consider the resources needed. Developing
custom automated methods and their broader usefulness and ap-
plicability versus setting up and maintaining manual processing
pipelines (e.g. citizen science projects or recruiting and managing
volunteers) may differ in terms of time, costs and personnel demands
as well as the output quality. In any case, to address the uncertainty
in exploratory analyses of secondary data variables, that is, to get
an idea of what kind of additional information primary datasets con-
tain, a subset of data would most often be analysed manually. This
pre-processing can inform researchers about which methodologies
to apply for larger scale extraction of information.

We expect that future secondary data extraction will be per-
formed on a continuum between fully human and fully automated
approaches with the respective advantages and disadvantages along
this spectrum. Hybrid intelligence, that is, the combination of deep
learning and human diligence (Mann, 2022; Rafner et al., 2021), can
be effectively used to extract and analyse secondary data. Primary
data can be filtered manually and, if necessary, annotated or imme-
diately tested for relevant secondary data in the case of an existing
algorithm. Conversely, one or more features can be selected from
images (or other types of media) by an algorithm to be processed
afterwards by a human (e.g. for annotation, validation or analysis;
Figure 3).

Another challenge to apply artificial intelligence in secondary
data studies is not knowing which data variables to look for and
how to select or develop a potential identification algorithm or, sim-
ply put, how to search for the unknown unknowns. A human eye is
able to identify the unexpected while the algorithm only recognises
what is expected of it, that is, what it was trained for. In order to
leverage the power of artificial intelligence for effective data ex-
traction, data collection generally needs to be guided by precise
research questions and must be based on a priori identification of
variables of interest. As detection models trained to recognise an
increasing number of objects, or segmentation models able to dis-
tinguish different areas in images (Kirillov et al., 2023) emerge, these
may become increasingly relevant for exploration of secondary data
without predetermined knowledge on what to look for. As artificial
intelligence tools develop to analyse, visualise and synthesise multi-
modal data (audio, video, text, etc.), it is likely that they will be able
to recognise multiple features of interest. Also, identifying patterns
across media types, including insights overlooked by a researcher,
and even suggesting mechanisms and hypotheses that could explain
such patterns are within reach. Application of these models should
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FIGURE 3 Interaction and possible
applications of methods to extract/
retrieve secondary data. Our sample
image of the primary observation of a
raptor (a) also happened to include a
black woodpecker and two plant species
as secondary data (b). These exemplary
secondary data could be extracted by
humans or artificial intelligence only or
by both in hybrid intelligence approaches
(c). (image: © zilpzalp17, https://www.
inaturalist.org/observations/148103702,
https://creativecommons.org/licenses/
by-nc/4.0/).

(b)

Primary data

A Accipiter nisus

Secondary data

f Dryocopus martius
? Fagus sylvatica

* Hedera helix

Quantity of processable data

Number of specified objects of interest

Human only
Selection, filtering,

labelling and classification
of objects of interest

AL
»

and every additional
feature beyond

always be done with careful consideration of potential model biases

that can skew results.

5 | WHY ARE WE NOT THERE YET?

Citizen science multimedia records are clearly more than meets the
eye. To protect biodiversity, it is not only essential to inventory and
monitor species, but also to understand the ecological networks
they are part of. By giving many examples of current and possible
future areas of application we demonstrated how secondary data
offer the opportunity to extend and complement systematically col-
lected interaction and monitoring data. Although we are convinced
of the great potential in the untapped information, we still see some
challenges to overcome and specific pitfalls to address.

Similar to the early days of the citizen science movement, the
issue of bias can cast doubt on this new resource. Indeed, we
suspect a similar bias in secondary data as in primary data (Isaac
et al., 2014). Secondary data, however, would be less influenced by
known recording behaviour (e.g. aesthetic preferences or charisma
of observed target species) and more affected by previously less
considered human actions. Staging of observed species in a particu-
lar location and environments, and cultural differences in what can

be appropriately photographed are imaginable examples. In these

Hybrid intelligence Artifical intelligence (Al)

Selection, filtering and
classification of objects
of interest (single or
multiclass detection)

Humans work with A

images pre-processed by Al

Al uses images pre-processed
——

A by humans

cases, scientists using secondary data can benefit from accelerated
development and discussions in analysing opportunistic data to cor-
rect for bias (Johnston et al., 2022). Transparent handling of poten-
tial biases should be a given in both metadata and corresponding
publications.

Of greater concern are biases from data generated by citizen sci-
ence projects with unknown scientific goals. For example, when for
a project citizens document a particular plant solely in forest habitat,
higher-level analysis of that plant's habitats based on image back-
grounds would document an unrepresentative proportion of this
plant in forests. Therefore, the source of data should be known, that
is, in unclear cases, the project organisers would also need to be con-
tacted or the images excluded from the analysis. A thorough critique
of data provenance may be particularly necessary if counterintuitive
trends or patterns emerge during initial spatio-temporal visualisa-
tion or classification of data.

Major obstacles preventing the breakthrough of secondary
data research concern methods for filtering and processing the vast
amounts of data. Filtering primary data for the desired information
is mainly a matter of metadata. More precise information provided
by metadata for each image, text file, audio recording and other data
types can speed up data acquisition and minimise errors. Citizen sci-
ence platforms such as iNaturalist allow users to add more details
about their records in corresponding observation fields or select
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specific features from the list of annotations. However, free-text
fields are arbitrary, and feature lists are confining, and may not in-
clude, for example, possible interactions between species.

Since improving metadata according to the FAIR (Findability,
Accessibility, Interoperability, and Reusability) principles is a world-
wide effort, this problem will hopefully be solved with time. Similarly,
the development of new and better machine-aided object recog-
nition will allow large amounts of secondary data to be processed
automatically in the future. In addition, approaches have been devel-
oped to not only recognise objects in multimedia data sources, but
also to differentiate by anomalies or other species-specific features
such as plant or animal colours (e.g. Hantak et al., 2022; Perez-Udell
et al.,, 2023). Ultimately, the ever-improving models used to generate
ecological networks also help to turn information into knowledge.

A more pressing issue is the legality and ethical defensibility of
using millions of secondary data sources for purposes other than
those intended when the primary observation was recorded and
posted. Considerations of ethical and privacy issues are not exclu-
sive to secondary data. They are also pertinent regarding the pri-
mary data used in iEcology and culturomics (Jari¢ et al., 2020), from
which secondary data can be derived. While much of primary data
(e.g. online texts, images, videos or audio recordings) are publicly
available, and in many cases, people have given consent to their
availability (e.g. by registering in citizen science or social media
platforms), researchers are required to pay careful consideration to
how they collect, use and share these data (Di Minin et al., 2021;
Thompson et al., 2021; Zimmer, 2010).

Ethics are particularly relevant when dealing with online data
from social media, where work is often used or distributed without
the owners' consent. In fact, most social media platforms allow post-
ing nearly any content, as they are not able to automatically identify
copyrighted material. This issue is less prominent on citizen science
platforms, as the users have stronger control of posted data and
media licensing. But the way such information is shared and scraped
still opens various possibilities of copyright infringement in the dig-
ital space. As such, there is a considerable uncertainty regarding
situations in which acquiring permission and crediting authorship
becomes mandatory. If not Creative Commons, checking licences
can become a time-consuming process. Especially, when dealing
with big data that are derived from multiple sources, it may be highly
unfeasible to directly contact the media owners to get permission
for use (Leighton et al., 2016).

Ethical issues have to be carefully considered and are especially
delicate when secondary data allow recognition of people, or allow
the identification of contentious human interactions, such as illegal
fisheries (Sbragaglia et al., 2021), poaching or trade in wild organisms
(Di Minin et al., 2019; Zimmer, 2010). Di Minin et al. (2021) have
suggested a set of guidelines that can help address ethical concerns
in research when using such data. Likewise, while publicly sharing
species location information is useful for research, disclosing the
location and identification of rare or threatened species can be-
come a threat to their conservation (Lindenmayer & Scheele, 2017).
Although citizen science platforms such as iNaturalist already

consider ‘taxon geoprivacy’ as a way to safeguard the locations of
species ‘at risk’, a sensitive species as secondary data would still
come with full coordinates if not recognised as such.

Finally, it is most important that awareness of the existence and
potential of secondary data grows among scientists. With our con-
tribution, we aim to open the eyes of the scientific community to
overcome ‘biodiversity blindness’ and acknowledge the wealth of
information far beyond the location and date of a species observa-
tion in the millions of freely available multimedia files. Besides being
blind to this treasure of data, studies and projects dedicated to the
topic may also not be seen as such due to a lack of common termi-
nology. Therefore, we would like to establish the term secondary
data as proposed by Callaghan et al. (2021) or at least stimulate a
discussion about terminology, so that a corresponding field of re-
search can grow.

It should be clear to the community that this approach applies
not only to data from citizen science, social media or webpages, but
also to data collected by scientists in the field or in the laboratory.
The multiple benefits demonstrated here should convince people to
make the (raw) data available to the public according to the FAIR
principle, be it via GBIF, GitHub or other openly accessible reposi-
tories. As with all new and innovative methods, a transition period
will be necessary before this approach is fully integrated into the
research toolkit. Again, we draw comparisons with iEcology, cultu-
romics and citizen science in that secondary data are utilised in a
complementary and supportive way to other data sources and veri-
fied with ground truthing. Efforts to explore and use secondary data,
although still in their early stages, are already demonstrating many
ways to enrich and inform biodiversity research.
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