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1  |  INTRODUC TION

Invasive plant species are widespread, impact the dynamics of the 
ecosystems they invade (Roy et al., 2023; Vitousek et al., 1997) 
and are the second leading threat to biodiversity next to habitat 

loss (Wilcove et al., 1998). Invasive plants have a plethora of di-
rect and indirect impacts that alter ecosystem functioning (Fargen 
et al., 2015; Hopfensperger et al., 2017), community interactions 
(Dutra et al., 2011; Schmidt & Whelan, 1999), community structure 
and species composition (Christopher & Cameron, 2012; Hartman 
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Abstract
1. Managers tasked with controlling invasive species require effective methods 

that are quick and easy to use without inflicting extensive nontarget damage, 
while also being compatible with other scheduled management responsibilities. 
Lonicera maackii	(Amur	honeysuckle)	is	a	non-	native	shrub	that	has	invaded	east-
ern	and	midwestern	North	American	deciduous	forests,	altering	ecosystem	func-
tion and reducing biodiversity.

2. This study explores prescribed fire and seasonal basal applications of triclopyr 
ester as control methods and examines the extent of nontarget damage. We used 
paired- split plots to implement basal bark treatments in different seasons within 
burned and unburned units, and we tracked individual L. maackii to determine 
mortality and hyperlocal impacts of management.

3. Basal bark treatments killed 98.4% of L. maackii across seasonal timings. Nontarget 
plant cover declined similarly for all herbicide application seasons, but there were 
some	signs	of	recovery	within	4 years,	and	the	early-		and	late	spring	treatments	
were less affected overall. Species richness showed biologically small but statis-
tically different declines across treatment times. Prescribed fire did not impact  
L. maackii mortality or interact with herbicide efficacy.

4. Basal bark applications of triclopyr are an effective means of L. maackii control regard-
less of application timing, which allows managers to implement it at their convenience 
to avoid interfering with other management tasks that have time constraints.
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& McCarthy, 2008). Depending on the success of the invader, 
local biodiversity can be reduced to a near monoculture (Olson & 
Whitson, 2002), underscoring the importance of effective control 
strategies.

Land managers tasked with extirpating invasive species face 
many challenges and spend billions of US dollars per year (Kimball 
et al., 2015), with an estimated US$46 billion spent on manage-
ment from 1960 to 2020 (Fantle- Lepczyk et al., 2022), and fi-
nancial and time constraints mean that managers are frequently 
unable to control all invasive species in a location. Managers may 
ignore heavily invaded areas to focus actions on smaller invasive 
populations located in higher quality habitats where local extir-
pation of the invasive plants is feasible and less expensive (Welch 
et al., 2014). Time constraints also include other management ac-
tivities, such as the application of prescribed fire, grazing manage-
ment or seed collection and planting. When these other activities 
must occur at a particular time of year, it limits the time available 
for invasive species control. Identifying temporal compatibility be-
tween invasive management and other responsibilities can allow 
managers to optimize schedules and improve overall management 
efficacy. For example, if invasive control methods can take place 
during winter, when managers' time is more flexible and vegeta-
tion is dormant, but still be effective, this would benefit overall 
management.

1.1  |  Lonicera maackii impacts

Lonicera maackii	(Rupr.)	Herder,	an	invasive	species	to	North	America,	
is	an	upright	deciduous	shrub	(up	to	6 m	tall),	often	with	many	arching	
branches growing from a base or meristematic burl (Czarapata, 2005; 
Luken, 1988).	It	produces	leaves	early	in	the	spring,	usually	1–2 weeks	
before native species leaf- out and retains them late into the fall 
(Czarapata, 2005; Luken & Thieret, 1996). Lonicera maackii becomes 
reproductively	mature	at	3–8 years	of	age	(Deering	&	Vankat,	1999) 
and produces prodigious amounts of fruits whose seeds may re-
main	viable	in	the	soil	for	2–3 years	(Czarapata,	2005). It flourishes 
in sunny, upland, disturbed habitats such as along forest edges 
(Luken et al., 1995; Luken & Mattimiro, 1991) but can still tolerate 
and dominate more shady and mesic conditions (Czarapata, 2005; 
Swearingen et al., 2010). Combined with other invasive traits, includ-
ing a long dispersal range (Gorchov et al., 2014; Gosper et al., 2005; 
Nyboer, 2007), multiple seed dispersal methods (Castellano & 
Gorchov, 2013; Gosper et al., 2005), allelopathy (Cipollini et al., 2008; 
Cipollini & Dorning, 2008), and the ability to readily resprout from 
roots after above- ground tissues have been killed or removed (Luken 
et al., 1991; Luken & Mattimiro, 1991), it has few natural controls 
like	herbivory	in	its	introduced	North	American	range	(Lieurance	&	
Cipollini, 2012).

Lonicera maackii is pervasive across eastern and midwest-
ern U.S. deciduous forests and is present in 34 states as of 2013 
(CABI,	2018), significantly altering invaded woodland communities. 
It reduces light penetration below its dense canopy and limits soil 

nutrient availability (Luken & Thieret, 1996), which can reduce native 
plant richness (Collier et al., 2002; Gould & Gorchov, 2000), dimin-
ish basal and radial growth of saplings (Hartman & McCarthy, 2008) 
and increase native tree seedling mortality (Gorchov & Trisel, 2003). 
Its negative impacts also extend to consumers like birds (Ingold 
& Craycraft, 1983; Meiners, 2007; Schmidt & Whelan, 1999; 
Witmer, 1996). Because of these ecological disruptions, the removal 
of L. maackii is often a high priority for woodland managers when the 
maintenance of native biodiversity is a goal.

1.2  |  Common eradication methods

Like many invasive woody plants, control methods of L. maackii in-
clude prescribed burning, hand or machine pulling, cutting alone, 
cutting followed by an herbicide treatment, foliar- applied herbicide 
treatments, herbicide injections and basal bark herbicide treat-
ments. These treatments vary in both work and time requirements 
and in efficacy (Hartman, 2005, reviewed in Baker, 2019). For exam-
ple, cutting followed by herbicide application (i.e. cut- and- treat) is a 
common and effective eradication method (Olson & Whitson, 2002; 
Reinartz, 1997) where plants are cut near the base and herbicide 
is	applied	to	the	remaining	stump.	Although	this	can	avoid	soil	dis-
ruptions that accompany mechanical removal (Gayek, 2000), as with 
other cutting methods, the manual removal of cut stems is time and 
labour-	intensive.	Additionally,	many	treatments	need	to	be	repeated	
for multiple consecutive years to eliminate viable L. maackii seeds 
from the seed bank (Czarapata, 2005; Luken & Mattimiro, 1991), 
making the cost, effort and time to remove them critical factors in 
control efforts.

Prescribed fire has been used to control invasive species in-
cluding L. maackii in fire- adapted communities, but its effects are 
not well researched. Fire has produced limited mortality on bush 
honeysuckle species for spring, summer and fall burns (Zouhar 
et al., 2008).	Although	fire	can	completely	kill	younger	plants,	it	may	
only top- kill adults, killing the above- ground stems but not the roots 
(Czarapata, 2005).	Adults	vigorously	resprout	from	intact	roots,	so	
repeated annual burning may be required to drain root resource re-
serves (Batcher & Stiles, 2000; Czarapata, 2005). Few studies have 
rigorously investigated the effects of prescribed fire on L. maackii 
after the initial post- fire season (Zouhar et al., 2008) or interactions 
between fire and other control methods.

Herbicide- focused methods can save both labour and time, par-
ticularly when vegetation removal is not necessary. Basal bark spray 
applications around the circumference of a plant's base and stems 
are similar to herbicide injectors in ease of use and may be faster, but 
they are more expensive and may have significant nontarget impacts 
(Holmes & Berry, 2009). Previous research shows basal bark treat-
ments can be highly effective for L. maackii (Kleiman et al., 2018), 
and there may be additional benefits for achieving restoration goals. 
When native plants are under high herbivore pressure, using a herbi-
cide treatment that leaves the L. maackii stems intact has increased 
native vegetative layer success by functionally fencing out the 
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herbivores (Cipollini et al., 2009).	Also,	unlike	pulling,	the	remaining	
roots may prevent soil erosion until the vegetative layer can be rees-
tablished (Luken et al., 1997).

In this study, we examine the efficacy and impacts of a combi-
nation of two control methods for L. maackii, prescribed fire and 
basal bark herbicide application. Managers may use combinations of 
invasive plant control techniques depending on available resources, 
community type, extent of invasion and goals for that site. Prescribed 
fire is often implemented to mimic historical disturbance regimes 
and benefit natural communities, but its concurrent use with cutting 
methods or with herbicide application methods for L. maackii is un-
studied. Importantly, we also manipulate herbicide application timing 
to determine if this activity can be implemented at different times 
of the year without losing efficacy or increasing nontarget effects. 
Specifically, the purposes of this study are to (1) determine the opti-
mal timing of triclopyr basal bark application to maximize L. maackii 
mortality, (2) determine whether basal bark application efficacy var-
ies with prescribed fire and (3) measure potential negative nontarget 
effects on native and non- native understory plants.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites and design

We measured the effects of oil- based triclopyr basal bark treat-
ments and prescribed fire on L. maackii across three locations in 
northern	Illinois,	USA:	Franklin	Creek	State	Natural	Area	(hereafter	
‘Franklin Creek’), Nachusa Grasslands and an adjacent private resi-
dence (Figure 1). Franklin Creek is a 400- hectare preserve located 
near Franklin Grove, Illinois, owned by the Illinois Department of 
Natural Resources. It consists largely of dry- mesic upland forest, 
woodlands and savannas with extensive mesophytic tree encroach-
ment. Connected on the north side is Nachusa Grasslands, a 1200- 
ha preserve owned by The Nature Conservancy. It is mostly prairie 
but	also	has	approximately	120 ha	of	upland	woodlands	and	savanna.	
The private residence directly adjacent to Nachusa Grasslands also 
consists	 of	 upland	woods.	 All	work	was	 permitted	 by	 and	 carried	
out under the approval of The Nature Conservancy and the Illinois 
Department of Natural Resources.

All	areas	have	controlled	L. maackii to some extent in the past. 
There have been mesophytic tree thinning efforts at Nachusa 
Grasslands and Franklin Creek, and both sites receive prescribed fire. 
Two plots were established at Franklin Creek, two plots at Nachusa 
Grasslands, and one plot straddled the border between Nachusa 
Grasslands and the adjacent private residence. Those five plots were 
split into burned and unburned subplots with 80 L. maackii individu-
als	in	each	subplot.	Individuals	ranged	from	less	than	1 m	tall	to	more	
than	3 m	tall.	We	randomly	assigned	each	individual	one	of	five	her-
bicide treatments where herbicide was applied while L. maackii was 
entering dormancy, dormant, in late dormancy, and in early growing 
seasons	 or	 a	 control	 treatment	 that	 received	 no	 herbicide.	 A	 tree	
tag was attached to each individual and marked with tree paint for 

easy relocation. The experiment is a paired- split plot design, with 10 
subplots (n = 5	per	fire	treatment,	paired)	and	herbicide	application	
timing was replicated within each subplot (n = 16	per	treatment	per	
subplot), for a total of 800 plants.

2.2  |  Treatments and data collection

We applied a 10% triclopyr ester herbicide solution in oil (16.67% 
v/v	Garlon	4	Ultra,	Dow	AgroSciences	LLC,	Indianapolis,	IN)	sprayed	
entirely around the circumference of each L. maackii stem using a 
backpack sprayer (Iris 15, Birchmeier, London, KY). The backpack 
cone spray tip was set to produce neither a stream nor a fine mist 
using	low	pressure.	Herbicide	was	applied	in	a	15–30 cm	band	from	
ground level until all stems were fully coated, but the herbicide did 
not run off, as directed by the manufacturer. The herbicide applica-
tion for entering dormancy application (hereafter ‘fall’) took place 
from November 26 to December 16, 2017. The dormant applica-
tion (hereafter ‘winter’) was performed on January 28, 2018; late 
dormancy application (hereafter ‘early spring’) on March 10–11; and 
the early growing season (hereafter ‘late spring’) application on May 
4–May 5 after prescribed fire was completed. The fall application 
had a wide range because hunting season limited accessibility, but 

F I G U R E  1 Map	of	Lonicera maackii Treatment Sites. Yellow 
outlined areas indicate Nachusa Grasslands, and blue outlined 
areas	indicate	Franklin	Creek	State	Natural	Area.	Orange	triangles	
indicate study site locations. Note: The northernmost subplot is on 
adjacent private land owner's property. Inset map indicates location 
within Illinois.
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all	individuals	had	some	green	leaves	when	treated.	All	applications	
across seasons were applied without snow cover, eliminating any po-
tential water dilution impacts.

Paired burned and unburned plots were established based on 
prescribed	fire	activities	between	March	16	and	April	22,	2018.	Due	
to regular use of prescribed fire in all these sites, some unburned 
plots received fire in subsequent years. We tested for interactions 
and potential main effects of the 2018 fire status because we hy-
pothesized that plants subjected to fire in the same year as the 
herbicide treatment may respond differently from unburned areas. 
We checked if the fire reached the base of all individuals within 
burned subplots when applying the early growing season herbicide 
treatment.

We assessed the health status of treated L. maackii plants in 
mid-	May	 2018	 (1 week	 after	 the	 late	 spring	 herbicide	 treatment)	
and again between September 25 and October 5, 2018, as checking 
mortality immediately after application may not accurately reflect 
plant mortality due to herbicide, and some managers claim there is 
a delayed herbicide effect (B. Kleiman, pers. comm.). Plants without 
any green leaves were marked as dead, and those with leaves were 
marked as alive.

To examine longer term nontarget effects of the herbicide treat-
ments on the surrounding vegetation communities, we randomly 
selected four L. maackii from each herbicide treatment within four 
subplots, for a total of 80 survey locations in spring 2018. Initially, 
two burned and two unburned subplots were selected for nontarget 
effects monitoring, but we removed fire from subsequent analyses 
because after the initial 2018 fire treatments, normal management 
resumed, and there was no further differentiation between burned 
and unburned subplots.

We evaluated plant species richness and percent cover between 
May	22	and	June	2	annually	for	4 years	(2018–2021).	We	estimated	
percent	cover	of	each	species	using	a	1 m2 quadrat centred on the 
L. maackii root burl so the percent cover including thatch and bare 
ground totalled 100%. Separate cover measurements were taken for 
each species based on whether it was healthy or showed signs of 
wilting or senescence where it was considered damaged. For anal-
yses, we grouped damaged individuals with healthy individuals be-
cause both categorizations were still alive, and we removed dead 
individuals from the analyses. Some individuals that were difficult to 
identify were only identified to genus, but most plants were identi-
fied to species using a regional flora guide (Wilhelm & Rericha, 2017).

2.3  |  Statistical analysis

We analysed L. maackii mortality using a binomial generalized lin-
ear mixed effects model and nontarget species richness and percent 
cover using linear mixed models constructed using maximum like-
lihood. The mortality model used herbicide treatment, prescribed 
fire at the individual plant (sampling point) level, and the herbicide- 
prescribed fire interaction as fixed factors and nested random 

effects to account for the split- plot design (fire subplot within site), 
controlling for any variation in site differences that would also im-
pact fire intensity. Since L. maackii height may impact susceptibility 
to	herbicide	or	 fire,	we	 initially	 included	plant	height	 class	 (0–1 m,	
1–2 m,	2–3 m	and	>3 m)	as	a	covariate	in	the	model,	but	we	excluded	
it from the final model as it had no impact on L. maackii mortality 
either as an interaction or fixed factor.

Both species richness and percent cover models used herbicide 
treatment and an interaction of sampling year and plant native status 
as fixed effects at the individual sampling point level, with site as 
a random effect. For the percent cover model, we log- transformed 
mean native and non- native percent cover for analysis to meet model 
assumptions and normalize model residuals, and evaluated model fit 
by extracting and plotting residuals. For both models, sampling year 
was analysed as a factor and not continuous variable, as we did not 
hypothesize that plant recovery would follow a linear trajectory.

We assessed mortality and nontarget models using Type II 
ANOVAs	 (α = 0.05).	 All	 models	 were	 constructed	 in	 the	 lmer4	
package (Bates et al., 2015), using the glmer() and lmer() func-
tions,	 and	 assessed	 using	 the	Anova()	 function	 in	 the	 car	 package	
(Fox & Weisberg, 2011) in R (R Core Team and Korpela, 2013) and 
the	 getgof()	 function	 from	 the	 modelsummary	 package	 (Arel-	
Bundock, 2022), with factors only considered significant if p < 0.05.	If	
factors were significant, we analysed pairwise comparisons using the 
emmeans() function in the emmeans package, with a Tukey HSD ad-
justment (Lenth, 2023). Three L. maackii could not be relocated when 
collecting mortality information due to a fallen tree or fire disruption 
and were not included in mortality models, resulting in a sample size 
of 797 plants.

3  |  RESULTS

3.1  |  Mortality of L. maackii

Mortality was significantly impacted by herbicide treatment 
(χ2 = 80.01,	p < 0.001),	with	 plants	 in	 the	 control	 group	 experienc-
ing 2.5% mortality and all herbicide treatment seasons resulting in 
≥96.9%	mortality.	Seasonal	herbicide	treatments	were	not	statisti-
cally different from one another (Figure 2), resulting in an average 
basal bark mortality of 98.4% across all sites and burn plots. During 
the spring 2018 check of treated honeysuckle, 74.7% of treated 
plants began to produce leaves, but the final mortality for all her-
bicide	 treatments	 by	 September	 2018	 was	 ≥96.9%,	 indicating	 a	
delayed herbicide effect. Mortality was not significantly different 
between burned and unburned plots (χ2 = 0.11,	p = 0.74),	nor	was	the	
interaction between burn plot and herbicide treatment season sig-
nificantly different (χ2 = 1.36,	p = 0.85).	The	fixed	effects	explained	
93% of the variance in the model, and the variance explained by the 
random effect (fire subplot nested within site) was small (<2%), in-
dicating that site- specific factors affecting burn intensity had little 
effect on mortality.
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3.2  |  Nontarget vegetation impacts

Herbicide treatment significantly impacted species richness 
(χ2 = 17.03,	p = 0.002),	with	 greater	 species	 richness	 in	 the	 control	
group than fall, winter and late spring treatments, but not greater 
than the early spring treatment (Figure 3). Herbicide treatment 
groups had on average 2 fewer species than the control group, with 
the early spring treatment having 1.4 fewer species and the other 
treatments having 1.9–2.3 fewer species. Sampling year did not sig-
nificantly impact overall species richness (χ2 = 4.61,	p = 0.20).	Native	
species richness was significantly higher than non- native species 
richness (χ2 = 1108.70,	p < 0.001),	and	neither	native	nor	non-	native	

species richness changed differently over time (i.e. no significant 
interaction of sampling year and native status; χ2 = 0.81,	p = 0.85).	
Native species richness ranged from 7.6 to 9.2 species, and non- 
native species richness ranged from 1.6 to 1.9 species. The fixed ef-
fects in the model explained 55% of the variance in the data, and the 
random effect of site explained an additional 17% of the variance 
(for a total R2 = 72%).

Over the entire four- year period, herbicide treatment time sig-
nificantly impacted average percent cover per species (χ2 = 22.36,	
p < 0.001),	with	cover	in	the	control	group	higher	than	in	the	fall	and	
winter treatments, but not early or late spring treatments (Figure 4). 
Herbicide treatment resulted in an overall percent cover reduction 
of	15%	across	all	4 years,	with	individual	treatment	reductions	rang-
ing from 11% (early spring) to 21% (winter).

Sampling year significantly impacted percent cover per species 
(χ2 = 17.21,	 p = <0.001). Following herbicide treatments in spring 
2018, herbicide- treated plots had on average 20.2% less total non-
target cover, with a mean of 31.1% percent cover per plot for all 
treatment	 groups	 and	51.3%	per	 plot	 in	 the	 control	 group.	Across	
all	4 years,	native	species	percent	cover	was	not	significantly	higher	
than non- native percent cover (χ2 = 1.19,	p = 0.29),	and	neither	native	
nor non- native species percent cover changed differently over time 
(the	 sampling	 year × native	 status	 interaction	 was	 not	 significant,	
χ2 = 2.02,	p = 0.57).	The	fixed	effects	in	the	model	explained	6.5%	of	
the variance in the data, and the random effect of site explained an 
additional 7.7% of the variance (for a total R2 = 14.2%).

4  |  DISCUSSION

Basal bark treatments across all seasons were highly effective at 
killing L. maackii, whereas prescribed fire was ineffective by itself 

F I G U R E  2 Lonicera maackii mortality across control and 
herbicide treatment groups. Bars are mean percent mortality of 
treatments, and error bars indicate standard deviation of the mean 
across	all	plots.	Letters	A	and	B	indicate	differences	between	
groups.
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and did not alter the impacts of basal bark treatments. There was a 
minor herbicide impact on the native plant community, resulting in 
reduced species richness and percent cover by about 15% for some 
treatments, although richness and percent cover of non- native spe-
cies	did	not	increase	in	any	overall	pattern	in	the	3 years	following	
treatment. There was some evidence that treating L. maackii with 
herbicide in its late dormancy period in early spring (March 10–11 in 
this study) may have slightly reduced impacts on native plant com-
munities compared to other treatment times, with the smallest loss 
of native species richness and cover. Overall, herbicide treatment 
resulted in an average loss of two species in the immediately sur-
rounding plant community (native and non- native). Taken together, 
these results indicate that managers can use basal bark application 
to control L. maackii, regardless of site fire status or application time 
outside of the active growing season, and they can expect results 
that meet management objectives of invasive control without ex-
tensive nontarget effects.

4.1  |  Management impacts on L. maackii

Basal application of triclopyr from fall to late spring effectively 
killed 98.4% of all herbicide- treated L. maackii (Figure 2). These re-
sults are similar to a previous study at a nearby site, which found 
100% mortality from basal bark applications (Kleiman et al., 2018). 
However, other studies have reported reduced effectiveness, such 
as	≤40%	mortality	(Rathfon	&	Ruble,	2007) or effectiveness as low 
as	≤2%	mortality	for	fall	treatments	and	≤35%	mortality	for	spring	
treatments (Riley, 2013). Both of these studies reported mortality 
by visually estimating treatment plot mortality and did not assess 
the individual plant mortality as here and in Kleiman et al. (2018). 
Mortality assessments at the larger plot scale do not consider new 

recruitment from the seed bank or incomplete herbicide application 
from operator error and can lead researchers to conclude limited 
mortality from more targeted treatments. Plot- based mortality as-
sessments would, therefore, favour less targeted treatments that do 
not require the operator to keep track of individuals that have not 
yet been treated or favour treatments that damage the seed bank 
and adjacent native plants. The extremely low mortality reported by 
Riley (2013) may also be due to pre- emptive mortality determina-
tion that did not allow sufficient time for the herbicide to be trans-
ported throughout the plant or for the leaves to drop. In our study, 
our apparent ‘mortality rate’ at the time of our spring 2018 leaf- out 
check was only 25.3% but had increased to 98.4% by the fall of that 
year. Therefore, allowing sufficient time before evaluating mortal-
ity	(4–10 months	in	our	study)	is	likely	important	when	determining	
herbicide effectiveness.

Some herbicides' effectiveness can differ by season, and often 
there is greater mortality when application occurs during seasons 
when herbicide is actively transported throughout the plant (Fuchs 
& Geiger, 2005). This may explain the reduced efficacy of foliar ap-
plication of triclopyr on invasive shrubs with summer and fall treat-
ments, especially under drought stress, compared to more effective 
spring treatments when the herbicide actively moves through the 
phloem (Lanini, 1992; Lanini & Radosevich, 1982; Riley, 2013). 
However, we show that basal bark application of triclopyr is not im-
pacted by the dormancy status of L. maackii, with consistent high- 
mortality	 treatment	effects	 (≥96.9%	mortality)	 for	each	 treatment	
season.

Prescribed fire was not effective at killing L. maackii nor did it 
limit the efficacy of basal bark treatments. Previous studies provide 
mixed mortality results, reporting both a lack of effect like we found 
here (Zouhar et al., 2008), and evidence of effective control (Batcher 
& Stiles, 2000; Nyboer, 2007; Saxton et al., 2016). Lonicera maackii 

F I G U R E  4 Average	native	(grey)	and	
non- native (black) percent cover per 
species, per m2 (not total percent cover 
per m2) from 2018 to 2021, from all 
sampling locations (n = 80).	Bold	centre	
bars indicate the median. Hinges indicate 
the middle 50% of the data, and whiskers 
include	data	within	1.5 × the	interquartile	
range or distance from the 1st to the 3rd 
quartiles.
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leaf litter does not carry fire well due to its relatively small leaves 
(Engber & Morgan Varner, 2012), resulting in limited fire intensity 
that is likely not hot enough nor resides long enough to kill the roots, 
allowing L. maackii to readily resprout after being top- killed (Klein 
& McClintock, 1992). However, fire intensity surrounding L. maackii 
has not been studied and is likely widely variable across locations, 
depending on fuel type, fuel load and distribution of burnable fuels 
beneath the shrubs. Both the type of burnable fuels and the conti-
nuity of fuels (how connected the fuels are) would impact the effec-
tiveness of prescribed fire as a L. maackii control method (Batcher & 
Stiles, 2000). When L. maackii are sparsely distributed with nearly 
continuous well- burning fuels between plants, fire may top- kill the 
plants. However, fire is a disturbance that may facilitate L. maackii 
invasion by opening the canopy and enhancing nitrogen availability 
(Luken et al., 1995; Taylor & Midgley, 2018; Zouhar et al., 2008). In 
the context of fire- adapted woodland and savanna management, 
which relies on fire disturbance to maintain an open canopy (Bowles 
et al., 2003; McEwan et al., 2007), it is not recommended to remove 
fire from the ecosystem. Rather, it is recommended that managers 
be more vigilant in recently burned areas for new recruitment of L. 
maackii and other non- natives that may necessitate treatment and 
removal (Guthrie et al., 2016). The method used in this study may be 
a time-  and resource- effective way of doing this by allowing man-
agers to quickly treat newly recruited L. maackii individuals and not 
have to spend more time on mechanical removal.

4.2  |  Management impacts 
on nontarget vegetation

To our knowledge, the damage to nontarget vegetation caused by 
different seasonal basal bark applications of triclopyr has not yet 
been examined. Immediately following treatment (in 2018), plants 
in all triclopyr treatment seasons suffered similar damage. This dif-
fers from other herbicides such as glyphosate which produces less 
nontarget damage during winter and spring treatments due to its 
rapid uptake during photosynthesis and rapid degradation in the en-
vironment	(Love	&	Anderson,	2009; Merriam, 1999). However, over 
the course of the entire study, only fall and winter basal bark treat-
ments resulted in an overall reduction of nontarget percent cover. 
Most of the damage was not from herbicide directly contacting non-
target vegetation, because the winter and early spring seasons had 
no vegetative cover present and photodegradation would still occur 
for any unabsorbed above- ground herbicide (Tu et al., 2001, 2003). 
Residual herbicide in the soil could be responsible despite triclopyr's 
30- day half- life in soil, because soil microbes that degrade the her-
bicide may be less metabolically active during cold, dormant months 
(Classen et al., 2015; Onwuka, 2018; Tu et al., 2001, 2003).	A	com-
panion study to this one examined the impacts of basal bark treat-
ments on soil microbial communities and found weak or no biological 
responses (James et al., 2022); a decline in arbuscular mycorrhizal 
fungi colonization of sprayed L. maackii might even be expected to 
benefit surrounding plants if the fungi shift colonization and nutrient 

benefits	 to	 surrounding	plants.	A	 release	of	allelopathic	chemicals	
(Stinson et al., 2006) from L. maackii roots upon death also is possi-
ble, but the potential mechanisms of nontarget damage require more 
research.

Eight of the 10 most abundant species in plant surveys (summed 
live cover across all treatments, including the control) were na-
tive, with L. maackii being the most abundant non- native species, 
followed by Alliaria petiolata. The most abundant native species in-
cluded Antenoron virginianum, Circaea canadensis, Osmorhiza spp., 
Sanincula odorata, Parthenocissus quinquefolia, Viola spp. and Carex 
spp. The most abundant native species, jumpseed (A. virginianum), 
increased in average plot- level cover from 6% in 2018 to 14% in 
2021, and the most abundant non- native, nontarget species, garlic 
mustard (A. petiolata), increased from 1% to 6% average cover from 
2018 to 2021, respectively. Land managers may need to be vigilant 
for local incursions of garlic mustard or other non- natives following 
honeysuckle treatment, as removing live honeysuckle canopy cover 
may encourage increased spread or germination from the seed bank 
(Frank et al., 2018).

Despite the statistical differences in richness and percent cover, 
the biological difference (i.e. the effect size) was minimal, with a 
mean difference of approximately two species lost directly around L. 
maackii, and a mean percent cover per species difference of fifteen 
percent. Managers could avoid basal spraying of triclopyr in very 
high- quality areas that contain sensitive species in the fall, winter 
and later in the spring. However, the benefits of L. maackii removal 
likely outweigh the temporary negative impacts of basal bark re-
moval treatments because there was some evidence of native cover 
increases in plots following basal bark treatments, but not in control 
plots without basal bark treatments.

5  |  CONCLUSIONS

Basal bark application of triclopyr is an effective means of killing L. 
maackii regardless of when managers choose to apply herbicide. This 
study did not find that fire is an effective control method, but fire did 
not inhibit triclopyr effects and should be implemented to maintain 
fire- adapted communities. There is localized damage to understory 
vegetation around the L. maackii base following application during 
some seasons, but the extent of nontarget damage from basal bark 
treatments is minimal compared to the long- term direct negative im-
pacts of L. maackii on native plant communities. By using quick and 
easy targeted treatments like basal bark application that are effective 
regardless of application season, managers can promote restoration 
goals of reestablishing native plant communities by locally extirpating 
L. maackii in its invaded range and focusing on recently invaded areas 
where ecosystems have not yet been severely altered.
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